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Abstract

This thesis developed an inverse modeling approadatirectly incorporate high resolution
spatiotemporal soil moisture content data produmetihe wireless sensor network SoilNet for
the temperate humid forested headwater basin Wdidtelo parameterize the distributed
hydrological model Hill-Vi. A one year period ofxshourly soil moisture measurements from
150 locations in the 0.27 Knbasin was available for this study. The model e@mspled to the
Multi-Objective Shuffled Complex Evolution Metrop®l (MOSCEM-UA) algorithm to
facilitate efficient sampling of the parameter spaeith respect to a suite of objective
functions constraining the model to runoff at tleécbment outlet and internal soil moisture
dynamics. State-of-the-art hydrological inverse sl methods were applied to assess the
identifiability of model parameters and model stanal uncertainty. The approach was then
used to preliminarily investigate the value of sobisture data in constraining the parameter
space and to study the influence of increasing inedenplexity by including bedrock
seepage, variable soil depth, and variable thralgimto the model. As for now, the model
was found to be incapable of appropriately simotatihe basin dynamics. This may be
primarily attributed to biases in the meteorologitata and the limited amount of parameter
samples generated. More research is needed tcedetiable conlcusions on both the utility
of soil moisture data and the value of added modaiplexity for the simulation of internal

soil moisture dynamics and runoff response.

Keywords Inverse modelling, model calibration, distributegirological models, soil
moisture, wireless sensor networks, multi-criteq@@mization, model
complexity



Zusammenfassung

In dieser Arbeit wurden Methoden der inversen Mbeleing zur Parametrisierung verteilter
hydrologischer Modelle unter Verwendung raumlich dureeitlich hochaufgeloster
Bodenfeuchtedaten. Die Daten stammen von dem Bgebensor Network SoilNet das in
dem bewaldeten Einzugsgebiet Wiistenbach (0,2% kmstalliert wurde. Fiir diese Studie
wurden Bodenfeuchtemessungen in einem 6-stindigeitschritt von 150 Sensoren
verwendet. Das Modell wurde mit dem Multi-Objectivihuffled Complex Evolution
Metropolis (Moscem-UA) Algorithmus gekoppelt um eireffiziente Beprobung des
Parameterraums hinsichtlicher multipler Gutemal3eerznoglichen. Die Giutemal3e messen
die Ubereinstimmung der Simulationen von Abfluss@ebietsauslass und Bodenfeuchte mit
den entsprechenden Messungen. Um die Identifizieeita der Parameter und die
Unsicherheit in der Modellstruktur zu erfassen veurdnverse Modellierungsverfahren nach
dem Stand der Forschung angewendet. Die Methoddenamgewendet um den Wert der
Bodenfeuchtedaten zur Begrenzung des Parameterrawsowie den Einfluss erhdhter
Modellkomplexitat bezuglich der Einbeziehung von rdfekerung in den Untergrund,
variabler Bodentiefen und variablen Kronendurchlagdaufig zu untersuchen. Bei erster
Betrachtung der Ergebnisse wurde keine adaquaterelsémmung zwischen den
Simulationen und Messungen gefunden. Dies ist viichuhauptsachlich systematischen
Fehlern in den meteorologischen Daten und derngen Anzahl an moglichen
Parameterstichproben zuzuordnen. Weitere Untersigemusind erforderlich um zuverlassige
Schlusse tber den Nutzen der Bodenfeuchtedatedamerhohten Modellkomplexitat fir die

Simulation der Bodenfeuchtedynamik und der Abflssgehen zu kdnnen.
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1. Introduction

1.1. Motivation

According to Bogena et al. (2010) a remaining @mgk in hydrology is to explain the
observed patterns of hydrologic behavior acrosstiptelspace—time scales as a result of
interacting environmental factors. Furthermorerehis an increasing demand for spatially
explicit predictions to address complex environmakmroblems concerning surface water
acidification, soil erosion, pollutant leaching, dapossible consequences of land use or
climatic changes (Grayson et al., 2002). The coxiyi®f problems hydrologists are asked to
investigate has grown over the years (Wagener,2G@07).

Observations and measurements are vital to impgoeur understanding of hydrological
response. However, to understand the dynamics dfolggical processes, a framework to
facilitate hypothesis testing is needed. Compussed modelling is used throughout
hydrology for this purpose (e.g., Wealands, 2006gre are many different types of models,
ranging from those that estimate bulk quantitiestitose that produce spatially explicit
estimates across an area. There are many compraheegiews of hydrological modelling
available, which provide examples and classificetiof models (e.g. Singh, 1995; Abbott
and Refsgaard, 1996; Grayson and Bldschl, 2000Qa]b,this thesis, the focus is on spatial
models, which are used for testing hypotheses aubehaviour of hydrological systems.
Models provide the platform on which conceptualss of hydrological processes are
combined to simulate hydrological response. If ni®geove to adequately simulate a certain
response, they can also be used for predicting eftfects of changed conditions on
hydrological response (e.g. land use change).

The past decades have seen the development aridaéippl of numerous physically based
distributed models (i.e., models that explicithpmesent spatially varying fields) of diverse
levels of complexity over a range of scales, fraitslopes (Faeh et al., 1997; Weiler et al.,
1998; Calver and Cammeraat, 1993; Sloan and Md@®4) to mesoscale and largescale
basins (e.g., Abbott et al., 1986; Beven et al.8719Grayson et al., 1992; Julien and
Saghafian, 1991; Wigmosta et al., 1994; GarroteBrad, 1995; Ivanov et al., 2004). Yet, the
anticipated utility of such models (e.g., Beven83,9Goodrich et al., 1995) to significantly
advance the skill to simulate and forecast hydriclogsponse, to serve as tools for scientific
hypothesis testing and to elucidate the complexditdistributed and interacting hydrologic
processes in time and space has not yet fully exdeffginnerty et al., 1997). In attempting to
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describe the complex spatial behavior of hydrolagistems, distributed models tend to be
complex (refering to the detail of process repres@n) in structure and contain numerous
parameters to be estimated. Among the major casgxpressed in the literature are the lack
of parameter identifiability, model structural enainty and possible overparameterization
of the process description (e.g., Refsgaard, 18&Xen and Freer, 2001; Seibert, 2001;
Grayson et al., 2002; Gupta et al., 2005). Nevéetise spatially distributed hydrological
models can provide insights into questions that manbe addressed based on point field
observations, laboratory experiments, or lumpedetsoBeven, 2000).

At present, one of the most severe constraintstHerfurther development of distributed
hydrological modelling and its utility for predioth and analysis can be found in the general
inability to thoroughly evaluate and constrain thstributed model dynamics with available
data (Refsgaard, 1997; Grayson et al., 2002). Usuabdel evaluation and calibration has
been mainly based on a comparison of observed ¥siswlated runoff at the basin outlet. It
has been pointed out numerous times that thisreryaweak constraint on the adequacy of a
model and its parameters. Many modeling studiese helvown that only matching the
simulated and observed integrated catchment resp@es streamflow) is no guarantee that
the internal, spatially distributed hydrologic respe is correct (Grayson and Bloschl,
2000a,b,c; Seibert et al., 1997). Many differentapgeter combinations and even model
structures describing different processes can éxaédtmay produce a wide array of internal
states yet very similar runoff outputs.

Spatial observations provide the ability to evatutite internal behavior of the models, in
terms of simulated patterns of state variablesmaadel output. This can not only improve the
identification of model parameters and increasergiability and precision of predictions
(e.g., Franks et al., 1998). Seeing how well a megkinternal response is simulated provides
a much more rigorous test of model structures, gg®@conceptualizations and assumptions.
This can provide a more reliable basis to answestjpns about what complexity (i.e., level
of detail in process representations) is actuaigded (Beven, 1989; Grayson et al., 1992;
Jakeman and Hornberger, 1993) and how can expesahferdings be incorporated to arrive
at models that are known to ,work”, to some momgable degree, for the right reasons, i.e.
are consistent with the current process understgn(@.g., Seibert and McDonnell, 2002;
Weiler and McDonnell, 2004; Tromp-van Meerveld aldiler, 2008). By including spatial

pattern comparisons in model assessments, we wipirove the confidence with which we
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can claim our models do indeed represent the pgitesses and get the right answers for the
right reasons” (Grayson and Bléschl, 2000a,b,c).

Spatial data is becoming increasingly availabler@écent years (Grayson et al., 2002;
Vereecken et al.,, 2007). One promising new teclgyls emerging with wireless sensor
networks (e.g., Cardell-Oliver et al., 2005; Trohkilcz et al., 2009; Bogena et al., 2009,
2010). These networks provide data on importantirenmental variables such as, for
instance, soil moisture content, with unprecedegspadiotemporal resolution and can bridge
the scale gap between local hydrogeophysical meammnts and remotely based sensor
systems (Bogena et al., 2009). Although the teduyls still in its infancy, it provides the
potential to revolutionize data collection at leasthe experimental catchment scale (Soulsby
et al., 2008).

Now it is necessary to find ways to make optima ofthis data to constrain the models to be
consistent with key signatures this data may cantdrhile it is a common believe that
detailed spatial observations are vital to imprgviour understanding of catchment
hydrological behavior, still relatively little expence seems to exist on what constitutes
appropriate data in a given situation and how t&kemaptimal use of the data (Wealands,
2006). This will form an interesting and importdreld of research in both hydrological

process understanding and modeling (Grayson €G02).

1.2. Scope

The primary goal of this thesis is the developnwéran inverse modeling approach to directly
incorporate the high resolution spatiotemporal sodisture content data produced by a
wireless sensor network into distributed hydrolagmodels.
This study uses the distributed model Hill-Vi (Wsiland McDonnell, 2004) and soil
moisture data produced by the wireless sensor mkt®oilNet (Bogena et al., 2010) for a
temperate humid forested headwater basin. Thesevandeling application involved

setting up the model to the study site,

preparation of the meteorological and sensor nétwata,

selection of appropriate objective functions tostomin the model to major aspects of

the observed soil moisture data,

coupling of the model to an effective and efficig@arameter sampling scheme and

implementations of state-of-the-art inverse modghmethods to allow assessment of

model structural and parameter uncertainty.
-0.
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Finally, this study intends to investigate the imipoce of representing several processes that
have recently received attention in experimentaldists, for instance, bedrock seepage,
variable soil depth (or bedrock topography), andaide throughfall, for the simulation of
internal soil moisture dynamics as well as the funesponse at the catchment outlet to be

investigated.

1.3. Background

1.3.1. Hydrological inverse modeling

The hydrological behavior of any hillslope or catwnt involves a number of spatially
distributed and interacting water, energy and \egg@t processes. Therefore every computer-
based hydrological model, regardless of how detaile spatially explicit, how physically-
founded or conceptual in nature, is necessarily implgied and to some degree
spatiotemporally aggregated representation of tgkeh\yhcomplex and heterogeneous reality
(Gupta et al., 2005; Wagener and Gupta, 2005). éanaequence, at least some of the model
parameters are — while often still physically iptetable and related to properties of the
system — not directly measurable. Instead, theg h@awe identified via an indirect process of
parameter estimation, during which the model patareare iteratively adjusted such that the
model simulations match, as closely and consistestlpossible, the observed behavior of the
system under study. This process is variously refeto as inverse modeling or model
calibration (e.g., Hornberger and Spear, 1981; gout983; Beven, 2005; Wagener and
Gupta, 2005; Vereecken et al., 2007). A further angnt aspect is that while the model
structure is most commonly fixed a priori to anydaling attempts (Wheather, 1993), a
variety of model structures, representing differ@@grees of complexity and varying process
conceptualizations and assumptions, may appealilggassible for a given situation. The
selection process usually amounts to a subjeceatsibn by the modeller (Wagener, 1998),
since objective decision criteria are often lackiNyoczkowski et al., 1997).

