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Abstract  
�

This thesis developed an inverse modeling approach to directly incorporate high resolution 

spatiotemporal soil moisture content data produced by the wireless sensor network SoilNet for 

the temperate humid forested headwater basin Wüstebach to parameterize the distributed 

hydrological model Hill-Vi. A one year period of six-hourly soil moisture measurements from 

150 locations in the 0.27 km2 basin was available for this study. The model was coupled to the 

Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM-UA) algorithm to 

facilitate efficient sampling of the parameter space with respect to a suite of objective 

functions constraining the model to runoff at the catchment outlet and internal soil moisture 

dynamics. State-of-the-art hydrological inverse modeling methods were applied to assess the 

identifiability of model parameters and model structural uncertainty. The approach was then 

used to preliminarily investigate the value of soil moisture data in constraining the parameter 

space and to study the influence of increasing model complexity by including bedrock 

seepage, variable soil depth, and variable throughfall into the model. As for now, the model 

was found to be incapable of appropriately simulating the basin dynamics. This may be 

primarily attributed to biases in the meteorological data and the limited amount of parameter 

samples generated. More research is needed to derive reliable conlcusions on both the utility 

of soil moisture data and the value of added model complexity for the simulation of internal 

soil moisture dynamics and runoff response. 

�

Keywords: Inverse modelling, model calibration, distributed hydrological models, soil 
moisture, wireless sensor networks, multi-criteria optimization, model 
complexity 

 

 

 

 

�



7������
�����
��

�

�

-/.�
�

Zusammenfassung 

�
In dieser Arbeit wurden Methoden der inversen Modellierung zur Parametrisierung verteilter 

hydrologischer Modelle unter Verwendung räumlich und zeitlich hochaufgelöster 

Bodenfeuchtedaten. Die Daten stammen von dem Wireless Sensor Network SoilNet das in 

dem bewaldeten Einzugsgebiet Wüstenbach (0,27 km2) installiert wurde. Für diese Studie 

wurden Bodenfeuchtemessungen in einem 6-stündigen Zeitschritt von 150 Sensoren 

verwendet. Das Modell wurde mit dem Multi-Objective Shuffled Complex Evolution 

Metropolis (Moscem-UA) Algorithmus gekoppelt um eine effiziente Beprobung des 

Parameterraums hinsichtlicher multipler Gütemaße zu ermöglichen. Die Gütemaße messen 

die Übereinstimmung der Simulationen von Abfluss am Gebietsauslass und Bodenfeuchte mit 

den entsprechenden Messungen. Um die Identifizierbarkeit der Parameter und die 

Unsicherheit in der Modellstruktur zu erfassen wurden inverse Modellierungsverfahren nach 

dem Stand der Forschung angewendet. Die Methode wurde angewendet um den Wert der 

Bodenfeuchtedaten zur Begrenzung des Parameterraums  sowie den Einfluss erhöhter 

Modellkomplexität bezüglich der Einbeziehung von Versickerung in den Untergrund, 

variabler Bodentiefen und variablen Kronendurchlass vorläufig zu untersuchen. Bei erster 

Betrachtung der Ergebnisse wurde keine adäquate Übereinstimmung zwischen den 

Simulationen und Messungen gefunden. Dies ist vermutlich hauptsächlich systematischen 

Fehlern in den meteorologischen Daten  und der geringen Anzahl an möglichen 

Parameterstichproben zuzuordnen. Weitere Untersuchungen sind erforderlich um zuverlässige 

Schlüsse über den Nutzen der Bodenfeuchtedaten und der erhöhten Modellkomplexität für die 

Simulation der Bodenfeuchtedynamik und der Abflusses ziehen zu können. 

�
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1. Introduction  
 
1.1. Motivation  
 
According to Bogena et al. (2010) a remaining challenge in hydrology is to explain the 

observed patterns of hydrologic behavior across multiple space–time scales as a result of 

interacting environmental factors. Furthermore, there is an increasing demand for spatially 

explicit predictions to address complex environmental problems concerning surface water 

acidification, soil erosion, pollutant leaching, and possible consequences of land use or 

climatic changes (Grayson et al., 2002). The complexity of problems hydrologists are asked to 

investigate has grown over the years (Wagener et al., 2007).  

Observations and measurements are vital to improving our understanding of hydrological 

response. However, to understand the dynamics of hydrological processes, a framework to 

facilitate hypothesis testing is needed. Computer-based modelling is used throughout 

hydrology for this purpose (e.g., Wealands, 2006). There are many different types of models, 

ranging from those that estimate bulk quantities to those that produce spatially explicit 

estimates across an area. There are many comprehensive reviews of hydrological modelling 

available, which provide examples and classifications of models (e.g. Singh, 1995; Abbott 

and Refsgaard, 1996; Grayson and Blöschl, 2000a,b,c). In this thesis, the focus is on spatial 

models, which are used for testing hypotheses about the behaviour of hydrological systems. 

Models provide the platform on which conceptualisations of hydrological processes are 

combined to simulate hydrological response. If models prove to adequately simulate a certain 

response, they can also be used for predicting the effects of changed conditions on 

hydrological response (e.g. land use change). 

The past decades have seen the development and application of numerous physically based 

distributed models (i.e., models that explicitly represent spatially varying fields) of diverse 

levels of complexity over a range of scales, from hillslopes (Faeh et al., 1997; Weiler et al., 

1998; Calver and Cammeraat, 1993; Sloan and Moore, 1984) to mesoscale and largescale 

basins (e.g., Abbott et al., 1986; Beven et al., 1987; Grayson et al., 1992; Julien and 

Saghafian, 1991; Wigmosta et al., 1994; Garrote and Bras, 1995; Ivanov et al., 2004). Yet, the 

anticipated utility of such models (e.g., Beven, 1989; Goodrich et al., 1995) to significantly 

advance the skill to simulate and forecast hydrologic response, to serve as tools for scientific 

hypothesis testing and to elucidate the complexity of distributed and interacting hydrologic 

processes in time and space has not yet fully emerged (Finnerty et al., 1997). In attempting to 
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describe the complex spatial behavior of hydrologic systems, distributed models tend to be 

complex (refering to the detail of process representation) in structure and contain numerous 

parameters to be estimated. Among the major critiques expressed in the literature are the lack 

of parameter identifiability,  model structural uncertainty and possible overparameterization 

of the process description (e.g., Refsgaard, 1997; Beven and Freer, 2001; Seibert, 2001; 

Grayson et al., 2002; Gupta et al., 2005). Nevertheless, spatially distributed hydrological 

models can provide insights into questions that can not be addressed based on point field 

observations, laboratory experiments, or lumped models (Beven, 2000). 

At present, one of the most severe constraints for the further development of distributed 

hydrological modelling and its utility for prediction and analysis can be found in the general 

inability to thoroughly evaluate and constrain the distributed model dynamics with available 

data (Refsgaard, 1997; Grayson et al., 2002). Usually, model evaluation and calibration has 

been mainly based on a comparison of observed versus simulated runoff at the basin outlet. It 

has been pointed out numerous times that this is a very weak constraint on the adequacy of a 

model and its parameters. Many modeling studies have shown that only matching the 

simulated and observed integrated catchment response (i.e. streamflow) is no guarantee that 

the internal, spatially distributed hydrologic response is correct (Grayson and Blöschl, 

2000a,b,c; Seibert et al., 1997). Many different parameter combinations and even model 

structures describing different processes can exist that may produce a wide array of internal 

states yet very similar runoff outputs. 

Spatial observations provide the ability to evaluate the internal behavior of the models, in 

terms of simulated patterns of state variables and model output. This can not only improve the 

identification of model parameters and increase the reliability and precision of predictions 

(e.g., Franks et al., 1998). Seeing how well a measured internal response is simulated provides 

a much more rigorous test of model structures, process conceptualizations and assumptions. 

This can provide a more reliable basis to answer questions about what complexity (i.e., level 

of detail in process representations) is actually needed (Beven, 1989; Grayson et al., 1992; 

Jakeman and Hornberger, 1993) and how can experimental findings be incorporated to arrive 

at models that are known to „work“, to some more testable degree, for the right reasons, i.e. 

are consistent with the current process understanding (e.g., Seibert and McDonnell, 2002; 

Weiler and McDonnell, 2004; Tromp-van Meerveld and Weiler, 2008). By including spatial 

pattern comparisons in model assessments, we will “improve the confidence with which we 
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can claim our models do indeed represent the right processes and get the right answers for the 

right reasons” (Grayson and Blöschl, 2000a,b,c). 

Spatial data is becoming increasingly available in recent years (Grayson et al., 2002; 

Vereecken et al., 2007). One promising new technology is emerging with wireless sensor 

networks (e.g., Cardell-Oliver et al., 2005; Trubilowicz et al., 2009; Bogena et al., 2009, 

2010). These networks provide data on important environmental variables such as, for 

instance, soil moisture content, with unprecedented spatiotemporal resolution and can bridge 

the scale gap between local hydrogeophysical measurements and remotely based sensor 

systems (Bogena et al., 2009). Although the technology is still in its infancy, it provides the 

potential to revolutionize data collection at least at the experimental catchment scale (Soulsby 

et al., 2008). 

Now it is necessary to find ways to make optimal use of this data to constrain the models to be 

consistent with key signatures this data may contain. While it is a common believe that 

detailed spatial observations are vital to improving our understanding of catchment 

hydrological behavior, still relatively little experience seems to exist on what constitutes 

appropriate data in a given situation and how to make optimal use of the data (Wealands, 

2006). This will form an interesting and important field of research in both hydrological 

process understanding and modeling (Grayson et al., 2002). 