Calibration and testing of hydrological models Ihagn an active area of research in recent
years. The greater use of complex models has isedethe problems of balancing data
availability, predictive performance and model cdempy (Grayson et al., 2002), which has
led to questioning the classical calibration pagadi(Gupta et al., 1998). Sophisticated

automatic global optimization algorithms (see Guetaal., 2005; Vrugt et al., 2008; and

-1.
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references therein) are now available to relialdgate the global optimum for some
predefined mathematical measure of ,goodness-bfdithe data (henceforth referred to as
objective function; OF). However, it has becomeaclhat usually a large number of models
or parameter sets exist that result in very simiddues for the selected OF. This is referred to
in the optimization literature as the problem of naoiqueness, indeterminacy,
nonidentifiability, or more recently “equifinality{Beven, 2001). Consequently, the inherent
uncertainty in any model application must be exiiyiconsidered during both calibration and
prediction. While the entire uncertainty is oftawjpcted into the parameter space, it has to be
clear that all components of the modeling procésduding the measurements of system
input and output and the model structure, are waiceand errorprone (e.g., Wagener and
Gupta, 2005).

Several approches exist in the literature to redpgorthe problem of perceived equifinality.
First, the finding can be interpreted as the negdsét theoretic approaches, which assume
that all plausible models should be retained urdessuntil evidence to the contrary becomes
apparent. Many of these set theoretic approachesadated to the Regional Sensitivity
Analysis (RSA; also called the Hornberger- Speawp approach) concept advanced by
Spear and Hornberger (1980) that evaluates thetiségf the model output to changes in
parameters without referring to a specific pointtire parameter space. These techniques
commonly apply Monte Carlo sampling proceduresxjaae the feasible parameter space in
search for plausible behavioral (the terms ,behanat and ,non-behavioural are often used
to describe models that ,match* or ,do not matdhé bbservations (Hornberger and Spear,
1981) models. Examples of the set theoretic appragmplied to hydrological modeling
include the Generalized Likelihood Uncertainty Esttion (GLUE) technique (Beven and
Binley,1992), the Dynamic Identifiability Analysi€DYNIA) approach (Wagener et al.,
2003), the Parameter Identification Method basether_ocalization of Information (PIMLI)
approach (Vrugt et al., 2002), the Monte Carlo Betmbership (MCSM) approach (van
Straten and Keesman, 1991), the Explicit Bayesigprdach (Kuczera and Mroczkowski,
1998), the Bayesian Recursive Estimation (BAREhmégue (Thiemann et al., 2001), and the
Shuffled Complex Evolution Metropolis (SCEM-UA) algthm (Vrugt et al., 2003a).

Second, it has been argued that more powerful rdethoe needed to properly exploit the
information contained in the data. Various reseaftbrts have shown that the amount of
information retrieved using a single OF is insuéfit to identify more then three to five

parameters (e.g. Beven, 1989; Jakeman and Hornmbel@®3; Gupta, 2000). More

-6.



#) &,

information can become available through the usewtiple objective functions to increase
the discriminative power of the calibration procexl(e.g. Gupta et al., 1998; Gupta, 2000).
These measures can either retrieve different tgbesformation from a single time-series,
e.g. streamflow (e.g. Gupta et al., 1998; Dunn&91Boyle et al., 2000; Wagener et al.,
2001), or describe the performance of individualdels with respect to different measured
variables, including internal state variables, eggoundwater levels (e.g. Kuczera and
Mroczkowski, 1998; Seibert, 2000) or saturated @r@@aanks et al., 1998). The multi-
objective approach proposed by Gupta (1998) baseth® concepts of Pareto optimality
further allows to gain insights (that may also bsed for improvements in the model
structure) into consequences of model structurakrainty by revealing trade-offs between
the models capabilities in reproducing several digtas or aspects and portions of the data
equally well with a single parameter set.

Third, the finding that parameter non-identifialyilcan be attributed to overly complex model
structures with too many tunable parameters giveninformation content in the data led
Wheater et al. (1993), Jakeman and Hornberger {1¥38ing et al. (1996); Wagener et al.
(2003) to apply more parsimonious model structuvégh only as many parameters as can
confidently be identified. This is in contrast ta argument sometimes made in model
development that processes that are perceivedvi® dra effect in the real system should be
represented in the model as well (Beven, 2001). év@&w the increase in identifiability is at
the price of a decrease in the number of separategses described by the model. There is
therefore a danger of building a model structurat tls too simplistic for the anticipated
purpose (Kuczera and Mroczkowski, 1998). An impartquestion is therefore how much
complexity is really needed or warranted in hydgdal models (Beven, 1989; Grayson et
al., 1992; Jakeman and Hornberger, 1993; TrompMeerveld and Weiler, 2008).

1.3.2. Use of spatial patterns in distributed hydro  logical modeling

The recent advances in calibration and testing ouetlogy described above have highlighted
the importance of additional information to augmetdandard runoff data. Hence several
studies have used spatial data to acknowledgertiied amount of information contained in

stream flow or any other integrated flux data teniofy model parameters (e.g. Wheater et al.,
1996; Beven, 1989; Jakeman and Hornberger, 1993t¥a., 1997) and to assess issues of

model complexity and realism (Beven and Freer, 20®dibert and McDonnell, 2002).
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Extensive reviews on this topic are found in Graysbal. (2002) and Wealands (2006). The
use of other auxiliary data types has been revievgdoy Seibert and McDonnell (2002).
Important differences in these studies includetlig)type of data or pattern information used,
(2) the strategy to compare observed and simuldstd, and (3) the strategy to combine
multiple data sources. Some key aspects are suaaddrelow.

1.The type of data commonly used to describe dppéiierns can either consist of point
measurements, categorical and binary data or sateatata (i.e. data that shows a degree of
correlation to the spatial pattern of interest). the context of this study, use of point
measurements is of particular interest. Point measents used as basis for spatial model
evaluation include soil moisture measurements ,(egpirico et al., 2003), snow depth
measurements (e.g., Davis et al., 1998), groundviexels (Lamb et al., 1998; Blazkova et
al., 2002), and internal stream stage measuren(idatser et al., 2005). They may either be
used directly or interpolated to the model grichgsmethods of varying complexity (Grayson
et al., 2002) to produce a predicted pattern. Rollg Grayson and Bléschl (2000), a spatial
pattern refers to any image or surface showing dpatial distribution of an attribute,
especially where there is a degree of organisaasnppposed to the spatial pattern being
random. Interpolated maps of continuously valueda dimay further be converted to
categorical or binary maps. While this results ame loss of information, it allows for
application of a different set of evaluation medr{igVealands, 2006). Important considerations
in the use of point measurements are how reprasanthe point measurement is of a larger
area and whether there are sufficient measurententharacterize the field and justify
interpolation to form a spatial field or patterne(ihow the support for the measurement
relates to the support of the model, and how theswmement error compares to any
underlying pattern in the field; Grayson and Blds@000; Grayson et al., 2002). For
example, Anderton et al. (2002b) found difficultiasusing limited soil moisture and phreatic
surface information in the validation of the SHEAMR model due to both the sparseness of
the data and the ‘mismatch’ of the measurementdoathe model gridscale. Therefore, a
simple direct comparison of simulated model vagabio observed data for specific points
representing intermediate locations on the model gill be of limited value (Rosso, 1994;
Gupta et al., 2005).

Binary patterns include snow cover derived fromagrhotographs or from satellite remote
sensing (e.g. Owe et al. 2008), uncertain estimatesaturated areas derived from high-

resolution synthetic aperture radar (SAR) imagé&maiks et al. (1998) from photographs or
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high-resolution optical instruments (e.g. Land-Jda#l, AVHRR; see also Jensen and
Calabresi (1997), for examples from a range off@iats). Hunter et al. (2005) used SAR and
aerial photographs of inundation extent or streatwarks (Stoll and Weiler, 2010), while
Peschke et al. (1999) mapped the type of runoféggion mechanism that occurs for a given
catchment state.

Surrogate patterns are useful when the attributéntefest is difficult to collect, as they
provide a means of assessing spatial predictidrestakith greater uncertainty. For example,
terrain has been used as a surrogate for solaati@tiexposure, soil properties, vegetation
distributions, (e.g. Wilson and Gallant, 2000),l ¢ekture to infer hydraulic properties and
remote sensing data, for example, for surfacemoikture derived from SAR (e.g., Satalino
et al., 2002; Montanari et al., 2009).

2. Comparing observed versus simulated fields ftas d®een limited to visual comparison —
arguably a very powerful method, particularly wheombined with detailed process
understanding (e.g., Tromp-van Meerveld and Wel68), yet qualitative, subjective, and
limited to selected points in time (Grayson et aD02; Wealands, 2006). It is thus not
possible to extend this method to automated opétiua techniques. Quantitative comparison
technigues may be categorized into global and I¢oall-by-cell) comparisons. In global
comparisons, each spatial field is either aggrebst® a number or into a graph from which
the characteristics are derived. The disagreemeieise global characteristics is then used to
produce a measure of global similarity or errorisTihcludes basic methods such as simple
least squares type errors or bias in comparingntban of observed and simulated fields
(Wealands, 2006). Western et al. (2001) used veaing to describe soil moisture patterns
and compare pattern characteristics over time. Tadger investigated the characterization
of spatial connectivity within patterns using coativty functions. Local or cell-by-cell
methods are based on comparing simulated and askemiues at each grid cell. Thus
Guntner et al. (2004) compared landscape metriagacterizing the general size, shape and
arrangement for simulated and observed saturaesl @atches. The differences (residuals)
can be aggregated in terms of measures of erraangar (e.g., Lamb et al., 1998) or bias,
somewhat similar to statistics used in traditiomaldel evaluation using time series. In map
comparison of categorical or binary data, the Kapeasure (Cohen, 1960) is frequently used
(e.g., Pontius, 2000; Sciuto, 2009; Stoll and Weig010). Some studies have employed
extensions of the strict cell-by-cell comparisoingsfuzzy measures (see Ross, 1995), e.g.,

accounting for shifts in the location of patter@dyson and Bldschl, 2002) or accounting for
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the cell neighborhood (Constanza, 1989) due tortenogy of location (Guntner et al., 2004).
This is particularly useful to avoid unduly biasesthe assessment of model performance
when measurements are sparse in time and/or spdder garticularly uncertain. However,
no standard does currently exist on which appraactteould be used for spatial data
comparison in hydrological applications for a giwgrestion of interest, data type, and scale
or resolution. This is a very new area for hydrglognd techniques are still being trialed and
developed. An extensive suite of potentially usefielasures for quantitative map comparison
has been recently compiled by Wealands (2006). éieewed methods used in other
disciplines such as image processing and pattemgnition with the intention to develop
comparison strategies that emulate the powerful sgbjective and non-reproducable
approach of visual comparison. He recommended ihaulteneous use of multiple
comparison measures (see also Legates and McCa®@;, Royle et al., 2000), to focus on
functionally important parts of the information ¢amed in the data (see also Gupta et al.,
1998), the use of image segmentation and clusteniethods to delineate coherent regions
within organized data fields, tolerance for unintpot disagreements (i.e., use of fuzzy
measures) and the comparison on multiple scalesekter, many of the more advanced
methods have not yet been applied in model caldratThis may in part be due to
inexperience in the interpretation of the resultsnputational extensiveness and increased
effort including user interaction.

Both set theoretic methods and the concept of theet® optimality provide useful
frameworks to incorporate spatial data in inverseleling and model evaluation. A set of
studies (e.g., Franks et al.,1998; Lamb et al. 31®8dazkova et al., 2002; Freer et al., 2003;
Hunter et al., 2005) have used spatial data souncesonjunction with the GLUE
methodology (Beven and Binley, 1992; Freer et H096). They have demonstrated that
updating of generalised likelihoods based on suelta dcan substantially reduce the
uncertainty in parameter estimates and respons#icposms as compared to use of only
dicharge to constrain the parameter space. Ma@&8) used the Pareto optimality approach
to reveal trade-offs between the model performarigroundwater level simulations and the
catchment runoff and to find a balanced optimalisoh.

Finally it is noteworthy that integration of spat@data often reveals insufficiencies in the
models used concerning individual processes, tloaldcbe used for informed model
improvement (e.g., Tromp-van Meerveld and WeildQ&). Particular data sets may only

constrain particular parameters (e.g., Lamb et@98). Also, model calibration using spatial
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or other auxiliary information can result in reddaginoff simulation performance and may
not necessarily reduce runoff prediction uncertainthile it is often concluded that the
realism and definition of internal processes of m@del can be increased (e.g., Blazkova et
al., 2002; Seibert and McDonnell, 2002).

1.3.3. Soil moisture variability

Soil moisture has a major influence on a rangeyafrdiogical processes such as flooding,
erosion, solute transport and land—atmosphereaictiens, as well as a range of pedogenic
processes (Western et al., 2004). The soil moistargent (SMC) of a basin exhibits large
spatial and temporal variability. According to Vecken et al. (2007) understanding,
characterizing and predicting this spatial varipiis one of the major challenges in
hydrologic science. One important step is the impdoability to measure soil moisture at
various scales with new techniques, such as reswnsing and geophysical methods (see
Vereecken et al., 2007 and Famiglietti et al., 2080&] references therein) or, for instance,
wireless sensor networks (e.g., Cardell-Oliver ¢2805; Trubilowicz et al., 2009; Bogena et
al., 2009, 2010). A comprehensive review on thityiand applications of soil moisture data
can be found in Vereecken et al. (2007). Only arfel@vant aspects can be adressed here.
Several modeling and field studies have been cdedut address the properties of soll
moisture spatiotemporal variability across a ranfjspatial scales. At the small catchment
and hillslope scales, soil moisture variability pattern is determined by water-routing
processes (e.g., Dunne et al., 1975; Beven ando¥irk979; Moore et al., 1988) radiative
(aspect) effects (Moore et al., 1993), heteroggnmitvegetation (e.g., Tromp-van Meerveld
and McDonnell, 2006; Ivanov et al., 2010), and sbiaracteristics (e.g., Vereecken et al.,
2007). At this scale, spatial patterns of soil mois can excert a major control on the
rainfall-runoff response, especially where sataragxcess runoff processes dominate (e.g.,
Merz and Plate, 1997; Grayson et al., 1997; Westach Grayson, 1998). On larger scales,
the value of soil moisture data for the predictodmunoff is still under debate (e.g., Parajka et
al., 2006).

An important research topic has been the identibtbaand characterization of spatial
organization of soil moisture (Grayson et al., 19%Vestern et al., 1999; Western and
Bloschl, 1999; Rodriguez-lturbe et al., 1995; Oldgkal., 2002; Thierfelder et al., 2003).
Western et al. (2001) found that spatial organiratiad a significant effect on the rainfall-

runoff behaviour with event-based model simulatidBgayson et al. (1997) argued that soll
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water patterns in temperate regions switch relbtivapid between two different preferred
states, controlled by different processes. Durimg wet state, moisture patterns are highly
organized or connected and controled by nonlooatbfa (e.g., topography and landscape
position or upslope contributing area) given thend@ance of lateral soil water fluxes. In the
dry state moisture patterns are disorganized (odam) because of the influence of local
catchment attributes (e.g., soil and vegetationrattaristics and terrain slope), and the
predominance of vertical soil water fluxes.

Spatial organization can also be analyzed withge@statistical framework. However, spatial
connectivity is a spatial organization feature tlsanot captured by standard geostatistics
(variograms) or indicator geostatistics (indicatesiriograms). In contrast, connectivity
statistics (Allard, 1993; Allard et al., 1994) prde an appropriate tool for characterizing
spatial connectivity (Western et al., 2001). Selvstadies have advocated that connectivity in
shallow soil moisture patterns induces threshdd-thanges in runoff in temperate rangeland
catchments (e.g., Western et al., 2001). Howewsned and Roulet (2007) found that this
was not the case in a temperate humid forestetiro&iat and attributed this to the differences
in climate settings and to the fact that forestattloments exhibit larger variability in soil
hydrologic properties than rangelands. Ali et 201(0) argue that climate may rather act as an
indirect control while differences in the dominawinoff processes, i.e. saturation excess
overland flow versus perched water tables and @haubsurface stormflow above low-
permability layers, explain the differences.

A variety of studies analyzed soil moisture varifpin terms of the spatial variance, spatial
standard deviation, and/or coefficient of spatiariation (CV), in relation to the mean
moisture content. Conclusions considering thesatioglships generally varied. For example,
several studies reported soil moisture variabii@yincrease with decreasing mean moisture
content (e.g. Famiglietti et al., 1999; Hupet andn®ooster, 2002), while others found
opposite trends (e.g. Western and Grayson, 199@idhatti et al., 1998). Owe et al. (1982)
observed maximum soil moisture variance in the margye of mean soil moisture, resulting
in the change of soil moisture variability alongavex-upward curve with increasing mean
soil moisture. Crow and Wood (1999) suggest th#ferdint relationships may exist for
different scales. Although many authors have spgedl| about the origin of soil moisture
variability, there have been only few quantitatstadies looking at how different processes
act to either increase or decrease the spatiahiity of soil moisture. By using the similar

media concept, Salvucci (1998) showed how varighifi soil texture leads to different soil
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moisture variability states in different limitingiges. Peters-Lidard et al. (2001) attributed the
convex-upward relationship to the heterogeneitgmf texture, suggesting that soil moisture
variance increases with drying if the mean soil shoe content is between saturation (i.e.,
volumetric soil moisture content is equivalent trgsity of the soil) and field capacity of the
soil, but that it decreases with drying if mean smoisture is lower than field capacity of the
soil. Hydraulic conductivity of a soil medium isegtly affected by its texture, and the
difference in the drainage rate among different oitures is largest when the soil moisture
content is between saturation and field capacitgeAson and Montaldo (2003) showed how
covariances between soil moisture and fluxes, matghg from variability in soil moisture,
forcing and/or land surface properties, can leackitber an increase or decrease in soll
moisture variability. Albertson and Montaldo (20G3)owed that heterogeneous atmospheric
forcing over the land surface can also result wa@ance-mean moisture content relationship
that peaks in the mid-range. Teuling and Troch $20@sed model simulations to explain
trends for different data sets and show how vegetasoil and topography controls interact
to either create or destroy spatial variance. \tkewe et al. (2007a,b) predicted the
relationship between soil moisture variance and nrmé§ stochastic analysis of the
unsaturated Brooks-Corey flow in heterogeneouss sald showed that parameters of the
moisture retention characteristic and their spataiability largely determine the shape of

this relation.

2. Study site and data sets
2.1. Site description

The study site is the small forested headwatemba&istebach (Figure 1). This experimental
test site is a subcatchment of the River Rur basthpart of the TERENO Eifel/Lower Rhine
Valley Observatory. The basin covers an area of @82 (27 ha) and is located in the low
mountain ranges approximately 600 m above sea Mitbin the National Park Eifel in
[central] Germany. The climate of the area is teraf@e and maritime with a mean
temperature of above 7 °C and a mean annual pratgoi typically ranging from 1100 to
1200 mm. Substantial snow coverage of part of ternbcan be present for several weeks of
the year (Sciuto and Diekkriger, 2009). The bedisckomposed of Devonian shales with
occasional sandstone inclusions. The geomorpholegplateau like with a mean and
maximum slopes of 3.6% and 10.4%, respectively. Shids developed on periglacial
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solifluction layers, with an average thickness &6 2 m. While cambisols predominate on the
hillslopes, gleyic soils and half-bogs have devetbpear the river. The soil texture is loamy
silt. The basin is densely vegetated, predominamgly\Norway spruceRicea abies(L.) H.

Karst.], a species characterized by a shallow system. This location is also rich in low
vegetation like plants that grow in water-saturaéeeas, e.g.Sphagnum sppand Cirsium

palustre(L.) Scop. (Sciuto and Diekkriger, 2009). The pleoverage is about 90% (Bogena
et al.,2010). Many irrigation ditches and drainapannels from pre-war period, as well as

bunkers and bomb craters from the war exist.

2.2. The sensor network SoilNet and soil moisture d  ata preparation

Bogena et al. (2009; 2010) presented the developaie3oilNet. SoilNet is a hybrid wireless
soil moisture underground network which consists@f moisture sensors that are embedded
in a new low-cost Zigbee radio network and enalrear real-time monitoring of soil
moisture variations at high spatial and temporaohgion. SoilNet uses a mixture of
underground devices, each wired to several soia@sn and aboveground router devices.
Bogena et al. (2009) developed and validated a-sempirical model to demonstrate that in
the case of a 5-cm soil layer, data communicatieer donger distances (e.g., 100 m) is
possible for most soil conditions. The SoilNet rastentation of the Wistebach test site is
part of the TERENO activity (TERENO, 2010), and veasomplished in close cooperation
with the DFG/TR32 (Transregional Centre 32, 200@pmprises a total of 600 EC-5 sensors
and 300 5TE sensors (Decagon Devices) at 150 ¢torsa{e combination of 50 sensor units in
a 60- by 60-m raster and 100 randomly distributmaser units) and three depths (5, 20, and
50 cm). Two sensors were installed at each depth savismall separation to increase the
measurement volume and to enable the examinatiamcohsistencies. At the 5- and 50-cm
depths, one EC5 and one 5TE sensor were installeeteas two EC-5 sensors were installed
at the 20-cm depth. The network is producing sodisture content measurements since
August 2009 which are stored in a central databafea measurement frequency of 15 min
(Bogena et al., 2010).