 
1.2. Scope  
 

The primary goal of this thesis is the development of an inverse modeling approach to directly 

incorporate the high resolution spatiotemporal soil moisture content data produced by a 

wireless sensor network into distributed hydrological models. 

This study uses the distributed model Hill-Vi (Weiler and McDonnell, 2004) and soil 

moisture data produced by the wireless sensor network SoilNet (Bogena et al., 2010) for a 

temperate humid forested headwater basin. The inverse modeling application involved 

·  setting up the model to the study site, 

·  preparation of the meteorological and sensor network data, 

·  selection of appropriate objective functions to constrain the model to major aspects of 

the observed soil moisture data, 

·  coupling of the model to an effective and efficient parameter sampling scheme and 

implementations of state-of-the-art inverse modeling methods to allow assessment of 

model structural and parameter uncertainty. 
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Finally, this study intends to investigate the importance of representing several processes that 

have recently received attention in experimental studies, for instance, bedrock seepage, 

variable soil depth (or bedrock topography), and variable throughfall, for the simulation of 

internal soil moisture dynamics as well as the runoff response at the catchment outlet to be 

investigated. 

 

1.3. Background  
�
1.3.1. Hydrological inverse modeling  
 

The hydrological behavior of any hillslope or catchment involves a number of spatially 

distributed and interacting water, energy and vegetation processes. Therefore every computer-

based hydrological model, regardless of how detailed or spatially explicit, how physically-

founded or conceptual in nature, is necessarily a simplified and to some degree 

spatiotemporally aggregated representation of the highly complex and heterogeneous reality 

(Gupta et al., 2005; Wagener and Gupta, 2005). As a consequence, at least some of the model 

parameters are – while often still physically interpretable and related to properties of the 

system – not directly measurable. Instead, they have to be identified via an indirect process of 

parameter estimation, during which the model parameters are iteratively adjusted such that the 

model simulations match, as closely and consistently as possible, the observed behavior of the 

system under study. This process is variously referred to as inverse modeling or model 

calibration (e.g., Hornberger and Spear, 1981; Young, 1983; Beven, 2005; Wagener and 

Gupta, 2005; Vereecken et al., 2007). A further important aspect is that while the model 

structure is most commonly fixed a priori to any modeling attempts (Wheather, 1993), a 

variety of model structures, representing different degrees of complexity and varying process 

conceptualizations and assumptions, may appear equally possible for a given situation. The 

selection process usually amounts to a subjective decision by the modeller (Wagener, 1998), 

since objective decision criteria are often lacking (Mroczkowski et al., 1997). 

Calibration and testing of hydrological models has been an active area of research in recent 

years. The greater use of complex models has increased the problems of balancing data 

availability, predictive performance and model complexity (Grayson et al., 2002), which has 

led to questioning the classical calibration paradigm (Gupta et al., 1998). Sophisticated 

automatic global optimization algorithms (see Gupta et al., 2005; Vrugt et al., 2008; and 
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references therein) are now available to reliably locate the global optimum for some 

predefined mathematical measure of „goodness-of-fit“ to the data (henceforth referred to as 

objective function; OF). However, it has become clear that usually a large number of models 

or parameter sets exist that result in very similar values for the selected OF. This is referred to 

in the optimization literature as the problem of nonuniqueness, indeterminacy, 

nonidentifiability, or more recently “equifinality” (Beven, 2001). Consequently, the inherent 

uncertainty in any model application must be explicitly considered during both calibration and 

prediction. While the entire uncertainty is often projected into the parameter space, it has to be 

clear that all components of the modeling process, including the measurements of system 

input and output and the model structure, are uncertain and errorprone (e.g., Wagener and 

Gupta, 2005).  

Several approches exist in the literature to respond to the problem of perceived equifinality.  

First, the finding can be interpreted as the need for set theoretic approaches, which assume 

that all plausible models should be retained unless and until evidence to the contrary becomes 

apparent. Many of these set theoretic approaches are related to the Regional Sensitivity 

Analysis (RSA; also called the Hornberger- Spear-Young approach) concept advanced by 

Spear and Hornberger (1980) that evaluates the sensitivity of the model output to changes in 

parameters without referring to a specific point in the parameter space. These techniques 

commonly apply Monte Carlo sampling procedures to explore the feasible parameter space in 

search for plausible behavioral (the terms „behavioural“ and „non-behavioural“ are often used 

to describe models that „match“ or „do not match“ the observations (Hornberger and Spear, 

1981) models. Examples of the set theoretic approach applied to hydrological modeling 

include the Generalized Likelihood Uncertainty Estimation (GLUE) technique (Beven and 

Binley,1992), the Dynamic Identifiability Analysis (DYNIA) approach (Wagener et al., 

2003), the Parameter Identification Method based on the Localization of Information (PIMLI) 

approach (Vrugt et al., 2002), the Monte Carlo Set Membership (MCSM) approach (van 

Straten and Keesman, 1991), the Explicit Bayesian Approach (Kuczera and Mroczkowski, 

1998), the Bayesian Recursive Estimation (BARE) technique (Thiemann et al., 2001), and the 

Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm (Vrugt et al., 2003a). 

Second, it has been argued that more powerful methods are needed to properly exploit the 

information contained in the data. Various research efforts have shown that the amount of 

information retrieved using a single OF is insufficient to identify more then three to five 

parameters (e.g. Beven, 1989; Jakeman and Hornberger, 1993; Gupta, 2000). More 
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information can become available through the use of multiple objective functions to increase 

the discriminative power of the calibration procedure (e.g. Gupta et al., 1998; Gupta, 2000). 

These measures can either retrieve different types of information from a single time-series, 

e.g. streamflow (e.g. Gupta et al., 1998; Dunne, 1999; Boyle et al., 2000; Wagener et al., 

2001), or describe the performance of individual models with respect to different measured 

variables, including internal state variables, e.g. groundwater levels (e.g. Kuczera and 

Mroczkowski, 1998; Seibert, 2000) or saturated areas (Franks et al., 1998). The multi-

objective approach proposed by Gupta (1998) based on the concepts of Pareto optimality 

further allows to gain insights (that may also be used for improvements in the model 

structure) into consequences of model structural uncertainty by revealing trade-offs between 

the models capabilities in reproducing several data types or aspects and portions of the data 

equally well with a single parameter set.  

Third, the finding that parameter non-identifiability can be attributed to overly complex model 

structures with too many tunable parameters given the information content in the data led 

Wheater et al. (1993), Jakeman and Hornberger (1993), Young et al. (1996); Wagener et al. 

(2003) to apply more parsimonious model structures with only as many parameters as can 

confidently be identified. This is in contrast to an argument sometimes made in model 

development that processes that are perceived to have an effect in the real system should be 

represented in the model as well (Beven, 2001). However, the increase in identifiability is at 

the price of a decrease in the number of separate processes described by the model. There is 

therefore a danger of building a model structure that is too simplistic for the anticipated 

purpose (Kuczera and Mroczkowski, 1998). An important question is therefore how much 

complexity is really needed or warranted in hydrological models (Beven, 1989; Grayson et 

al., 1992; Jakeman and Hornberger, 1993; Tromp-van Meerveld and Weiler, 2008). 

 
1.3.2. Use of spatial patterns in distributed hydro logical modeling  
 

The recent advances in calibration and testing methodology described above have highlighted 

the importance of additional information to augment standard runoff data. Hence several 

studies have used spatial data to acknowledge the limited amount of information contained in 

stream flow or any other integrated flux data to identify model parameters (e.g. Wheater et al., 

1996; Beven, 1989; Jakeman and Hornberger, 1993; Ye et al., 1997) and to assess issues of 

model complexity and realism (Beven and Freer, 2001; Seibert and McDonnell, 2002). 
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Extensive reviews on this topic are found in Grayson et al. (2002) and Wealands (2006). The 

use of other auxiliary data types has been reviewed e.g. by Seibert and McDonnell (2002). 

Important differences in these studies include (1) the type of data or pattern information used, 

(2) the strategy to compare observed and simulated data, and (3) the strategy to combine 

multiple data sources. Some key aspects are summarized below. 

1.The type of data commonly used to describe spatial patterns can either consist of point 

measurements, categorical and binary data or surrogate data (i.e. data that shows a degree of 

correlation to the spatial pattern of interest). In the context of this study, use of point 

measurements is of particular interest. Point measurements used as basis for spatial model 

evaluation include soil moisture measurements (e.g., Chirico et al., 2003), snow depth 

measurements (e.g., Davis et al., 1998), groundwater levels (Lamb et al., 1998; Blazkova et 

al., 2002), and internal stream stage measurements (Hunter et al., 2005). They may either be 

used directly or interpolated to the model grid using methods of varying complexity (Grayson 

et al., 2002) to produce a predicted pattern. Following Grayson and Blöschl (2000), a spatial 

pattern refers to any image or surface showing the spatial distribution of an attribute, 

especially where there is a degree of organisation, as opposed to the spatial pattern being 

random. Interpolated maps of continuously valued data may further be converted to 

categorical or binary maps. While this results in some loss of information, it allows for 

application of a different set of evaluation metrics (Wealands, 2006). Important considerations 

in the use of point measurements are how representative the point measurement is of a larger 

area and whether there are sufficient measurements to characterize the field and justify 

interpolation to form a spatial field or pattern (i.e. how the support for the measurement 

relates to the support of the model, and how the measurement error compares to any 

underlying pattern in the field; Grayson and Blöschl, 2000; Grayson et al., 2002). For 

example, Anderton et al. (2002b) found difficulties in using limited soil moisture and phreatic 

surface information in the validation of the SHE-TRAN model due to both the sparseness of 

the data and the ‘mismatch’ of the measurement scale to the model gridscale. Therefore, a 

simple direct comparison of simulated model variables to observed data for specific points 

representing intermediate locations on the model grid will be of limited value (Rosso, 1994; 

Gupta et al., 2005). 