For the inverse modeling, the simple arithmetic me&measurements available for the 5-
and 20-cm depths at each of the 150 sensors fotirttee period from August 16, 2009 to
August 16, 2010 was used. Each sensor record wasultga examined for obviously
“unrealistic” behavior, failures and outliers. Tirseps during which more than 1/3 of the 150

sensors failed were excluded from the analysis.
-#0.
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The individual measurements were interpolated ¢ontledel grid using ordinary kriging (e.g.,
Goovaerts, 1997). Spherical variogram functiongh(vei nugget variance) were fitted to the
experimental variogram using least squares nomdin@ptimization. The kriging was

performed for visualization purposes only.

Legend
®  SoilNet sensor unit
P Runoff gauging station

N\ Wistebach River

[ Catchment boundary
.~ 3 m contour line

Figure 1: Location and map of the experimental Wiistebachhoaat and the SoilNet
instrumentation (sensors only).

2.3. Meteorological and hydrometric data

Discharge is monitored at the catchment outlet.(E)g It is noteworthy that the measured
discharge time series contains several data gdpshwere disregarded for the analysis. No
meteorological data is collected in the basin. Wnimately, continuous quality-controled

meteorological data from nearby stations was alskihg for this study. Instead, the required
data was gathered from several other sources. dt tbabe noted therefore that the
meteorological data is subject to unquantified utadety in terms of both measurement
accuracy and locational representativeness.

Continuous 1-hourly precipitation data was retrégefeom the weather station Schleiden-
Schoneseiffen of the private weather network Metedim (www.meteomedia.de). The
station is located approximately 10 km from theimdkatitude: 50.52°N; longitude: 6.37°E)

and at a similar elevation (620 m above sea level).
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Further meteorological data was required to rursti@v routine of the model and to compute
the potential evaporation rate according to thenien combination equation. Data on air
temperature, relative humidity, and wind speed Bthaur time step was also retrieved for the
Meteomedia station Schleiden-Schoéneseiffen. Incgraolar or shortwave radiation data was
taken from the station Schleiden operated by thesdhoingszentrum Jilich (www.fz-
juelich.de ODER Heye Bogena, personal communicatibime measurements were made at a
15-min resolution and were aggregated to hourlyeslby arithmetic averaging. Small data
gaps (i.e., shorther than 3 hours) in all metegickl data time series (except for
precipitation) were filled using linear interpolati between the immediately preceding and
following data points. However, the solar radiataata did contain large data gaps during the
month of December 2009 as well as during the moothdarch and April 2010, which are
part of the model calibration period. These gapsewiled using incoming solar radiation
data from a private weather station (type Davis t¥ga Pro 2 aktive plus) located in
Monschau-Mutzenich  (Bodo Friedrich, personal comication; http://www.ew-
messnetz.de/stationsdetails/wetterstation-muetagofip), approximately 15 km from the
Wiistebach basin and at a similar elevation (60(dbavea sea level). This data was available
with a 1- to 2-min time step and again aggregatduburly values by arithmetic averaging. A
further large data gap in the solar radiation dataained for the months of February and
March 2009, which are part of the spin up periodhef model runs. These gaps were filled
using computed clear-sky (i.e., under cloud-freeditions) solar radiation. Making use of a
set of standard equations for hourly calculationgaks provided in ASCE (1990) and Allen et
al. (1999), the values of potentially incoming sotadiation at each time step were first
computed as a function of the time of year, thestwh day, and latitude. The clear-sky solar
radiation was then computed from these valuesfasaion of station elevation, serving as a
surrogate for total air mass and atmospheric tresswity above the measurement site. Given
the lack of information on cloudiness, the compudiedr sky solar radiation during the period
without data was reduced by multiplication with thathmetic average of the ratio of
measured incoming solar radiation and computed-slea solar radiation obtained for the
preceding and following 30-day period with availpheasurements to avoid strong bias in
the data, and is henceforth assumed to equal doening solar radiation.The net shortwave
radiation was then computed from measured and ctadpucoming solar radiaton (e.qg.,
Dingman, 2000) using a fixed value of 0.12 for #éitleedo based on literature values provided

for coniferous forests (Schulla, 1997).To close tthéiation balance (e.g., Dingman, 2000)
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and to obtain the net radiation, the net longwadation has to be known in addition to the
net shortwave radiation. Here, a standardized pioee(ASCE, 1990); Allen et al., 1999))

which is based on the Brunt (1932, 1952) approachpfedicting net surface emissivity is

used to compute net longwave radiation as functibrthe air temperature, actual vapor
pressure (computed as a function of air temperatocerelative humidity), and the relative
short-wave radiation (i.e. the ratio of measuredcalculated solar radiation to calculated
clear-sky radiation) to indicate relative cloudiseBor nighttime hours (i.e., when the solar
radiation equals zero), the value of relative skn@ave radiation was computed by linearly
interpolating between values occurring 2 hours fgefand 2 hours after sunset as
recommended by Dong et al. (1992). Finally, theawigtd continuous time series data of
meteorological variables was aggregated to 6-houalyes as arithmetic averages (for air
temperature, relative humidity, wind speed, andradtation) and totals (for precipitation),

respectively. All dates and times are given in @driEuropean Time (Coordinated Universal

Time plus one hour).

3. Methodology

In this section, the Hill-Vi model (Weiler and McbBiell, 2004) used for this study is first
described. Four complexity levels of the model vadl investigated. The specifications of
these model complexities can be found in Tab. bs8guently, a description of the model set
up and the methods used to estimate feasible raamgpbdixed values, respectively, for the
model parameters is provided. Finally, the inverseleling strategy used to assess the value
of soil moisture data in addition to runoff and test the different model complexities is

described.

Table 1: Specifications of the different Model complexitegluated.

Model Complexity Bedrock Seepage  Variable Soildepth Variable Throughfall

1

2 X

3 X X

4 X X X
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3.1. Model description

The model used is the physically-based Hill-Vi miod&roduced by Weiler and McDonnell
(2004) to study process controls on subsurface fi@weration via virtual experiments on
hillslopes. The model has been subsequently madifie the context of its various
applications (e.g.,Weiler and McDonnell, 2006 McGuire et al., 2007; Weilerand
McDonnell, 2007; Tromp-van Meerveld and Weiler, 8D0For this work, further
modifications were applied, partly in order to ease the computational efficiency and
stability during Monte Carlo experiments, and pattl implement or refine representations of
processes deemed important in the context of tndysind given experience gained during
initial model testing. Thereby, attention was ptdstay in line with the original philosophy
of the model, that is, to describe the major cdatom flow processes while being simple in
terms of its structure and number of tunable pataragWeiler and McDonnell, 2004). Yet,
application to a specific real-world domain in @gffic climate and landscape and at larger
scales compared to hillslopes requires additior@igsses to be parameterized.

Detailed descriptions of the fundamental concepth® model may be found in Weiler and
McDonnell (2004, 2006, 2007) and McGuire et al.Q20and are only briefly reviewed

below, followed by a description of the model stane as used for this study.

3.1.1. Basic concepts

Hill-Vi is a spatially explicit model, where the mel domain is discretized into a uniform
raster of grid cells and extends vertically frone ®#pil surface to an impermeable or semi-
permeable bedrock. The domain is laterally delichiig no-flow boundaries and may, such as
in this case, include a network of channel cedstied as constant head boundaries. All water
entering channel cells, including overland and sdhse fluxes as well as channel
precipitation is instantaneously removed from tbedin as runoff.

The core model (i.e., the soil routine) solves basintinuity equations for tightly coupled
unsaturated and saturated zones within each giid Theis unsaturated-saturated zone
coupling was implemented to represent the frequentiterved (Dunne, 1978; Bonell, 1998;
McGlynn et al., 2002) unsaturated zone conversmriransient saturation during storm
events. The unsaturated zone is defined by théehdemn the soil surface to the water table
and time-variable water content. The saturated mdefined by the height of the water table

above the bedrock surface and the porasity
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In light of field observations (e.g., Weiler, 200Bn exponential depth function for the
drainable porosityny (defined by the difference in volumetric water ot between 0 and
100 cm of water potential) was included in HillYWEILER & MCDONNELL 2006),
representing changes in soil structure, macropereldpment and presence, or increased

skeleton content with depth. This function can biten as:

n,(2) = nexp i

whereny is the drainable porosity at the soil surfaces the soil depth below the surface and
b is a decay coefficient. Similarly, an exponentdgcline of the saturated hydraulic

conductivityks is represented by the following function:
z

k.(z)=kexp - —

(2)= kexp - —

wherekp is the saturated hydraulic conductivity at thel soirface and m is the hydraulic
conductivity shape factor.
The core model was extended by simplified formalaito simulate snow storage and melt,

interception, variable throughfall, and overlanoiflrouting.

3.1.2. Snow melt

Water may enter the basin as either rain or snomw3nelt and storage are described using a
simple degree-day routine as implemented by Stall Weiler (2010). Below a threshold
temperaturel;, all precipitation accumulates as snow. When tireshold temperature is

exceeded, snowmelt occurs according to
MELT = ddf>max(0,T, -T)

whereMELT is the melt rateT, is the actual air temperature, atf is the degree-day factor.
Melt water is retained in the snow storage untispecified portion of the snow water
equivalent is exceeded and may refreeze when thmlaair temperature falls below the

threshold temperature:
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REFR= CFRx ddff T -J)

whereREFRIis the amount of refrozen water a@8R is the refreezing coefficient.
3.1.3. Interception and Evapotranspiration

An interception routine was implemented, since batioothing of rainfall intensities and
reduction of water input to the system due to teralpstorage on and evaporation loss from
vegetation surfaces were deemed important aspactbd response and water balance of the
densely vegetated study site. This consideratios supported by initial model testing using
high-quality meteorological data for the year 208ince hydrographs were found to be too
flashy and the catchment was constantly too weé ifkerception model relates changes in
the canopy storagé to the gross rainfall rate, canopy drainag®, and canopy evaporation
rateE¢in the form

dc _ . !
E—(l p)P- D E

wherep is the free throughfall coefficient. A simple larethreshold model (Calder, 1977;
Vrugt et al., 2003) is used to compute canopy eigen accounting for water losses from leaf
dripping and stemflow:

D=b(C- 9, & =

whereb is an empirical drainage coefficient aads the minimum canopy storage capacity.
The latter parameter exerts a major control ontoked evaporative loss from the vegetative
surfaces (i.e., the interception loss). Stem sl flow is not, such as in more complex
models (e.g., Rutter et al., 1975), explicitly eg@nted. The average throughfBj| is then
obtained as the sum of free throughfall and cartvpinage.

A stepwise approach, largely following Eltahir aBchs (1993), Wigmosta et al. (1994), and
lvanov et al. (2004), is used to compute the canepgporation rate and the actual
evapotranspiration rate from the root zone. Thigragch allows the vegetation to change
states from wet to dry during a time step. The evafon of intercepted water from wet
vegetation surfaces is assumed to occur at thenjpgiteateE, (equal to evaporation from an
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open water surface), which is appropriate sincenata are not involved. When the canopy
storage falls below its minimum capacity, it is wased that part of the canopy is dry and
evaporation is reduced proportionally. The canomaperation rate is thus computed
according to:

E.=E, ET=0, C3 ¢

£ =CE, ET>0, C< ¢
S

whereE, is the potential evaporation rate. The potenti@peration rate is computed using

the Penman combination equation (Penman, 1948):

D(R, - G)+ r cd/'t,
Dy

E, =+
/

p

where R, is the net radiationG is the ground heat flux, is the slope of the Clausius-
Clayperon relationship between saturation vaporsquee and temperature, is the
psychometric constant,, is the density of airg, is the specific heat of air at a constant
pressure, y is the latent heat of vaporization, d is the s#tan vapor pressure deficit, ang

is the aerodynamic resistance. The state variabbese calculated using standard
meteorological relationships described in ASCE 3hd Allen et al. (1998).

Subsequently, the actual evapotranspiration rate the unsaturated zo&d, ,, IS computed

according to:

_ £\, D+tg
ETa,un =ax ( Ep Ec) D +g(1 +ra/rc)

where is a soil moisture stress factor apds the canopy resistance to vapor transport. Note
that the term in square brackets is equivalenh® Renman-Monteith equation (Monteith,
1965) for time steps where the canopy remains cet@lyidry.

The soil moisture stress factor accounts for theeot soil moisture stress limiting the root
water uptake and is computed using a simple guaesad function (e.g., Davies and Allen,
1973; Federer, 1979, 1982; Spittlehouse and BlI4&81) of relative saturation in the

unsaturated zone:
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a=min 1, —

max,un

where S, is the actual soil moisture content of the unsdéd zone an®GnaxuniS the
maximum storage capacity of the unsaturated zobgifeed by subtracting the drainable
porosity from the total porosity). The respectivalunes are obtained by integrating the
variables over the time variable vertical extendlled unsaturated zone (i.e., from the soil
surface to the water table).

To avoid underestimation of ET in cases where theemtable is very close to or at the soil
surface, Eq. (11) is solved again, this time irdéigg over a fixed root zone depth (estimated
as 50 cm based on Sciuto and Diekkrtiger (2009))thadesult is used with Eq. (10) to
compute the actual evapotranspiration rate fronroloé zoneET, . The difference between
ET.un and ET,, then yields the actual evapotranspiration from sheurated zoneT; sa

Note thatET; sarequals zero when the watertable falls below tio¢ zone depth.

3.1.4. Throughfall Variability

A simple throughfall variability option was implemted in Hill-Vi for this study. The
implementation is based on results of a recentystydKeim et al. (2005). This study found
that temporally and spatially persistent throudhpalterns existed beneath forest stands. In a
deciduous stand, the spatial correlation length &It one crown diameter and maximally
10 m. Given the grid size of the model of 10 mseems unnecessary to implement across-
grid-cell autocorrelation in throughfall. Instead random field following a standard normal
distribution was generated (Fig. 2) and used tasfiam the uniform gross rainfall input into

a variable throughfall field at each time step. TVexriable) throughfalll; at a location i given

the uniform throughfall inputa,,is obtained according to:

T=T,{1 4T ey)

where T, is the normalized throughfall drawn randomly franstandard normal distribution,

and CVr is the predefined spatial coefficient of variatioihthroughfall. TheCVr was set to

0.25 and the random field was initially generated then fixed during the analysis.

-1#.



0 9& +

400 - -

300+ .

200 . °

Distance (m)

100

-4

100 200 300 400 500 600 700 800 900
Distance (m)

Figure 2: Map of normalized throughfall for the Wistebachibased to simulate throughfall
variability with the Hill-Vi model.

3.1.5. Overland flow

A new and computationally efficient overland floauting routine was implemented in Hill-
Vi, which allows capturing runoff-runon-effects. Hill-Vi, overland flow can only be
generated by the mechanisms of saturation exceseeturn flow, i.e. when the soil becomes
entirely saturated and no further water can iafiéror the water table rises above the surface
due to subsurface flow convergence. Infiltratiosess overland flow is unlikely an important
process in temperate forested headwaters with mfltration capacities and was thus
neglected.

The routine is based on the Manning-Strickler eiQuatvhich is simple and only requires one
parameter, the Manning roughness coefficiantp be estimated. The overland flow velocity,

v, is computed according to:
V:ixf-l)% &2
a

where ho is the overland flow water level (appregual to the hydraulic radius) ands the
local surface slope based on a DEM. The overland €, at a given location is then

computed as:

Q =vh »

wherew is the flow width, which is set equal to the widththe model grid cells.
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The flow direction and partitioning of overland Xlleaving a grid cell, respectively, were
derived from a DEM using the Dalgorithm proposed by Tarboton (1997), which assig

flow direction based on the steepest slope onaadtilar facet. If the flow direction falls on
cardinal or diagonal direction, then the flow fraach cell drains to one neighbour. If the
flow direction falls between the direct angles twotadjacent neighbours, the flow is
apportioned between these two cells depending andhase the flow direction angle is to the

direct angle for those cells.

3.1.6. Soil routine

For each grid cell, the water balance of the umatdd zone is defined by the infiltration,
vertical recharge into the saturated zone, actuapa@ranspiration, and change in water
content. No lateral flow can occur in the unsatolatone. Recharge R, from the unsaturated
zone to the saturated zone is described by a plewefiunction according to:

whereR is the recharge to the saturated zanis,the power coefficient reflecting a nonlinear
response to increased wetndg&’) is the saturated hydraulic conductivity at thetdey the
water tablez’.

The water balance of the saturated zone is deftwdtie recharge input from the unsaturated
zone, the lateral subsurface inflow and outflovepsgye into bedrock (when included) and the
corresponding change of water table depth. Lamrhburface flowQss; is computed using

the Dupuit—Forchheimer assumption (Freeze and €h#9i79):

Qy=Tx0 w

whereT is the transmissivity, is the water table gradient, and w is the flow tidThe
saturated subsurface flow is routed downslope uasmegxplicit grid cell by grid cell approach
(Wigmosta and Lettenmaier, 1999), with the flowediton and thus the partitioning of
outflow from each grid cell being recalculated &ach time step. This facilitates simulations
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in the presence of variable soil depth and beditoglography, respectively (Weiler and
McDonnell, 2004).

Seepages to bedrock is computed on the basis of the hydrautad above the bedrock
surface and the saturated hydraulic conductitifyof the bedrock (Tromp-van Meerveld and
Weiler, 2008):

5= kAL +n)

whereh,, is the height of the water table above the sailrbek interface. Under unsaturated
conditions, seepage is limited by the recharge ftloenunsaturated zone. Water entering the

bedrock is assumed to be lost from the system.

3.2. Model Set Up and Estimation of Parameters and  Feasible Ranges

The model was run and evaluated on a 6-hour tiee gthe model evaluation is performed
for the 1-year period from August 16, 2009 to Auglss, 2010. A half-year spin-up period
preceding the evaluation period is used to avoil iafluences of the pre-specified initial
conditions on the model performance assessment.

The 0.27 kri model domain was discretized into a uniform 10-16ym raster of grid cells
based on a DEM (Fig. 3). The channel network (aeset of cells with a constant water level)
was derived by rasterization of an available poblishapefile using a Geographic
Information System. The bedrock topography wasatttarized based on approximately 100
measurements carried out using a Purckhauer-dnitlwwere interpolated to the model grid
using ordinary kriging (Heye Bogena, personal comication). The soil depth for each grid
cell (Fig. 3) is then defined by the differenceelevation between the land surface and the
bedrock surface. Catchment mean soil depth (Tatvas)computed as the arithmetic average

of soil depths across the catchment.
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Figure 3: DEM (top) of the Wustebach basin and map of sgitll€¢bottom).

The feasible ranges of model parameters relatsditdydraulic properties — i.e. the surface
saturated hydraulic conductivity, the surface dabla porosity, and the shape factors of the
respective depth functions — were constrained basedivailable soil data by applying
pedotransfer functions (PTFs). Characterization bakin soils was performed by the
Geologischer Dienst Nordrhein-Westfalen (Geologi®aivey of North-Rhine-Westphalia) at
a scale of 1:2500 (Fig. 4).The basin area was subed into 61 soil mapping units, each of
which was assigned information for three soil hong, amounting to a total of 183
characterized soil layers. However, most of thé waits have the same properties. There are
31 different soil textures present in the catchmetwhich the texture (sand, clay, and silt
fractions), humus content, and skeleton (@ > 2 won}ent are available.

In a first step, the well-known PTFs of Vereeckeale(1989, 1990) were implemented in the
MATLAB environment (MathWorks Inc.) and applied tetermine the soil hydraulic
parameters of the van Genuchten model for the omeistetention characteristic and the
saturated hydraulic conductivity for each soil kon from soil texture, bulk density, and
organic carbon content. The bulk density was coegpfriom the porosity assuming standard
densities for mineral (2.65 g m-3) and organic mal® (1.2 g m-3). The organic carbon
content was determined by dividing the observedusioontent by the ratio of organic matter
to organic carbon, which was set to 1.72 as sugddst the Bodenkundliche Kartieranleitung
(2005). Soil textural fractions were converted ke tinternational scale after log-linear
transformation (see Wosten et al., 1998). Furttier,resulting retention curve and saturated
hydraulic conductivity were corrected for skeletoontent, using equations provided in
Brakensiek and Rawls (1994). A minor fraction of topsoil horizons was characterized as
100% organic. Given the high degree of variationiterature values and class PTFs for
hydraulic properties of organic or peat soils (eMyosten et al.,, 2001), estimation of a

particular value seemed rather arbitrary and tlesezons were therefore disregarded. The

-16.
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drainable porosity was determined as the differdreteeen the saturated water content and
the water content at a soil water tension of 10Q(@pproximately field capacity) as in Weiler
and McDonnell (2004) and McGuire et al. (2006).

In a second step, the parameters of the exponelgjth functions for the saturated hydraulic
conductivity and the drainable porosity employedthe Hill-Vi model were estimated by
fitting these functions to the PTF-based estimatate respective soil property for the three
horizons (estimated properties were assigned ta@eheer of the respective horizon) in each
soil unit. This nonlinear least-squares curverfgtproblem was solved using the Levenberg-
Marquardt non-linear optimization algorithm (e.§lpré, 1977). Thus, for each soil unit,
estimates of the surface drainable porosity anagrai@d hydraulic conductivity as well as the
shape parameters are now obtained.

The feasible range for the total porosity prametein Hill-Vi was estimated from the
observed total porosity according to:

n=(/ - RMC)x(1- Zvo)

where RMC is the volumetric residual moisture caohtestimated based on the PTFs of
Vereecken et al. (1989) addol is the observed volumetric skeleton content, loetiermined

for a given soil horizon. To obtain values for eadi unit, the computed values for the three
horizons were arithemtically averaged.

The recharge power coefficient ¢ of the Hill-Vi nebavas estimated based on the Brooks and
Corey (1964) pore-size distribution index whichturn was determined for each horizon
using PTFs of Rawls and Brakensiek (1985) and #réhmetically averaged for each soil
unit.

Finally, the model parameter ranges were estimasethe 95 % central range of estimated
properties for all soil units. Due to the numeraunsertainties in the parameter estimation
approach, including uncertainties in the datafitselthe PTFs, as well issues of scale, the
thus obtained limits of the parameter ranges weteneled by 25 %. A summary of the
estimated feasible parameter ranges is provid@eim 2.