Binary patterns include snow cover derived from aerial photographs or from satellite remote 

sensing (e.g. Owe et al. 2008), uncertain estimates of saturated areas derived from high-

resolution synthetic aperture radar (SAR) imagery (Franks et al. (1998) from photographs or 
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high-resolution optical instruments (e.g. Land-Sat TM, AVHRR; see also Jensen and 

Calabresi (1997), for examples from a range of platforms). Hunter et al. (2005) used SAR and 

aerial photographs of inundation extent or stream networks (Stoll and Weiler, 2010), while 

Peschke et al. (1999) mapped the type of runoff generation mechanism that occurs for a given 

catchment state.  

Surrogate patterns are useful when the attribute of interest is difficult to collect, as they 

provide a means of assessing spatial predictions albeit with greater uncertainty. For example, 

terrain has been used as a surrogate for solar radiation exposure, soil properties, vegetation 

distributions, (e.g. Wilson and Gallant, 2000), soil texture to infer hydraulic properties and 

remote sensing data, for example, for surface soil moisture derived from SAR (e.g., Satalino 

et al., 2002; Montanari et al., 2009).  

2. Comparing observed versus simulated fields has often been limited to visual comparison – 

arguably a very powerful method, particularly when combined with detailed process 

understanding (e.g., Tromp-van Meerveld and Weiler, 2008), yet qualitative, subjective, and 

limited to selected points in time (Grayson et al., 2002; Wealands, 2006). It is thus not 

possible to extend this method to automated optimization techniques. Quantitative comparison 

techniques may be categorized into global and local (cell-by-cell) comparisons. In global 

comparisons, each spatial field is either aggregated into a number or into a graph from which 

the characteristics are derived. The disagreement in these global characteristics is then used to 

produce a measure of global similarity or error. This includes basic methods such as simple 

least squares type errors or bias in comparing the mean of observed and simulated fields 

(Wealands, 2006). Western et al. (2001) used variograms to describe soil moisture patterns 

and compare pattern characteristics over time. They further investigated the characterization 

of spatial connectivity within patterns using connectivity functions. Local or cell-by-cell 

methods are based on comparing simulated and observed values at each grid cell. Thus 

Güntner et al. (2004) compared landscape metrics characterizing the general size, shape and 

arrangement for simulated and observed saturated area patches. The differences (residuals) 

can be aggregated in terms of measures of error variance (e.g., Lamb et al., 1998) or bias, 

somewhat similar to statistics used in traditional model evaluation using time series. In map 

comparison of categorical or binary data, the Kappa measure (Cohen, 1960) is frequently used 

(e.g., Pontius, 2000; Sciuto, 2009; Stoll and Weiler, 2010). Some studies have employed 

extensions of the strict cell-by-cell comparison using fuzzy measures (see Ross, 1995), e.g., 

accounting for shifts in the location of patterns (Grayson and Blöschl, 2002) or accounting for 
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the cell neighborhood (Constanza, 1989) due to uncertainty of location (Güntner et al., 2004). 

This is particularly useful to avoid unduly biases in the assessment of model performance 

when measurements are sparse in time and/or space and/or particularly uncertain. However, 

no standard does currently exist on which approaches should be used for spatial data 

comparison in hydrological applications for a given question of interest, data type, and scale 

or resolution. This is a very new area for hydrology, and techniques are still being trialed and 

developed. An extensive suite of potentially useful measures for quantitative map comparison 

has been recently compiled by Wealands (2006). He reviewed methods used in other 

disciplines such as image processing and pattern recognition with the intention to develop 

comparison strategies that emulate the powerful yet subjective and non-reproducable 

approach of visual comparison. He recommended the simultaneous use of multiple 

comparison measures (see also Legates and McCabe, 1999; Boyle et al., 2000), to focus on 

functionally important parts of the information contained in the data (see also Gupta et al., 

1998), the use of image segmentation and clustering methods to delineate coherent regions 

within organized data fields, tolerance for unimportant disagreements (i.e., use of fuzzy 

measures) and the comparison on multiple scales. However, many of the more advanced 

methods have not yet been applied in model calibration. This may in part be due to 

inexperience in the interpretation of the results, computational extensiveness and increased 

effort including user interaction. 

Both set theoretic methods and the concept of the Pareto optimality provide useful 

frameworks to incorporate spatial data in inverse modeling and model evaluation. A set of 

studies (e.g., Franks et al.,1998; Lamb et al., 1998; Blazkova et al., 2002; Freer et al., 2003; 

Hunter et al., 2005) have used spatial data sources in conjunction with the GLUE 

methodology (Beven and Binley, 1992; Freer et al., 1996). They have demonstrated that 

updating of generalised likelihoods based on such data can substantially reduce the 

uncertainty in parameter estimates and response predictions as compared to use of only 

dicharge to constrain the parameter space. Madsen (2003) used the Pareto optimality approach 

to reveal trade-offs between the model performance of groundwater level simulations and the 

catchment runoff and to find a balanced optimal solution. 

Finally it is noteworthy that integration of spatial data often reveals insufficiencies in the 

models used concerning individual processes, that could be used for informed model 

improvement (e.g., Tromp-van Meerveld and Weiler, 2008). Particular data sets may only 

constrain particular parameters (e.g., Lamb et al, 1998). Also, model calibration using spatial 
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or other auxiliary information can result in reduced runoff simulation performance and may 

not necessarily reduce runoff prediction uncertainty, while it is often concluded that the 

realism and definition of internal processes of the model can be increased (e.g., Blazkova et 

al., 2002; Seibert and McDonnell, 2002). 

 
1.3.3. Soil moisture variability  
 
Soil moisture has a major influence on a range of hydrological processes such as flooding, 

erosion, solute transport and land–atmosphere interactions, as well as a range of pedogenic 

processes (Western et al., 2004). The soil moisture content (SMC) of a basin exhibits large 

spatial and temporal variability. According to Vereecken et al. (2007) understanding, 

characterizing and predicting this spatial variability is one of the major challenges in 

hydrologic science. One important step is the improved ability to measure soil moisture at 

various scales with new techniques, such as remote sensing and geophysical methods (see 

Vereecken et al., 2007 and Famiglietti et al., 2008; and references therein) or, for instance, 

wireless sensor networks (e.g., Cardell-Oliver et al., 2005; Trubilowicz et al., 2009; Bogena et 

al., 2009, 2010). A comprehensive review on the utility and applications of soil moisture data 

can be found in Vereecken et al. (2007). Only a few relevant aspects can be adressed here. 

Several modeling and field studies have been conducted to address the properties of soil 

moisture spatiotemporal variability across a range of spatial scales. At the small catchment 

and hillslope scales, soil moisture variability or pattern is determined by water-routing 

processes (e.g., Dunne et al., 1975; Beven and Kirkby, 1979; Moore et al., 1988) radiative 

(aspect) effects (Moore et al., 1993), heterogeneity in vegetation (e.g., Tromp-van Meerveld 

and McDonnell, 2006; Ivanov et al., 2010), and soil characteristics (e.g., Vereecken et al., 

2007). At this scale, spatial patterns of soil moisture can excert a major control on the 

rainfall–runoff response, especially where saturation excess runoff processes dominate (e.g., 

Merz and Plate, 1997; Grayson et al., 1997; Western and Grayson, 1998). On larger scales, 

the value of soil moisture data for the prediction of runoff is still under debate (e.g., Parajka et 

al., 2006). 

An important research topic has been the identification and characterization of spatial 

organization of soil moisture (Grayson et al., 1997; Western et al., 1999; Western and 

Blöschl, 1999; Rodriguez-Iturbe et al., 1995; Oldak et al., 2002; Thierfelder et al., 2003). 

Western et al. (2001) found that spatial organization had a significant effect on the rainfall-

runoff behaviour with event-based model simulations. Grayson et al. (1997) argued that soil 
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water patterns in temperate regions switch relatively rapid between two different preferred 

states, controlled by different processes. During the wet state, moisture patterns are highly 

organized or connected and controled by nonlocal factors (e.g., topography and landscape 

position or upslope contributing area) given the dominance of lateral soil water fluxes. In the 

dry state moisture patterns are disorganized (or random) because of the influence of local 

catchment attributes (e.g., soil and vegetation characteristics and terrain slope), and the 

predominance of vertical soil water fluxes. 

Spatial organization can also be analyzed within a geostatistical framework. However, spatial 

connectivity is a spatial organization feature that is not captured by standard geostatistics 

(variograms) or indicator geostatistics (indicator variograms). In contrast, connectivity 

statistics (Allard, 1993; Allard et al., 1994) provide an appropriate tool for characterizing 

spatial connectivity (Western et al., 2001). Several studies have advocated that connectivity in 

shallow soil moisture patterns induces threshold-like changes in runoff in temperate rangeland 

catchments (e.g., Western et al., 2001). However, James and Roulet (2007) found that this 

was not the case in a temperate humid forested catchment and attributed this to the differences 

in climate settings and to the fact that forested catchments exhibit larger variability in soil 

hydrologic properties than rangelands. Ali et al. (2010) argue that climate may rather act as an 

indirect control while differences in the dominant runoff processes, i.e. saturation excess 

overland flow versus perched water tables and shallow subsurface stormflow above low-

permability layers, explain the differences.  

A variety of studies analyzed soil moisture variability in terms of the spatial variance, spatial 

standard deviation, and/or coefficient of spatial variation (CV), in relation to the mean 

moisture content. Conclusions considering these relationships generally varied. For example, 

several studies reported soil moisture variability to increase with decreasing mean moisture 

content (e.g. Famiglietti et al., 1999; Hupet and Vanclooster, 2002), while others found 

opposite trends (e.g. Western and Grayson, 1998; Famiglietti et al., 1998). Owe et al. (1982) 

observed maximum soil moisture variance in the mid-range of mean soil moisture, resulting 

in the change of soil moisture variability along a convex-upward curve with increasing mean 

soil moisture. Crow and Wood (1999) suggest that different relationships may exist for 

different scales. Although many authors have speculated about the origin of soil moisture 

variability, there have been only few quantitative studies looking at how different processes 

act to either increase or decrease the spatial variability of soil moisture. By using the similar 

media concept, Salvucci (1998) showed how variability in soil texture leads to different soil 
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moisture variability states in different limiting cases. Peters-Lidard et al. (2001) attributed the 

convex-upward relationship to the heterogeneity of soil texture, suggesting that soil moisture 

variance increases with drying if the mean soil moisture content is between saturation (i.e., 

volumetric soil moisture content is equivalent to porosity of the soil) and field capacity of the 

soil, but that it decreases with drying if mean soil moisture is lower than field capacity of the 

soil. Hydraulic conductivity of a soil medium is greatly affected by its texture, and the 

difference in the drainage rate among different soil textures is largest when the soil moisture 

content is between saturation and field capacity. Albertson and Montaldo (2003) showed how 

covariances between soil moisture and fluxes, originating from variability in soil moisture, 

forcing and/or land surface properties, can lead to either an increase or decrease in soil 

moisture variability. Albertson and Montaldo (2003) showed that heterogeneous atmospheric 

forcing over the land surface can also result in a variance-mean moisture content relationship 

that peaks in the mid-range. Teuling and Troch (2005) used model simulations to explain 

trends for different data sets and show how vegetation, soil and topography controls interact 

to either create or destroy spatial variance. Vereecken et al. (2007a,b) predicted the 

relationship between soil moisture variance and mean by stochastic analysis of the 

unsaturated Brooks-Corey flow in heterogeneous soils and showed that parameters of the 

moisture retention characteristic and their spatial variability largely determine the shape of 

this relation. 

 

2. Study site and data sets 
 
2.1. Site description 
 
The study site is the small forested headwater basin Wüstebach (Figure 1). This experimental 

test site is a subcatchment of the River Rur basin and part of the TERENO Eifel/Lower Rhine 

Valley Observatory. The basin covers an area of 0.27 km2 (27 ha) and is located in the low 

mountain ranges approximately 600 m above sea level within the National Park Eifel in 

[central] Germany. The climate of the area is temperate and maritime with a mean 

temperature of above 7 °C and a mean annual precipitation typically ranging from 1100 to 

1200 mm. Substantial snow coverage of part of the basin can be present for several weeks of 

the year (Sciuto and Diekkrüger, 2009). The bedrock is composed of Devonian shales with 

occasional sandstone inclusions. The geomorphology is plateau like with a mean and 

maximum slopes of 3.6% and 10.4%, respectively. The soils developed on periglacial 
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solifluction layers, with an average thickness of 1 to 2 m. While cambisols predominate on the 

hillslopes, gleyic soils and half-bogs have developed near the river. The soil texture is loamy 

silt. The basin is densely vegetated, predominantly by Norway spruce [Picea abies (L.) H. 

Karst.], a species characterized by a shallow root system. This location is also rich in low 

vegetation like plants that grow in water-saturated areas, e.g., Sphagnum spp. and Cirsium 

palustre (L.) Scop. (Sciuto and Diekkrüger, 2009). The plant coverage is about 90% (Bogena 

et al.,2010). Many irrigation ditches and drainage channels from pre-war period, as well as 

bunkers and bomb craters from the war exist. 

 

2.2. The sensor network SoilNet and soil moisture d ata preparation 
 

Bogena et al. (2009; 2010) presented the development of SoilNet. SoilNet is a hybrid wireless 

soil moisture underground network which consists of soil moisture sensors that are embedded 

in a new low-cost Zigbee radio network and enables near real-time monitoring of soil 

moisture variations at high spatial and temporal resolution. SoilNet uses a mixture of 

underground devices, each wired to several soil sensors, and aboveground router devices. 

Bogena et al. (2009) developed and validated a semi-empirical model to demonstrate that in 

the case of a 5-cm soil layer, data communication over longer distances (e.g., 100 m) is 

possible for most soil conditions. The SoilNet instrumentation of the Wüstebach test site is 

part of the TERENO activity (TERENO, 2010), and was accomplished in close cooperation 

with the DFG/TR32 (Transregional Centre 32, 2009). Itcomprises a total of 600 EC-5 sensors 

and 300 5TE sensors (Decagon Devices) at 150 locations (a combination of 50 sensor units in 

a 60- by 60-m raster and 100 randomly distributed sensor units) and three depths (5, 20, and 

50 cm). Two sensors were installed at each depth with a small separation to increase the 

measurement volume and to enable the examination of inconsistencies. At the 5- and 50-cm 

depths, one EC5 and one 5TE sensor were installed, whereas two EC-5 sensors were installed 

at the 20-cm depth. The network is producing soil moisture content measurements since 

August 2009 which are stored in a central database with a measurement frequency of 15 min 

(Bogena et al., 2010). 

For the inverse modeling, the simple arithmetic mean of measurements available for the 5- 

and 20-cm depths at each of the 150 sensors for the time period from August 16, 2009 to 

August 16, 2010 was used. Each sensor record was carefully examined for obviously 

“unrealistic” behavior, failures and outliers. Time steps during which more than 1/3 of the 150 

sensors failed were excluded from the analysis. 



!��8��&+�������
&�&���������

�

�

-#1.�
�

The individual measurements were interpolated to the model grid using ordinary kriging (e.g., 

Goovaerts, 1997). Spherical variogram functions (with a nugget variance) were fitted to the 

experimental variogram using least squares non-linear optimization. The kriging was 

performed for visualization purposes only. 

 

�

�

Figure 1: Location and map of the experimental Wüstebach catchment and the SoilNet 
instrumentation (sensors only). 

 

2.3. Meteorological and hydrometric data 
 

Discharge is monitored at the catchment outlet (Fig. 1). It is noteworthy that the measured 

discharge time series contains several data gaps, which were disregarded for the analysis. No 

meteorological data is collected in the basin. Unfortunately, continuous quality-controled 

meteorological data from nearby stations was also lacking for this study. Instead, the required 

data was gathered from several other sources. It has to be noted therefore that the 

meteorological data is subject to unquantified uncertainty in terms of both measurement 

accuracy and locational representativeness. 

Continuous 1-hourly precipitation data was retrieved from the weather station Schleiden-

Schöneseiffen of the private weather network Meteomedia (www.meteomedia.de). The 

station is located approximately 10 km from the basin (latitude: 50.52°N; longitude: 6.37°E) 

and at a similar elevation (620 m above sea level). 
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Further meteorological data was required to run the snow routine of the model and to compute 

the potential evaporation rate according to the Penman combination equation. Data on air 

temperature, relative humidity, and wind speed at a 1-hour time step was also retrieved for the 

Meteomedia station Schleiden-Schöneseiffen. Incoming solar or shortwave radiation data was 

taken from the station Schleiden operated by the Forschungszentrum Jülich (www.fz-

juelich.de ODER Heye Bogena, personal communication). The measurements were made at a 

15-min resolution and were aggregated to hourly values by arithmetic averaging. Small data 

gaps (i.e., shorther than 3 hours) in all meteorological data time series (except for 

precipitation) were filled using linear interpolation between the immediately preceding and 

following data points. However, the solar radiation data did contain large data gaps during the 

month of December 2009 as well as during the months of March and April 2010, which are 

part of the model calibration period. These gaps were filled using incoming solar radiation 

data from a private weather station (type Davis Vantage Pro 2 aktive plus) located in 

Monschau-Mützenich (Bodo Friedrich, personal communication; http://www.ew-

messnetz.de/stationsdetails/wetterstation-muetzenich.php), approximately 15 km from the 

Wüstebach basin and at a similar elevation (600 m above sea level). This data was available 

with a 1- to 2-min time step and again aggregated to hourly values by arithmetic averaging. A 

further large data gap in the solar radiation data remained for the months of February and 

March 2009, which are part of the spin up period of the model runs. These gaps were filled 

using computed clear-sky (i.e., under cloud-free conditions) solar radiation. Making use of a 

set of standard equations for hourly calculation periods provided in ASCE (1990) and Allen et 

al. (1999), the values of potentially incoming solar radiation at each time step were first 

computed as a function of the time of year, the time of day, and latitude. The clear-sky solar 

radiation was then computed from these values as a function of station elevation, serving as a 

surrogate for total air mass and atmospheric transmissivity above the measurement site. Given 

the lack of information on cloudiness, the computed clear sky solar radiation during the period 

without data was reduced by multiplication with the arithmetic average of the ratio of 

measured incoming solar radiation and computed clear-sky solar radiation obtained for the 

preceding and following 30-day period with available measurements to avoid strong bias in 

the data, and is henceforth assumed to equal the incoming solar radiation.The net shortwave 

radiation was then computed from measured and computed incoming solar radiaton (e.g., 

Dingman, 2000) using a fixed value of 0.12 for the albedo based on literature values provided 

for coniferous forests (Schulla, 1997).To close the radiation balance (e.g., Dingman, 2000) 
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and to obtain the net radiation, the net longwave radiation has to be known in addition to the 

net shortwave radiation. Here, a standardized procedure (ASCE, 1990); Allen et al., 1999)) 

which is based on the Brunt (1932, 1952) approach for predicting net surface emissivity is 

used to compute net longwave radiation as function of the air temperature, actual vapor 

pressure (computed as a function of air temperature and relative humidity), and the relative 

short-wave radiation (i.e. the ratio of measured or calculated solar radiation to calculated 

clear-sky radiation) to indicate relative cloudiness. For nighttime hours (i.e., when the solar 

radiation equals zero), the value of relative short-wave radiation was computed by linearly 

interpolating between values occurring 2 hours before and 2 hours after sunset as 

recommended by Dong et al. (1992). Finally, the obtained continuous time series data of 

meteorological variables was aggregated to 6-hourly values as arithmetic averages (for air 

temperature, relative humidity, wind speed, and net radiation) and totals (for precipitation), 

respectively. All dates and times are given in Central European Time (Coordinated Universal 

Time plus one hour). 