Note that the database of Vereecken et al. (19890)1lcontains data mostly on agricultural
soils in Belgium and application to forest soilghsis generally questionable, because these
show distinctively different hydraulic propertiedmong others, they are less compacted,
show a greater aggregate stability and macro-pgr@sid therefore, a greater saturated

-12.
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hydraulic conductivity and air capacity (e.g., Esland Binkley, 2000). However, the PTFs
of Vereecken et al. (1989, 1990) have been repdoyeskveral studies to be among the most
accurate that were evaluated (e.g., Tietje and dmpkrichs, 1993; Romano and Santini,
1997; Cornelis et al., 2001; Wagner et al., 2002rmwbud and Xu, 2006) and were reported
to provide relatively good results even for forgsils (Hammel and Kennel, 2001).

The parameters of the snow model, the saturatechblyd conductivity of the bedrock and

several other auxiliary parameters were taken fiteerliterature and are provided in Tab. 2.

Legend

m— River
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Figure 4: Map of soil types in the Wistebach basin as pral/tiethe Geological Survey of North-
Rhine-Westphalia (modified from Sciuto and Diekletig2009).

Table 2: The Hill-Vi Model Parameters and Their Respectianées Used to Simulate the
Hydrologic Response of the Wiistebach basin.
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For the application of the Penman equation andPgr@nan-Monteith equation, the resistance
terms have to be estimated. The aerodynamic resestg was computed following an
equation for forest sites provided by Schulla (1997

r, =64/(1+ 0.54)

whereu is the wind speed measured at a height of 2 meagownd. The canopy resistamge
was computed following the MORECS scheme (Thompsbral., 1981). The following

equation is used during day time periods:

(1- O.65A') . 0.65"
r r

SC SS

1
rC

wherer. is the canopy resistance. is the minimum canopy resistance in case of optima
water supply and dense plant coverageis the surface resistance for bare soil (set sl5
m?), and LAl is the leaf area index. The followinguatjon is used during night time periods
(i.e., when the stomata openings are largely closed

1_ LAl |1
= +

r. 2500 r_,

c



0 9& +

Monthly values for the minimum canopy resistang€Tab. 3) were taken from Schulla et al.
(1997) and further corrected as a function of @nperature and vapour pressure deficit using
equations provided in Wigmotsa et al. (1994).

It should be noted that the decisions to modifadd particular aspects of the model were met
on the basis of test runs using quality-controlizda available in the initial phase of this
study. Test model runs using the (uncertain) faycohata ultimately used for model
simulations and testing did reveal problems to gameesufficient runoff to closely match the
hydrograph. The rainfall and runoff data indicdtattsignificant negative bias may be present
in the former. Also, the Wistebach basin may abtuattend beyond the currently defined
divide, such that the actual runoff contributingamay be larger than considered for this
study. Thus, while seemingly needed in light of tast runs, the interception routine was

deactivated for the model evaluation runs.

Table 3: Monthly Values of Minimum Canopy Resistancgdor coniferous forests (modified from
Schulla, 1997).

Month  Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec

e(smy) 70 70 60 45 45 45 45 50 65 65 70 70

3.3. Inverse modeling strategy

The selection of an appropriate inverse modelimgtey to directly use internal state
variables in addition to runoff data involves seveamportant considerations, including (1)
which quantities are actually to be compared imgf the observed and simulated state
variable, (2) what are appropriate numerical metf{@Fs) to compare simulated and observed
variables given the data and model used, (3) howassess the added value of the soill
moisture data to constrain the parameter spacdioi)to assess improvements in the model
structure and (5) how to efficiently and effectivelmple the parameter space with respect to
multiple criteria. The approaches to deal with éhéssues are described in the following

subsections.
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3.3.1. Which quantities are to be compared?

While the comparison of simulated and observed ffuaiothe outlet of a basin is relatively
unambiguous (i.e., the measured discharges mayhsidered to be essentially the same
variable as that predicted by the model), carefuhsieration has to be given when
comparing simulated and observed state variablgs as, for instance, soil moisture content.
It is important to note that the state variablehwita model element is an “effective” state,
i.e. the distribution of moisture content withinetmodel element is usually lumped into a
single aggregate quantity, both vertically andrigte (e.g. Wagener and Gupta, 2005). Care
must be taken to compare variables that are atdeagar in their meaning.

The soil moisture sensor measures the volumetiiarsaisture content (%-vol/vol; i.e., the
ratio of water volume to soil volume) of the finarth fraction at a point in a specific depth,
while the Hill-Vi model produces for each grid elemh a laterally and vertically lumped
value of water storage height in the unsaturatete zxcluding a residual moisture content
and the vertical extend of the unsaturated modeilpestment as defined by the depth to the
water table. In order to make the two quantitiesgarable, it was decided to convert both to
a value of relative saturation RS, where a valu® 8b corresponds to a moisture content
eqgual to the residual moisture content and a vald®0 % corresponds to a moisture content
equal to the total porosity. The observed relasatirationRS s zat a sensor locationand

depthzis therefore computed as:

SMGyei,- RMG,
RQbsiz = bS'RMC )
/ i,z - (4

whereSMGys,; -IS the observed soil moisture content; is the (uncorrected) total porosity of

the fine earth fraction (or the maximum SMC obsdjv@ndRMC; , is the residual moisture

content as obtained using the PTFs (or the minirBM€ observed). The specific values of
i-and RMCi,z were obtained from linear regressionaéiqus fitted to observed values of

the respective variable for bordering soil laydreach sensor location.

The simulated relative saturati®&im ;. at a specific sensor locatiorfi.e., at a specific grid

cell containing the sensor) and depik computed as:

-0".
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Smi
100%——,z (t) <z
I:Qgim, i,z = Z| 'XI’] Z| ( ) <Z

100,z = z

where Syni; is the water storage height in the unsaturatece,zghis the depth to the
watertable.

For any given sensor and grid cell locationjn the basin the values &S and RSps
respectively, obtained for the depths of 5- andc@0are then arithmetically averaged. This
avoids any assumptions about the soil moistureriloigion between the sensors. The
resulting values are then used for further analysigerms of the terminology, it should be
noted that the definition of relative saturationuaed in this study does not correspond to the

common definition of relative saturation (i.e. joadf water volume to total pore volume).

3.3.2. Objective Functions

A set of four OFs is used to compare the simulatedl observed runoff response as well as
soil moisture state. The most commonly used OFss$ess the agreement between simulated
and observed runoff response are clearly thoskeo§imple least squares type (e.g., Gupta et
al., 2005), such as the Nash-Sutcliffe efficienblagh and Sutcliffe, 1970). However, as
outlined above, the data on rainfall and runoffld/iavailable for this study is subject to
potentially large uncertainty and bias. Indeedtiahimodel testing revealed that the model
was incapabale of getting even close to matchiagtiserved runoff volume and dynamics at
the same time. Also, particularly strong bias wiasenved during periods of potentially strong
snow melt (i.e., during periods of winter high-flewvith little rainfall but air temperature
rising above zero), indicating insufficiencies time respective model routine which is,
however, not subject to particular interest in #stisdy. Since it is undesirable to use an error
metric dominated by irresolvable (in this studyhiliations in the data and the model, it was
decided to use a measure that is independent séblzetween simulated and observed runoff
and more appropriate to constrain the runoff dywcanim this case. For this purpose, the

coefficient of correlation (CORR) is used:
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CORR= -t — 1)

where Qsinr(t) and Qobs(t) denote the simulated and observed runoff yieldpeetively, at
time stept, and the over score operator (a%) indicates the temporal average of the

variable (her&si) over alln time intervals considered.

Several OFs are used to constrain the model touatiegepresentation of various aspects of
the soil moisture observations deemed importantessnindicated otherwise, the following
statistical characterizations are based on direag@ ofRSys; for the sensor location (as
distinguished from interpolated values) andR&;n, ; for model grid cell that contain a sensor
i. As a first OF, the global mean absolute error @fAs used as a basic and well-known
metric that ensures tracking of observed spatishmrmBS over time without particularly
emphasizing agreement during phases with highwrétative saturation:

MAE :% Zl\Rgim(t)- RS.( )

where RSsim is the simulated spatial average velaaturation and RSobs is the observed
spatial average relative saturation.

Given the common usage and importance (e.g., Vkeeeet al., 2007a,b) of the relationship

between the spatial variability and the average (BISSMC), a signature performance

criterion (Gupta et al., 2008) was constructed thasures proper representation of this
relationship by the model. This measure, CSMR, eafinédd as the correlation coefficient

between the observed and simulated relationshipdset the spatial standard deviation and
the spatial average relative saturation, discrétiméo 15 equally spaced bins according to

their numeric range, and can be expressed as:

K

) (Ssim(k) -S sim)(s obs( k)' S Ob)
CSMR=——L

\/k=1 (ssim(k)' S sim)2 K (5 obs( k)' S ob)z

k=1
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where (k) denotes the simulated average standard deviationgdtime steps grouped into
the bin k (according to the spatial meR8&;), on{k) denotes the observed average standard
deviation during time steps grouped into the biKklenotes the number of bins and the over
score operator denotes temporal averaging.

In order to characterize the error in the distiifnutof simulated RS at a given time step, a
further OF is introduced in form of the mean sqdahéstogram error MSHE. This OF is
obtained as the average of the mean squared exteedn the histograms of observed and

simulated RS at any given time step:

wherefsn(h, t) denotes the relative frequency associated withbtheh of the histogram of
simulated relative saturation at time stefypdh, t) denotes the relative frequency associated
with the bin h of the histogram of observed relatpaturation at time steépandH denotes the
number of (equally spaced) bins (here, H = 15).[@his OF may be rather unconventional,
it is expected to enable a more holistic assessofehe error in the RS distribution at a given
time step compared to more conventional statistestis to compare distributions, e.g. the
Kolmogorov-Smirnoff two-sample-test (which uses theaximum error between two
distributions as the test statistic). Note alsot tthee value of this OF is influenced by
inadequacies of the shape of the RS distributicen given time step, but it is independent of
errors in the mean RS and therefore complementarthé MAE. This is because the
histogram ranges for simulated and observed figlds determined according to their

respective numeric range at a given time step aahejjendent of each other.

3.3.3. Model calibration and identifiability analys is

To assess the value of the soil moisture data eladed OFs in addition to runoff data in
constraining the parameters of a given model siractand to evaluate the value of
incoporating more complexity in the model for thegltaneous simulation of soil moisture
and runoff behavior and with regard to the ideabiiity of the parameters, several state-of-
the-art inverse modling methods are applied asribestbelow. Instead of simply evaluating
the performance of the models in terms of a sijlghst* parameter set, these methods enable

to determine the uncertainty in the parameterailfiag from a lack of identifiability) and, to
-00.
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a certain degree, the uncertainty in the modeksira by retaining multiple parameter sets
according to differing concepts. Further, the mdthaan be used to propagate these

uncertainties into the model predictions or output.