 

3. Methodology  
 

In this section, the Hill-Vi model (Weiler and McDonnell, 2004) used for this study is first 

described. Four complexity levels of the model will be investigated. The specifications of 

these model complexities can be found in Tab. 1. Subsequently, a description of the model set 

up and the methods used to estimate feasible ranges and fixed values, respectively, for the 

model parameters is provided. Finally, the inverse modeling strategy used to assess the value 

of soil moisture data in addition to runoff and to test the different model complexities is 

described. 

 

Table 1: Specifications of the different Model complexities evaluated. 

Model Complexity Bedrock Seepage Variable Soildepth Variable Throughfall 

1    

2 x    

3 x x  

4 x x x 
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3.1. Model description  
 
The model used is the physically-based Hill-Vi model, introduced by Weiler and McDonnell 

(2004) to study process controls on subsurface flow generation via virtual experiments on 

hillslopes. The model has been subsequently modified in the context of its various 

applications (e.g., Weiler and McDonnell, 2006; McGuire et al., 2007; Weiler and 

McDonnell, 2007; Tromp-van Meerveld and Weiler, 2008). For this work, further 

modifications were applied, partly in order to increase the computational efficiency and 

stability during Monte Carlo experiments, and partly to implement or refine representations of 

processes deemed important in the context of the study and given experience gained during 

initial model testing. Thereby, attention was paid to stay in line with the original philosophy 

of the model, that is, to describe the major controls on flow processes while being simple in 

terms of its structure and number of tunable parameters (Weiler and McDonnell, 2004). Yet, 

application to a specific real-world domain in a specific climate and landscape and at larger 

scales compared to hillslopes requires additional processes to be parameterized. 

Detailed descriptions of the fundamental concepts of the model may be found in Weiler and 

McDonnell (2004, 2006, 2007) and McGuire et al. (2007) and are only briefly reviewed 

below, followed by a description of the model structure as used for this study. 

 

3.1.1. Basic concepts  
 

Hill-Vi is a spatially explicit model, where the model domain is discretized into a uniform 

raster of grid cells and extends vertically from the soil surface to an impermeable or semi-

permeable bedrock. The domain is laterally delimited by no-flow boundaries and may, such as 

in this case, include a network of channel cells treated as constant head boundaries. All water 

entering channel cells, including overland and subsurface fluxes as well as channel 

precipitation is instantaneously removed from the domain as runoff. 

The core model (i.e., the soil routine) solves basic continuity equations for tightly coupled 

unsaturated and saturated zones within each grid cell. This unsaturated-saturated zone 

coupling was implemented to represent the frequently observed (Dunne, 1978; Bonell, 1998; 

McGlynn et al., 2002) unsaturated zone conversion to transient saturation during storm 

events. The unsaturated zone is defined by the depth from the soil surface to the water table 

and time-variable water content. The saturated zone is defined by the height of the water table 

above the bedrock surface and the porosity n. 
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In light of field observations (e.g., Weiler, 2001), an exponential depth function for the 

drainable porosity nd (defined by the difference in volumetric water content between 0 and 

100 cm of water potential) was included in Hill-Vi (WEILER & MCDONNELL 2006), 

representing changes in soil structure, macropore development and presence, or increased 

skeleton content with depth. This function can be written as:  

( ) 0 expd

z
n z n

b
� �= -� �
� �

  

where n0 is the drainable porosity at the soil surface, z is the soil depth below the surface and 

b is a decay coefficient. Similarly, an exponential decline of the saturated hydraulic 

conductivity kS is represented by the following function: 

( ) 0 exps

z
k z k

m
� �= -� �
� �

  

where k0 is the saturated hydraulic conductivity at the soil surface and m is the hydraulic 

conductivity shape factor. 

The core model was extended by simplified formulations to simulate snow storage and melt, 

interception, variable throughfall, and overland flow routing. 

 

3.1.2. Snow melt 
 

Water may enter the basin as either rain or snow. Snow melt and storage are described using a 

simple degree-day routine as implemented by Stoll and Weiler (2010). Below a threshold 

temperature Tt, all precipitation accumulates as snow. When the threshold temperature is 

exceeded, snowmelt occurs according to 

( )max 0, a tMELT ddf T T= × -   

where MELT is the melt rate, Ta is the actual air temperature, and ddf is the degree-day factor. 

Melt water is retained in the snow storage until a specified portion of the snow water 

equivalent is exceeded and may refreeze when the actual air temperature falls below the 

threshold temperature: 
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( )t aREFR CFR ddf T T= × × -   

where REFR is the amount of refrozen water and CFR is the refreezing coefficient. 

 
3.1.3. Interception and Evapotranspiration  
 

An interception routine was implemented, since both smoothing of rainfall intensities and 

reduction of water input to the system due to temporal storage on and evaporation loss from 

vegetation surfaces were deemed important aspects for the response and water balance of the 

densely vegetated study site. This consideration was supported by initial model testing using 

high-quality meteorological data for the year 2007, since hydrographs were found to be too 

flashy and the catchment was constantly too wet. The interception model relates changes in 

the canopy storage C to the gross rainfall rate P, canopy drainage D, and canopy evaporation 

rate Ec in the form 

( )1 c

dC
p P D E

dt
= - - -   

where p is the free throughfall coefficient. A simple linear threshold model (Calder, 1977; 

Vrugt et al., 2003) is used to compute canopy drainage, accounting for water losses from leaf 

dripping and stemflow: 

( ) , D b C s C s= - >   

where b is an empirical drainage coefficient and s is the minimum canopy storage capacity. 

The latter parameter exerts a major control on the total evaporative loss from the vegetative 

surfaces (i.e., the interception loss). Stem storage and flow is not, such as in more complex 

models (e.g., Rutter et al., 1975), explicitly represented. The average throughfall Tav is then 

obtained as the sum of free throughfall and canopy drainage. 

A stepwise approach, largely following Eltahir and Bras (1993), Wigmosta et al. (1994), and 

Ivanov et al. (2004), is used to compute the canopy evaporation rate and the actual 

evapotranspiration rate from the root zone. This approach allows the vegetation to change 

states from wet to dry during a time step. The evaporation of intercepted water from wet 

vegetation surfaces is assumed to occur at the potential rate Ep (equal to evaporation from an 
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open water surface), which is appropriate since stomata are not involved. When the canopy 

storage falls below its minimum capacity, it is assumed that part of the canopy is dry and 

evaporation is reduced proportionally. The canopy evaporation rate is thus computed 

according to: 

,  0,  c pE E ET C s= = ³   

,  0,  c p

C
E E ET C s

s
= > <   

�

where Ep is the potential evaporation rate. The potential evaporation rate is computed using 

the Penman combination equation (Penman, 1948): 

( )1 n a p a
p

R G c d r
E

r

l g

D - +� �
= 	 
D +� �

  

where Rn is the net radiation, G is the ground heat flux, �  is the slope of the Clausius-

Clayperon relationship between saturation vapor pressure and temperature, �  is the 

psychometric constant, � a is the density of air, cp is the specific heat of air at a constant 

pressure, � v is the latent heat of vaporization, d is the saturation vapor pressure deficit, and ra 

is the aerodynamic resistance. The state variables were calculated using standard 

meteorological relationships described in ASCE (1990) and Allen et al. (1998). 

Subsequently, the actual evapotranspiration rate from the unsaturated zone ETa,un is computed 

according to: 

 

( ) ( ), 1a un p c
a c

ET E E
r r

g
a

g

� �D +
= × - ×	 


D + +� �
  

 

where �  is a soil moisture stress factor and rc is the canopy resistance to vapor transport. Note 

that the term in square brackets is equivalent to the Penman-Monteith equation (Monteith, 

1965) for time steps where the canopy remains completely dry. 

The soil moisture stress factor accounts for the current soil moisture stress limiting the root 

water uptake and is computed using a simple quasi-linear function (e.g., Davies and Allen, 

1973; Federer, 1979, 1982; Spittlehouse and Black, 1981) of relative saturation in the 

unsaturated zone:  
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min 1, un

max,un

S
S

a

 �� �� �= � �	 

� �� �� �  

 

where Sun, is the actual soil moisture content of the unsaturated zone and Smax,un is the 

maximum storage capacity of the unsaturated zone (obtained by subtracting the drainable 

porosity from the total porosity). The respective values are obtained by integrating the 

variables over the time variable vertical extend of the unsaturated zone (i.e., from the soil 

surface to the water table). 

To avoid underestimation of ET in cases where the water table is very close to or at the soil 

surface, Eq. (11) is solved again, this time integrating over a fixed root zone depth (estimated 

as 50 cm based on Sciuto and Diekkrüger (2009)) and the result is used with Eq. (10) to 

compute the actual evapotranspiration rate from the root zone ETa,rz. The difference between 

ETa,un and ETa,rz then yields the actual evapotranspiration from the saturated zone, ETa,sat. 

Note that ETa,sat equals zero when the watertable falls below the root zone depth. 