3.3.3.1. Asessment of model identifiability

Following Wagener and Kollat (2007), model idewtfiion here refers to ,the identification
of all models (parameter sets) within a given madeicture, that can be considered feasible
(behavioral) representations of the natural systener study“. The narrower the space that
these chosen models cover within the feasible patemspace, the more identifiable is the
model. Lack of identifiability is present when @fént combinations of parameters (e.qg.,
Johnston and Pilgrim, 1976; Beven and Binley, 19@8) similar results in terms of the
defined OFs.

The procedure applied here largely follows methodi@s proposed by Wagener et al. (1999,
2001, 2003) and makes extensive use of computeg poovided with the Monte Carlo
analysis toolbox (MCAT; Wagener et al., 1999, 20043gener and Kollat, 2007). The core
of this methodology is based on the concept of R&fear and Hornberger, 1980;
Hornberger and Spear, 1981), and its extensiohad3dLUE technique (Beven and Binley,
1992; Freer et al.,, 1996) which has been extensigpplied to estimate the uncertainty
associated with model outputs and parameter essratd also to assess the value of spatial
data (e.g., Lamb et al., 1998). A major differetcéhe methodology of Wagener et al. (2001,
2003) or most GLUE applications in general is thatameter samples generated using the
Multiobjective Shuffled Complex Evolution Metropsl(MOSCEM-UA) algorithm by Vrugt

et al. (2003a) as described below form the basishefanalysis instead of Monte Carlo
sampling based on a uniform prior distribution. Taesic steps in the procedure applied here
are described in the following.

As in GLUE, no single optimum parameter set is idienl. Instead, recognizing that it is
impossible to identify a single “best* model giverors in both the model and the data, a set
of models is selected where each model has a rdikalihood (pseudo probability) of being
the correct representation of the system. Likeldsoar likelihood functions are any
performance metrics that can be used to differenti@w likely it is that the model (i.e. a
specific parameter set and model structure combmats representative for the system at
hand. The likelihood function value is then useddistinguish between behavioral (i.e.

acceptable) and non-behavioral (i.e. non-acceptamttions. Likelihood measures must

-01.
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have the characteristic that they sum to unity,greater than zero and higher values indicate
better performing parameter values. The objectwection valuesF( ) for each given
realization of a model and a parameter setere transformed into likelihood valudy; ),

following the methodology used by Blasone et d00@):

H)=5

OT(H

whereY indicates a set of observations @ds a scaling constant, which ensures that the
cumulative sum ok ( |Y)over all the behavioral parameter sets equalg.unit

An important property of the GLUE methodology fbist study is that it allows including
multiple sources of information in the likelihoodiniction and thus in the uncertainty
estimation procedure. Multiple criteria can be agded for in different ways. The most
common aggregation method used in GLUE applicatidimser et al., 1996; Lamb et al.,
1998) is to perform Bayesian updating, i.e. byHartconditioning the likelihood functioh,

when data of different types are available:
(1) =L )t )/

where L( |Y12) is the posterior likelihood function of the pardereset obtained after
conditioning on the observed variabl¥s and Y, L( |Y12) is the prior likelihood of the
parameter set calculated using the observation ¥&tandL( |Y1 ) is the likelihood measure
calculated with the observationé and G is a scaling constant, which ensures that the
cumulative sum ok ( |Y12) over all the behavioral parameter sets equaly.unit

A user-defined threshold criterion is then requitedselect the set of behavioral solutions.
This may be either a percentage of best performiioglels or a subjectively selected OF
value. Here, subjective thresholds were set fipsicHically for each of the OFs. Relatively
weak thresholds were chosen to eliminate inaceptpblforming models (CORR = 0.3;
MAE = 15; CSMR = 0; MSHE = 0.02) primarily with ragl to the Likelihood function
updating using multiple objectives. Subsequentig, best performing 10 % of the evaluated
parameter sets in terms of a given likelihood fiomctand combined Likelihood functions,
respectively, are retained as behavioral. Theilkeld functions of the accepted solutions are

then rescaled again.
-06.
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To propagate the parameter uncertainty into theeamnodtput, the 95 % central range of
outputs based on the behavioral parameter setsriputed at each point in time. In addition,
an output estimate is computed as the median sfdibtribution and a further output estimate
is computed based on the best or most likely patemset.

To assess the uncertainty (which is assumed tbéegposite of parameter identifiability) in
posterior parameter distributions, derived from dibaning an initial distribution on a
selected OF, methods developed by Wagener etQfl1jzare used. The best performing 10 %
of the parameter population are selected and tweulative distribution is computed. The
gradient of the cumulative distribution is the maay probability distribution of the
parameter, and therefore an indicator of the strenfthe conditioning by the data, and of
the identifiability of the parameter. To obtain @&asure of identifiability, the range of each
parameter is segmented into 10 containers andrétkent in each container is computed. The
highest value marks the location (or segment) elatpst identifiability of the parameter.
Further, the cumulative distributions can be useddrive confidence limits for the different
parameters (here 90 %). Wide confidence limits sagthat parameter values associated with
equally good performance are distributed widelyrotree parameter space, while narrow
limits suggest that the best performing paramedegsfocused in a small area of the feasible
range. By computing the identifiability after cotidning on the various OFs, the information
provided by the OF to constrain the parameter smace be assessed. By repeating the
computations after combining the likelihood funosp the value of using runoff and soil

moisture data simultaneously can be investigated.

3.3.3.2. Assesment of model structural uncertainty

The methods described above analyze and propagatemeter uncertainty. Several

researchers (e.g., Yapo et al., 1996; Gupta el @88) emphasized that the factor currently
limiting model performance is model (structuralyoer arising from the imperfect and

aggregated representation of the real system.theigefore generally advisable to explicitly
address the uncertainty originating from model dtral inadequacies and errors and
particularly of interest to assess the usefulnésscoeased model complexity. Yet, the nature
of model structural error does not allow the estiomaof a probabilistic structure (e.g., in the
construction of an appropriate OF) to describesibce the errors are not random in a
probabilistic sense (Gupta et al., 1998). Howewssme of the consequences of this

uncertainty can be detected and even used for ieprents in the model structure.

-02.
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A major consequence of model structural imperfecti® that the model is incapable of
reproducing all aspects and portions of the catciirbehavior equally well with a single
parameter set (Gupta et al., 1998). Thus, strdansafficiency and uncertainty does become
visible in the finding that strongly differing pan&ter sets are required to enable the model to
reproduce, for instance, the hydrograph and differaspects soil moisture state
simultaneously, with strong trade-offs between twnflicting objectives. This can be
analyzed in terms of the multiple-criteria stratdgy watershed model parameter estimation
proposed by Gupta et al. (1998) based on methama the field of economic analysis
(Pareto, 1906). Following Gupta et al. (1998), thelti-criteria model calibration problem

can then be formally stated as the optimizatioriem:

minF (") =[R€).FA). - Ff ()

where the goal is to find the parameter setithin the feasible set that simultaneously
minimizes all of the m criteria (herey equals 4). This problem does not, in general, laave
unique solution that simultaneously optimizes eadkerion due to errors in the model
structure (and other possible sources). Instead,generally necessary to adopt a Pareto set
of solutions (often times referred to as the tratfeset, non-inferior set, non-dominated set, or
the efficient set) which have the property that mgWrom one solution to another will result
in the improvement of at least one criterion witdeising deterioration in at least one other. It
is thus impossible to distinguish any of the Passilutions as being objectively better than
any of the other Pareto solutions, such that thhet®aet defines the minimum uncertainty in
the parameter selection that can be achieved witstating a subjective relative preference
for minimizing one specific component B ) at the expense of another (Gupta et al., 1998;
Vrugt et al., 2003a). However, the identified Pargtt can be used by the analysis of multiple
objectives which allows to evaluate the correlatma trade-offs between different objective
functions. Further, the Pareto-solution set canubed to generate a Pareto-ensemble of
simulated responses and can be displayed as adffadecertainty region on the runoff or
soil mositure timeseries plots. This shows the tagdy in the model simulations due to
different possible ways of trading-off the modaioes (and other errors) (Gupta et al., 1998).
The use of Pareto parameter sets to represent nsbaeitural uncertainty and Pareto-
ensemble simulations to represent model output rtaingy can provide useful ways for

evaluating models and their performance.
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3.3.3.3. Parameter sampling

Both approaches used here to assess model relatsdtainties require sampling of the
parameter space with respect to multiple critefiae selection of an appropriate sampling
strategy is particularly important when using disited models, which are more
computationally demanding than lumped models andire a larger number of model runs
for calibration and uncertainty asessment owinghr complexity (Blasone et al., 2008).
While lumped model runs can be performed in secoedsn a simple distributed model like
Hill-Vi requires several minutes for a single ruepending on the size of the domain and
number of time steps evaluated). This clearly kntite applicability of the commonly used
sampling schemes such as uniform random or Latpettybe sampling with distributed
models (McMichael et al., 2006). Instead, a mofigieht sampling scheme is preferable that
further has the capability to handle multiple OFs.

Blasone et al. (2008) have recently demonstratat uking a Markov chain Monte Carlo
(MCMC) sampling scheme in combination with GLUErsfgcantly improves the efficiency
and effectiveness of the methodology. In their segliversion of the GLUE procedure, the
shuffled complex evolution metropolis (SCEM-UA) atghm by Vrugt et al. (2003b) is used
as sampler of the prior parameter distributionseyltiurther used a flexible objective
(likelihood) function, balancing different calibra criteria to include multiple information in
their uncertainty assessment. However, since amast of the Pareto solution set (see
below) is also required in this study, the Multetjve Shuffled Complex Evolution
Metropolis (MOSCEM-UA) algorithm by Vrugt et al. @@3a) is used here. The MOSCEM-
UA algorithm is a MCMC sampler that merges thergjths of complex shuffling employed
in the shuffled complex evolution (SCE-UA) algonth(Duan et al., 1992) with the
probabilistic covariance-based search methodolofjythe Metropolis algorithm and an
improved fitness assignment concept of Zitzler @hitle (1999) to construct an efficient and
uniform estimate of the Pareto solution set. lisuse innovative concept of Pareto dominance
rather than direct-objective function evaluatiossich as the SCEM-UA algorithm) and is
capable of generating a fairly uniform approximatiof the “true” Pareto frontier (which
should include the single-criteria end points oé tRareto solution set) within a single
optimization run (Vrugt et al., 2003a).

A MATLAB implementation of the MOSCEM-UA algorithmrovided by Hoshin V. Gupta

(personal communication) was used for this studycesthe Hill-Vi model was programmed
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in IDL, the computer code of both the algorithm &mel model had to be modified to facilitate
their simultaneous usage. Since IDL programs atecompilable, a communication (i.e.
transfer of generated parameter samples and magdelts) between the programming
environments was set up via text files.