 
3.1.4. Throughfall Variability  
�

A simple throughfall variability option was implemented in Hill-Vi for this study. The 

implementation is based on results of a recent study by Keim et al. (2005). This study found 

that temporally and spatially persistent throughfall patterns existed beneath forest stands. In a 

deciduous stand, the spatial correlation length was about one crown diameter and maximally 

10 m. Given the grid size of the model of 10 m, it seems unnecessary to implement across-

grid-cell autocorrelation in throughfall. Instead, a random field following a standard normal 

distribution was generated (Fig. 2) and used to transform the uniform gross rainfall input into 

a variable throughfall field at each time step. The (variable) throughfall Ti at a location i given 

the uniform throughfall input Tav is obtained according to: 

 

( )1i av i TT T T CV= × + ×�
 

where iT�  is the normalized throughfall drawn randomly from a standard normal distribution, 

and CVT is the predefined spatial coefficient of variation of throughfall. The CVT was set to 

0.25 and the random field was initially generated and then fixed during the analysis.  

�
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Figure 2: Map of normalized throughfall for the Wüstebach basin used to simulate throughfall 
variability with the Hill-Vi model. 
 
3.1.5. Overland flow  
 
A new and computationally efficient overland flow routing routine was implemented in Hill-

Vi, which allows capturing runoff-runon-effects. In Hill-Vi, overland flow can only be 

generated by the mechanisms of saturation excess and return flow, i.e. when the soil becomes 

entirely saturated and no further water can infiltrate or the water table rises above the surface 

due to subsurface flow convergence. Infiltration excess overland flow is unlikely an important 

process in temperate forested headwaters with high infiltration capacities and was thus 

neglected. 

The routine is based on the Manning-Strickler equation, which is simple and only requires one 

parameter, the Manning roughness coefficient, a, to be estimated. The overland flow velocity, 

v, is computed according to: 

  

2 3 1 21
ov h

a
d= × ×

  

where ho is the overland flow water level (approx. equal to the hydraulic radius) and �  is the 

local surface slope based on a DEM. The overland flux Qof at a given location is then 

computed as: 

 

ofQ v h w= × ×  

 

where w is the flow width, which is set equal to the width of the model grid cells. 
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The flow direction and partitioning of overland flux leaving a grid cell, respectively, were 

derived from a DEM using the D�  algorithm proposed by Tarboton (1997), which assigns a 

flow direction based on the steepest slope on a triangular facet. If the flow direction falls on 

cardinal or diagonal direction, then the flow from each cell drains to one neighbour. If the 

flow direction falls between the direct angles to two adjacent neighbours, the flow is 

apportioned between these two cells depending on how close the flow direction angle is to the 

direct angle for those cells. 

 

3.1.6. Soil routine  
 
For each grid cell, the water balance of the unsaturated zone is defined by the infiltration, 

vertical recharge into the saturated zone, actual evapotranspiration, and change in water 

content. No lateral flow can occur in the unsaturated zone. Recharge R, from the unsaturated 

zone to the saturated zone is described by a power law function according to: 

 

( )
max,

'

c

un
s

un

S
R k z

S

� �
= ×� �� �

� �  

 

where R is the recharge to the saturated zone, c is the power coefficient reflecting a nonlinear 

response to increased wetness, ks(z’) is the saturated hydraulic conductivity at the depth of the 

water table, z’. 

The water balance of the saturated zone is defined by the recharge input from the unsaturated 

zone, the lateral subsurface inflow and outflow, seepage into bedrock (when included) and the 

corresponding change of water table depth. Lateral subsurface flow, Qssf, is computed using 

the Dupuit–Forchheimer assumption (Freeze and Cherry, 1979): 

 

ssfQ T wb= × ×  

where T is the transmissivity, �  is the water table gradient, and w is the flow width. The 

saturated subsurface flow is routed downslope using an explicit grid cell by grid cell approach 

(Wigmosta and Lettenmaier, 1999), with the flow direction and thus the partitioning of 

outflow from each grid cell being recalculated for each time step. This facilitates simulations 
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in the presence of variable soil depth and bedrock topography, respectively (Weiler and 

McDonnell, 2004). 

Seepage S to bedrock is computed on the basis of the hydraulic head above the bedrock 

surface and the saturated hydraulic conductivity, kb, of the bedrock (Tromp-van Meerveld and 

Weiler, 2008): 

 

( )1s wS k h= × +
 

 

where hw is the height of the water table above the soil-bedrock interface. Under unsaturated 

conditions, seepage is limited by the recharge from the unsaturated zone. Water entering the 

bedrock is assumed to be lost from the system. 

 

3.2. Model Set Up and Estimation of Parameters and Feasible Ranges 
 
The model was run and evaluated on a 6-hour time step. The model evaluation is performed 

for the 1-year period from August 16, 2009 to August 15, 2010. A half-year spin-up period 

preceding the evaluation period is used to avoid any influences of the pre-specified initial 

conditions on the model performance assessment. 

The 0.27 km2 model domain was discretized into a uniform 10- by 10-m raster of grid cells 

based on a DEM (Fig. 3). The channel network (i.e., a set of cells with a constant water level) 

was derived by rasterization of an available polyline shapefile using a Geographic 

Information System. The bedrock topography was characterized based on approximately 100 

measurements carried out using a Pürckhauer-drill which were interpolated to the model grid 

using ordinary kriging (Heye Bogena, personal communication). The soil depth for each grid 

cell (Fig. 3) is then defined by the difference in elevation between the land surface and the 

bedrock surface. Catchment mean soil depth (Tab. 1) was computed as the arithmetic average 

of soil depths across the catchment. 
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Figure 3: DEM (top) of the Wüstebach basin and map of soil depth (bottom). 

 

The feasible ranges of model parameters related to soil hydraulic properties – i.e. the surface 

saturated hydraulic conductivity, the surface drainable porosity, and the shape factors of the 

respective depth functions – were constrained based on available soil data by applying 

pedotransfer functions (PTFs). Characterization of basin soils was performed by the 

Geologischer Dienst Nordrhein-Westfalen (Geological Survey of North-Rhine-Westphalia) at 

a scale of 1:2500 (Fig. 4).The basin area was sub-divided into 61 soil mapping units, each of 

which was assigned information for three soil horizons, amounting to a total of 183 

characterized soil layers. However, most of the soil units have the same properties. There are 

31 different soil textures present in the catchment, for which the texture (sand, clay, and silt 

fractions), humus content, and skeleton (Ø > 2 mm) content are available. 

In a first step, the well-known PTFs of Vereecken et al. (1989, 1990) were implemented in the 

MATLAB environment (MathWorks Inc.) and applied to determine the soil hydraulic 

parameters of the van Genuchten model for the moisture retention characteristic and the 

saturated hydraulic conductivity for each soil horizon from soil texture, bulk density, and 

organic carbon content. The bulk density was computed from the porosity assuming standard 

densities for mineral (2.65 g m-3) and organic materials (1.2 g m-3). The organic carbon 

content was determined by dividing the observed humus content by the ratio of organic matter 

to organic carbon, which was set to 1.72 as suggested by the Bodenkundliche Kartieranleitung 

(2005). Soil textural fractions were converted to the international scale after log-linear 

transformation (see Wösten et al., 1998). Further, the resulting retention curve and saturated 

hydraulic conductivity were corrected for skeleton content, using equations provided in 

Brakensiek and Rawls (1994). A minor fraction of the topsoil horizons was characterized as 

100% organic. Given the high degree of variation in literature values and class PTFs for 

hydraulic properties of organic or peat soils (e.g., Wösten et al., 2001), estimation of a 

particular value seemed rather arbitrary and these horizons were therefore disregarded. The 
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drainable porosity was determined as the difference between the saturated water content and 

the water content at a soil water tension of 100 cm (approximately field capacity) as in Weiler 

and McDonnell (2004) and McGuire et al. (2006). 

In a second step, the parameters of the exponential depth functions for the saturated hydraulic 

conductivity and the drainable porosity employed in the Hill-Vi model were estimated by 

fitting these functions to the PTF-based estimates of the respective soil property for the three 

horizons (estimated properties were assigned to the center of the respective horizon) in each 

soil unit. This nonlinear least-squares curve fitting problem was solved using the Levenberg-

Marquardt non-linear optimization algorithm (e.g., Moré, 1977). Thus, for each soil unit, 

estimates of the surface drainable porosity and saturated hydraulic conductivity as well as the 

shape parameters are now obtained. 

The feasible range for the total porosity prameter n in Hill-Vi was estimated from the 

observed total porosity �  according to:  

 

( ) ( )1n RMC Zvolj= - × -
 

 

where RMC is the volumetric residual moisture content estimated based on the PTFs of 

Vereecken et al. (1989) and Zvol is the observed volumetric skeleton content, both determined 

for a given soil horizon. To obtain values for each soil unit, the computed values for the three 

horizons were arithemtically averaged. 

The recharge power coefficient c of the Hill-Vi model was estimated based on the Brooks and 

Corey (1964) pore-size distribution index which in turn was determined for each horizon 

using PTFs of Rawls and Brakensiek (1985) and then arithmetically averaged for each soil 

unit. 

Finally, the model parameter ranges were estimated as the 95 % central range of estimated 

properties for all soil units. Due to the numerous uncertainties in the parameter estimation 

approach, including uncertainties in the data itself, in the PTFs, as well issues of scale, the 

thus obtained limits of the parameter ranges were extended by 25 %. A summary of the 

estimated feasible parameter ranges is provided in Tab. 2. 

Note that the database of Vereecken et al. (1989, 1990) contains data mostly on agricultural 

soils in Belgium and application to forest soils is thus generally questionable, because these 

show distinctively different hydraulic properties. Among others, they are less compacted, 

show a greater aggregate stability and macro-porosity and therefore, a greater saturated 
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hydraulic conductivity and air capacity (e.g., Fisher and Binkley, 2000). However, the PTFs 

of Vereecken et al. (1989, 1990) have been reported by several studies to be among the most 

accurate that were evaluated (e.g., Tietje and Tapkenhinrichs, 1993; Romano and Santini, 

1997; Cornelis et al., 2001; Wagner et al., 2002; Mermoud and Xu, 2006) and were reported 

to provide relatively good results even for forest soils (Hammel and Kennel, 2001). 

The parameters of the snow model, the saturated hydraulic conductivity of the bedrock and 

several other auxiliary parameters were taken from the literature and are provided in Tab. 2. 

 

 

Figure 4: Map of soil types in the Wüstebach basin as provided by the Geological Survey of North-
Rhine-Westphalia (modified from Sciuto and Diekkrüger, 2009). 
 

Table 2: The Hill-Vi Model Parameters and Their Respective Ranges Used to Simulate the 
Hydrologic Response of the Wüstebach basin. 
�

����#������	#$��� ������%������ &�������#���� '%%����� #��� �������
� � � � �
����������	
� � � � �
�� �	�����	�	���+� "�!0� "�16� �	���&�����
&������:�����, 
�
���������

#545��#55";�
� �:�;� 89������,�	���	��

&���
������	�	���+�
��
,��	
�

"�3� !� �	���&�����
&������:�����,
�
����������
#545��#55";�

� � � ����
������	�	���+�����9��
�	��������,��

"�"6� "�#4� �	���&�����
&������:�����,
�
����������
#545��#55";�

� �:�;� 89������,�	���	��
9+&�����,�,	
&�,�����+�
��
,��	
�

"�!� #�5� �	���&�����
&������:�����,
�
����������
#545��#55";�

� � �:��9
%#;� 8�������&�9+&�����,�

,	
&�,�����+�����9���	���
�����,��

"�"!� "�46� �	���&�����
&������:�����,
�
����������
#545��#55";�

�� <�,9������	'�����'�
�=�	
�
��

#!� !2� �	���&�����
&������:<�'����
&�
���
�
���
��#546;�



0�����9	&	�	�+�

�

�

-!4.�
�

�
��
��
	������������	
������	���
��:� %#>0�9;� ��

�
�?���	��9
����

,	����,��
��
"�""#� "�0� �	&��������
��

�
�	��������	
�
��	�
��� �
 �� �
 �� ������%&�+���,�	�� 0� 8�������:!""!;��
&��	&��������
 ��
� � ���� �9���9	�&������������� "� 8�������:!""!;��
&��	&����� ���
��
���� ������9	�&�
��,���,��+� "�#6� 8�������:!""!;��
&��	&� �������
��
���� <����� �
��,	����,��
�� "�"6� 8�������:!""!;��
&��	&� �������
��
�
��	����
�
� � �
���

�
 �� �+&�����,�,	
&�,�����+�	��
��&�	,
�:�>9;�

#�#"%4� 0�#"%1� ���� ���
&�@9���+�:#532;��
&�
9+&�	��	�	��,�������:#A!""�"""�
�9����@@�66"!�@	�	�
�;�

��� ���
�8	�������9� #�12� �
���� �����$����)
&�=� 2�3� � �

 

For the application of the Penman equation and the Penman-Monteith equation, the resistance 

terms have to be estimated. The aerodynamic resistance ra was computed following an 

equation for forest sites provided by Schulla (1997): 

 

( )64 1 0.54ar u= +  

 

where u is the wind speed measured at a height of 2 m above ground. The canopy resistance rc 

was computed following the MORECS scheme (Thompson et al., 1981). The following 

equation is used during day time periods: 

 

( )1 0.651 0.65
LAI LAI

c sc ssr r r

-
= +

 
 

where rc is the canopy resistance, rsc is the minimum canopy resistance in case of optimal 

water supply and dense plant coverage, rss is the surface resistance for bare soil (set to 150 s 

m-1), and LAI is the leaf area index. The following equation is used during night time periods 

(i.e., when the stomata openings are largely closed): 

 

1 1
2500c ss

LAI
r r

= +
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Monthly values for the minimum canopy resistance rsc (Tab. 3) were taken from Schulla et al. 

(1997) and further corrected as a function of air temperature and vapour pressure deficit using 

equations provided in Wigmotsa et al. (1994). 

It should be noted that the decisions to modify or add particular aspects of the model were met 

on the basis of test runs using quality-controlled data available in the initial phase of this 

study. Test model runs using the (uncertain) forcing data ultimately used for model 

simulations and testing did reveal problems to generate sufficient runoff to closely match the 

hydrograph. The rainfall and runoff data indicate that significant negative bias may be present 

in the former. Also, the Wüstebach basin may actually extend beyond the currently defined 

divide, such that the actual runoff contributing area may be larger than considered for this 

study. Thus, while seemingly needed in light of the test runs, the interception routine was 

deactivated for the model evaluation runs. 

 

Table 3: Monthly Values of Minimum Canopy Resistances rsc for coniferous forests (modified from 
Schulla, 1997). 

 

Month  Jan  Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec 

rsc (s m-1) 

 

70 70 60 45 45 45 45 50 65 65 70 70 

 

3.3. Inverse modeling strategy  
 
The selection of an appropriate inverse modeling strategy to directly use internal state 

variables in addition to runoff data involves several important considerations, including (1) 

which quantities are actually to be compared in terms of the observed and simulated state 

variable, (2) what are appropriate numerical metrics (OFs) to compare simulated and observed 

variables given the data and model used, (3) how to assess the added value of the soil 

moisture data to constrain the parameter space, (4) how to assess improvements in the model 

structure and (5) how to efficiently and effectively sample the parameter space with respect to 

multiple criteria. The approaches to deal with these issues are described in the following 

subsections. 
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3.3.1. Which quantities are to be compared? 
 
While the comparison of simulated and observed runoff at the outlet of a basin is relatively 

unambiguous (i.e., the measured discharges may be considered to be essentially the same 

variable as that predicted by the model), careful consideration has to be given when 

comparing simulated and observed state variables such as, for instance, soil moisture content. 

It is important to note that the state variable within a model element is an ‘‘effective’’ state, 

i.e. the distribution of moisture content within the model element is usually lumped into a 

single aggregate quantity, both vertically and laterally (e.g. Wagener and Gupta, 2005). Care 

must be taken to compare variables that are at least similar in their meaning. 

The soil moisture sensor measures the volumetric soil moisture content (%-vol/vol; i.e., the 

ratio of water volume to soil volume) of the fine earth fraction at a point in a specific depth, 

while the Hill-Vi model produces for each grid element a laterally and vertically lumped 

value of water storage height in the unsaturated zone excluding a residual moisture content 

and the vertical extend of the unsaturated model compartment as defined by the depth to the 

water table. In order to make the two quantities comparable, it was decided to convert both to 

a value of relative saturation RS, where a value of 0 % corresponds to a moisture content 

equal to the residual moisture content and a value of 100 % corresponds to a moisture content 

equal to the total porosity. The observed relative saturation RSobs,i,z at a sensor location i and 

depth z is therefore computed as: 

 

, , ,
, ,

, ,

obs i z i z
obs i z

i z i z

SMC RMC
RS

RMCj
-

=
-

 
 

where SMCobs,i,z is the observed soil moisture content, � ,i,z is the (uncorrected) total porosity of 

the fine earth fraction (or the maximum SMC observed) and RMC,i,z is the residual moisture 

content as obtained using the PTFs (or the minimum SMC observed). The specific values of 

� i,z and RMCi,z were obtained from linear regression equations fitted to observed values of 

the respective variable for bordering soil layers at each sensor location. 

The simulated relative saturation RSsim,i,z at a specific sensor location i (i.e., at a specific grid 

cell containing the sensor) and depth z is computed as: 
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where Sun,i,z is the water storage height in the unsaturated zone, zi’ is the depth to the 

watertable. 

For any given sensor and grid cell location, i, in the basin the values of RSsim and RSobs, 

respectively, obtained for the depths of 5- and 20-cm are then arithmetically averaged. This 

avoids any assumptions about the soil moisture distribution between the sensors. The 

resulting values are then used for further analysis. In terms of the terminology, it should be 

noted that the definition of relative saturation as used in this study does not correspond to the 

common definition of relative saturation (i.e., ratio of water volume to total pore volume). 

 
3.3.2. Objective Functions  
�

A set of four OFs is used to compare the simulated and observed runoff response as well as 

soil moisture state. The most commonly used OFs to assess the agreement between simulated 

and observed runoff response are clearly those of the simple least squares type (e.g., Gupta et 

al., 2005), such as the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970). However, as 

outlined above, the data on rainfall and runoff yield available for this study is subject to 

potentially large uncertainty and bias. Indeed, initial model testing revealed that the model 

was incapabale of getting even close to matching the observed runoff volume and dynamics at 

the same time. Also, particularly strong bias was observed during periods of potentially strong 

snow melt (i.e., during periods of winter high-flows with little rainfall but air temperature 

rising above zero),  indicating insufficiencies in the respective model routine which is, 

however, not subject to particular interest in this study. Since it is undesirable to use an error 

metric dominated by irresolvable (in this study) limitations in the data and the model, it was 

decided to use a measure that is independent of biases between simulated and observed runoff 

and more appropriate to constrain the runoff dynamics in this case. For this purpose, the 

coefficient of correlation (CORR) is used: 
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( )( ) ( )( )

( )( ) ( )( )
1

2 2

1 1

CORR

n

sim sim obs obs
t

n n

sim sim obs obs
t t

Q t Q Q t Q

Q t Q Q t Q

=

= =

- -
=

- -

�

� �
 (1) 

 

where Qsim(t) and Qobs(t) denote the simulated and observed runoff yield, respectively, at 

time step t, and the over score operator (as insimQ ) indicates the temporal average of the 

variable (here Qsim) over all n time intervals considered. 