For each model complexity investigated, the MOSCBM-algorithm was run for all
possible combinations (six in total) of the foujeative functions CORR, MAE, MSHE, and
CSMR. The algorithm (as used here) has two alguoittparameters that must be specified
by the user. The number of complexes was set tawe\of two and the population size was
set to a value of 16 (i.e., eight members per cer)phs recommended by Jasper Vrugt
(personal communication). For each pair of OFsatgerithm was run for 22 loops (resulting
in a total of 368 model evaluations). The entirpydation of parameter sets visited during the
individual MOSCEM-UA runs for a given model complgxvere then merged (resulting in a
total of 2208 parameter sets and model evaluapenomplexity) and used as bais for the
further analysis. This parameter sampling stratggyuld generally be well-suited to obtain
(1) a sufficiently dense sample of parameter setbe high probability density region of the
feasible parameter space, (2) a reasonable estiofatee Pareto set, and (3) maintain
computational feasibility at the same time. It pd@s the advantage of allowing for both the
GLUE and Pareto concepts to be applied from a sisgmple. However, the rather small
number of model runs feasible given the temporaktaints imposed on this work is likely
insufficient to obtain a reliable estimate of thghhprobability density region in the parameter

space and the Pareto set such that the subseaqadydia is subject to uncertainty.



4. Results and Discussion

A set of state-of-the-art inverse modeling metheds coupled to the Hill-Vi to provide the
ability for a detailed assessment of the modelcttiral and parameter uncertainty. However,
while a large amount of effort was spent to compiteappropriate data set and set up the
model such as to properly suite the catchment usiidely, no sufficient agreement between
the model and the data could be established thatdnadlow for reliable conclusions about
either the value of the soil moisture data to aemstthe model parameterization or for the
rejection/justification of an increase in model gexity. Also, it is evident that the
MOSCEM-UA algorithm did not properly converge dwiseveral trials. This should not be
attributed to the incapability of the algorithm,tmather to the limited number of model
evaluations that could be conducted.

Nevertheless, a suite of figures is provided thautd, however, be considered as indicative
of the possibilities provided by the framework gptin this work to evaluate the model with
respect to the soil moisture data. Fig. 5 showstifiability plots of the hill-Vi model
parameters by conditioning on the various OFs amdvarious model complexities. High
gradients in the cumulative distribution indicatghidentifiability in the top performing
model parameters whereas shallower gradients itedicav identifiability. The maximum
gradient can be considered as a metric of parantaetifiability, and likewise the percentile
ranges associated with the cumulative parametéribdison shown in Fig. 6. Given these
preliminary results, the runoff data clearly imp®gemuch stronger constraint on the model
parameterization than the relative saturation ast@ated OFs, repectively. When both data
sources are combined, the resulting parameter tamaiyr is clearly larger compared to the
case when only the runoff-based OF CORR is usedadt) this is not an unlikely result,
given that adequate representation of runoff atative saturation may provide conflicting
targets to track for a model. The existence ofrangt trade-off between the ability of the
model to simultaneously match the various OFs usdtis study is indicated by the multi-
objective plots shown in Fig. 7. Note that these-thimensional plots show the four-criteria
rather than the two-criteria Pareto optimal se&s,the rank one solutions with respect to all
four criteria. Fig. 7 further indicates problemsadfjorithm onvergence to the true extend of

the Pareto front.
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Figure 5: Identifiability plots showing the cumulative diditition (dashed lines) of the top 10-percent
of the parameter populations for model complexiti€blue), 2 (turquoise), 3 (orange), and 4 (red) a
in terms of the objective function values for (fréeit to right) CORR, MAE, CSMR, MSHE, all OFs
with respect to relative saturation data and ak CBtair plots indicate the (rescaled) distributdén
gradients of the cumulative distribution acrossgheameter range splitted into ten bins.
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Figure 6: Parameter uncertainly of the Hill-Vi model vs. thedel complexity after conditioning on
runoff data only (OF: CORR; left column), relatisaturation data only (OFs: MAE, CMSR, MSHE;
central column), and all data and objective funiaespectively (right column). Light gray shading
indicates parameter uncertainty associated witliPreto set of solutions. Medium grey shading and
dark grey line indicate the 95 % confidence linait&l median parameter values based on the
cumulative parameter distributions (top 10 %). Best performing parameter set is shown as a black
line.
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Figure 7: Four-criteria trade-off surfaces in two-dimensioobjective spaces for model complexities
1 (blue), 2 (turquoise), 3 (orange), and 4 (red).

The parameter uncertainty is propagated into thpubwncertainty as shown in Figs 8 to 11.
Constraining the data to runoff does result inexily narrow output confidence intervals for
both runoff and basin mean relative saturation fatans. The precision of the simulated
response is high, yet the accuracy of the runeffutations (Figs 8 and 9) is low. While
“acceptably” high correlation coefficients were faeved for all of the four model
complexities, none of the models is capable of eashg a bias smaller than 35 % in
simulated flow volumes. Given a runoff coefficiarit0.77 over the evaluation period, this is
not surprising. Clearly, the model fails to closetatch the runoff particularly during high
flow periods in the winter, which can be relatedhe insufficiency of the snow module. This
is true for all simulations, including the singlbjective optimal solution. Including the soil
moisture data to condition the model parameteomakeads to strongly widened confidence

intervals, reflecting the increased parameter uacdy (Figs 5 and 6). Note also the wide
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uncertainty intervals associated with the Paret@fsolutions, indicating the strong trade-off
between the ability of the model to represent thbabiors associated with the multiple-

objectives simultaneously.

Figure 8: Timeseries of rainfall and observed (red) and sitad runoff for parameter populations
conditioned on runoff only and for model complesgtil to 4 (top to bottom). Light grey shading
indicates output uncertainty ranges associatedthvtiiPareto set of solutions. Medium grey shading
and dark grey line indicate the 95 % central ravaged on the behavioral parameter sets. The output
associated with the best parameter set is showarbkk line.
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Figure 9: Timeseries of rainfall and observed (red) and sataa basin mean relative saturation for
parameter populations conditioned on runoff andtiet saturation observations and for model
complexities 1 to 4 (top to bottom). Light grey dmay indicates output uncertainty ranges associated
with the Pareto set of solutions. Medium grey shgdind dark grey line indicate the 95 % central
range based on the behavioral parameter sets.ufpet@ssociated with the best parameter set is

shown as a black line.
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Figure 10: Timeseries of rainfall and observed (red) and sateal basin mean relative saturation for
parameter populations conditioned on runoff onlgt Boxr model complexities 1 to 4 (top to bottom).
Light grey shading indicates output uncertaintygesiassociated with the Pareto set of solutions.
Medium grey shading and dark grey line indicatedhéb central range based on the behavioral
parameter sets. The output associated with thepesmeter set is shown as a black line.

-13.



Figure 11: Timeseries of rainfall and observed (red) and satad basin mean relative saturation for
parameter populations conditioned on runoff andtret saturation observations and for model
complexities 1 to 4 (top to bottom). Light grey dhmgy indicates output uncertainty ranges associated
with the Pareto set of solutions. Medium grey shgdind dark grey line indicate the 95 % central
range based on the behavioral parameter sets.ufpet@ssociated with the best parameter set is
shown as a black line.

As an example, Fig. 12 shows a map of observedivelaaturation on January 15, 2009,
which is representative of a wet catchment stateerwlateral water movement can be
expected to be the main process controlling thé reoisture variability across the entire
catchment. It will be interesting to further inMgate such maps for different diagnostic

periods to assess deficiencies and benefits, regplgc of vaying model complexities.
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Table 4: Model performance with respect to the four objerfunctions for the best parameter set and
the best parameter set after conditioning (conelbdel to all objective functions.

0 + ( +

, & , & , & , &
# . "I 3! #'1 "51 " 63 "ol g
! " 16 "2 26 46 " 42 o 0] "ma4
0 "#4 "#4 3# 4! " 5" "12 % " UH#HO
1 " #36 " #5 36 50 "50 "6 " "UHH

The assessment of model complexity using auxilispgtial data has proven a valuable
approach (e.g., Tromp-van Meerveld and Weiler, 2088 for now, increasing the model
complexity did result in neither improved identifiaty of model parameters (Figs 6 and 7)
nor in improved performance (Tab. 4) in simulatihg observed runoff and soil moisture
dynamics. However, given the uncertainties involirethis study, it would be assumptive to
draw any conclusions on the importance of the itigated model refinements. Clearly, the
impact of bedrock seepage (e.g., Tromp-van Meenald Weiler, 2008), throughfall
variability (e.g., Keim et al., 2005), and variatsleil depth (e.g., Woods and Rowe, 1996;
Freer et al., 1997) on the simulated runoff respoasd soil moisture variability and
connectivity deserve further investigation. It rensato be investigated whether or not soil
moisture data is appropriate to constrain the Yiltnodel and judge the value of the applied
modifications. Further modifications may as well teeted, such as the impact of pipeflow
and spatially variable soil properties. A repreagah of pipeflow is implemented in Hill-Vi
(Weiler and McDonnell, 2007) and a parameter-fieggesentation of variable soil properties
between cambisols and near stream stagnic andcgleys was already implemented for the
study site and is ready to be tested.

In this study, only OFs have been used that mayléssified as global. This avoids the
otherwise necessary locationally explicit comparigd point measurments and model grid
simulations or interpolation to the grid assuminiitad statistical model to be true. A further
practical advantage of using global metrics isah#ity to apply them in cases where a model
has a stochastic component, such as the througfaiadibility representation implemented for
this study. It is, however, still unclear which GRould be used for a given data. Further
metrics were implemented in MATLAB are ready to bseed when more reliable data

becomes available and with more model evaluatidinsong others, connectifity functions
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(Western et al., 2001) were implemented based eanduscode provided by Andrew Western
(personal communication). These functions providenysing means for characterizing
organized features that exist in observed spai@tl§ and that can have an important
influence on hydrologic behavior. Based on thesetions, the integral connectivity scale
can be computed and used to asess as a meastee ksence of hydrologic connectivity.
The correlation of the relation between mean netatiaturation and standard deviation also
provides an interesting function to investigatetéNthat the standard deviation versus mean
relation may be better suited for the OF type usere as compared to the coefficient of
variation, given that the former was often foundhtiove a convex rather than linear form
(Owe et al., 1982), thus imposing a stronger cairdtron the value of a correlation
coefficient. An interesting aspect to considethat this function may even be applied to
constrain the parameter space and evaluate mosels when no soil moisture data is
available. This could be implemented, for examphe,assuming an appropriate functional
form (e.g., Famiglietti et al. 2008; Vereecken kt 2008) for a standardized soil moisture
variability-mean relation for a given location aschle the model is to be applied to and then
evaluating the standardized model simulations agénis relation.

This study has unwantedly demonstrated that it ighlip important to be able to
appropriatetely characterize not only one stateaer such as, for instance, soil moisture, but
to have reliable data available with respect tonadjor hydrological fluxes and ideally
additional important state variables such as groaner level as well as soil properties. As
stated by Vereecken et al. (2008), the collectibsuch data sets at the catchment scale is an
important challenge that should be addressed inetinestrial observatories that are currently
being established. It is hoped that more apprapriatcing data will be available for the
Wistebach site to make optimal use of the highityusbil moisture data in the framework of

hydrological inverse modeling.



Figure 12: Top: Map of observed relative saturation (%) duanget period on January 15, 2009
(interpolated using Ordinary Kriging). Middle roMaps of simulated relative saturation using
increasingly complex models (from left to rightinclitioned on relative saturation and runoff. Bottom
row: Maps of relative residuals for the increasyngbmplex models (from left to right).
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