Several OFs are used to constrain the model to adequate representation of various aspects of 

the soil moisture observations deemed important. Unless indicated otherwise, the following 

statistical characterizations are based on direct usage of RSobs,i for the sensor location i (as 

distinguished from interpolated values) and of RSsim,i for model grid cell that contain a sensor 

i. As a first OF, the global mean absolute error (MAE) is used as a basic and well-known 

metric that ensures tracking of observed spatial mean RS over time without particularly 

emphasizing agreement during phases with high or low relative saturation: 

 

( ) ( )
1

1
MAE

n

sim obs
t

RS t RS t
n =

= -�  

 

where RSsim is the simulated spatial average relative saturation and RSobs is the observed 

spatial average relative saturation. 

Given the common usage and importance (e.g., Vereecken et al., 2007a,b) of the relationship 

between the spatial variability and the average RS (or SMC), a signature performance 

criterion (Gupta et al., 2008) was constructed that ensures proper representation of this 

relationship by the model. This measure, CSMR, is defined as the correlation coefficient 

between the observed and simulated relationship between the spatial standard deviation and 

the spatial average relative saturation, discretized into 15 equally spaced bins according to 

their numeric range, and can be expressed as: 

 

( )( ) ( )( )

( )( ) ( )( )
1

2 2

1 1

CSMR

K

sim sim obs obs
k

K K

sim sim obs obs
k k

k k

k k

s s s s

s s s s

=

= =

- -
=

- -

�

� �
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where 	 sim(k) denotes the simulated average standard deviation during time steps grouped into 

the bin k (according to the spatial mean RSsim), 	 obs(k) denotes the observed average standard 

deviation during time steps grouped into the bin k, K denotes the number of bins and the over 

score operator denotes temporal averaging. 

In order to characterize the error in the distribution of simulated RS at a given time step, a 

further OF is introduced in form of the mean squared histogram error MSHE. This OF is 

obtained as the average of the mean squared error between the histograms of observed and 

simulated RS at any given time step: 

 

( ) ( )
1 1

1 1
MSHE , ,

n H

sim obs
t h

f h t f h t
n H= =

� �
= -	 


� �
� �  

 

where fsim(h, t) denotes the relative frequency associated with the bin h of the histogram of 

simulated relative saturation at time step t, fobs(h, t) denotes the relative frequency associated 

with the bin h of the histogram of observed relative saturation at time step t, and H denotes the 

number of (equally spaced) bins (here, H = 15). While this OF may be rather unconventional, 

it is expected to enable a more holistic assessment of the error in the RS distribution at a given 

time step compared to more conventional statistical tests to compare distributions, e.g. the 

Kolmogorov-Smirnoff two-sample-test (which uses the maximum error between two 

distributions as the test statistic). Note also that the value of this OF is influenced by 

inadequacies of the shape of the RS distribution at a given time step, but it is independent of 

errors in the mean RS and therefore complementary to the MAE. This is because the 

histogram ranges for simulated and observed fields are determined according to their 

respective numeric range at a given time step and independent of each other. 

 
3.3.3. Model calibration and identifiability analys is  
 
To assess the value of the soil moisture data and related OFs in addition to runoff data in 

constraining the parameters of a given model structure and to evaluate the value of 

incoporating more complexity in the model for the simultaneous simulation of soil moisture 

and runoff behavior and with regard to the identifiability of the parameters, several state-of-

the-art inverse modling methods are applied as described below. Instead of simply evaluating 

the performance of the models in terms of a single „best“ parameter set, these methods enable 

to determine the uncertainty in the parameters (resulting from a lack of identifiability) and, to 
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a certain degree, the uncertainty in the model structure by retaining multiple parameter sets 

according to differing concepts. Further, the methods can be used to propagate these 

uncertainties into the model predictions or output. 

 

3.3.3.1. Asessment of model identifiability  
�

Following Wagener and Kollat (2007), model identification here refers to „the identification 

of all models (parameter sets) within a given model structure, that can be considered feasible 

(behavioral) representations of the natural system under study“. The narrower the space that 

these chosen models cover within the feasible parameter space, the more identifiable is the 

model. Lack of identifiability is present when different combinations of parameters (e.g., 

Johnston and Pilgrim, 1976; Beven and Binley, 1992) yield similar results in terms of the 

defined OFs. 

The procedure applied here largely follows methodologies proposed by Wagener et al. (1999, 

2001, 2003) and makes extensive use of computer code provided with the Monte Carlo 

analysis toolbox (MCAT; Wagener et al., 1999, 2001; Wagener and Kollat, 2007). The core 

of this methodology is based on the concept of RSA (Spear and Hornberger, 1980; 

Hornberger and Spear, 1981), and its extension to the GLUE technique (Beven and Binley, 

1992; Freer et al., 1996) which has been extensively applied to estimate the uncertainty 

associated with model outputs and parameter estimates and also to assess the value of spatial 

data (e.g., Lamb et al., 1998). A major difference to the methodology of Wagener et al. (2001, 

2003) or most GLUE applications in general is that parameter samples generated using the 

Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM-UA) algorithm by Vrugt 

et al. (2003a) as described below form the basis of the analysis instead of Monte Carlo 

sampling based on a uniform prior distribution. The basic steps in the procedure applied here 

are described in the following. 

As in GLUE, no single optimum parameter set is identified. Instead, recognizing that it is 

impossible to identify a single “best“ model given errors in both the model and the data, a set 

of models is selected where each model has a certain likelihood (pseudo probability) of being 

the correct representation of the system. Likelihoods or likelihood functions are any 

performance metrics that can be used to differentiate how likely it is that the model (i.e. a 

specific parameter set and model structure combination) is representative for the system at 

hand. The likelihood function value is then used to distinguish between behavioral (i.e. 

acceptable) and non-behavioral (i.e. non-acceptable) solutions. Likelihood measures must 
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have the characteristic that they sum to unity, are greater than zero and higher values indicate 

better performing parameter values. The objective function values F(� ) for each given 

realization of a model and a parameter set �  were transformed into likelihood values, L(� ), 

following the methodology used by Blasone et al. (2008): 

 

( ) ( )
1 1

L Y
F G

f
f

= ×  

 

where Y indicates a set of observations and G is a scaling constant, which ensures that the 

cumulative sum of L(� |Y) over all the behavioral parameter sets equals unity. 

An important property of the GLUE methodology for this study is that it allows including 

multiple sources of information in the likelihood function and thus in the uncertainty 

estimation procedure. Multiple criteria can be accounted for in different ways. The most 

common aggregation method used in GLUE applications (Freer et al., 1996; Lamb et al., 

1998) is to perform Bayesian updating, i.e. by further conditioning the likelihood function, L, 

when data of different types are available: 

 

( ) ( ) ( )1,2 2 1L Y L Y L Y Gf f f= ×  

 

where L(� |Y1,2) is the posterior likelihood function of the parameter set �  obtained after 

conditioning on the observed variables Y1 and Y2, L(� |Y1,2) is the prior likelihood of the 

parameter set �  calculated using the observation set Y1 and L(� |Y1,2) is the likelihood measure 

calculated with the observations Y2 and G is a scaling constant, which ensures that the 

cumulative sum of L(� |Y1,2) over all the behavioral parameter sets equals unity. 

A user-defined threshold criterion is then required to select the set of behavioral solutions. 

This may be either a percentage of best performing models or a subjectively selected OF 

value. Here, subjective thresholds were set first specifically for each of the OFs. Relatively 

weak thresholds were chosen to eliminate inaceptably performing models (CORR = 0.3; 

MAE = 15; CSMR = 0; MSHE = 0.02) primarily with regard to the Likelihood function 

updating using multiple objectives. Subsequently, the best performing 10 % of the evaluated 

parameter sets in terms of a given likelihood function and combined Likelihood functions, 

respectively, are retained as behavioral. The likelihood functions of the accepted solutions are 

then rescaled again. 
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To propagate the parameter uncertainty into the model output, the 95 % central range of 

outputs based on the behavioral parameter sets is computed at each point in time. In addition, 

an output estimate is computed as the median of this distribution and a further output estimate 

is computed based on the best or most likely parameter set. 

To assess the uncertainty (which is assumed to be the opposite of parameter identifiability) in 

posterior parameter distributions, derived from conditioning an initial distribution on a 

selected OF, methods developed by Wagener et al. (2001) are used. The best performing 10 % 

of the parameter population are selected and their cumulative distribution is computed. The 

gradient of the cumulative distribution is the marginal probability distribution of the 

parameter, and therefore an indicator of the strength of the conditioning by the data, and of 

the identifiability of the parameter. To obtain a measure of identifiability, the range of each 

parameter is segmented into 10 containers and the gradient in each container is computed. The 

highest value marks the location (or segment) of greatest identifiability of the parameter. 

Further, the cumulative distributions can be used to derive confidence limits for the different 

parameters (here 90 %). Wide confidence limits suggest that parameter values associated with 

equally good performance are distributed widely over the parameter space, while narrow 

limits suggest that the best performing parameters are focused in a small area of the feasible 

range. By computing the identifiability after conditioning on the various OFs, the information 

provided by the OF to constrain the parameter space can be assessed. By repeating the 

computations after combining the likelihood functions, the value of using runoff and soil 

moisture data simultaneously can be investigated.  

 
3.3.3.2. Assesment of model structural uncertainty  
�

The methods described above analyze and propagate parameter uncertainty. Several 

researchers (e.g., Yapo et al., 1996; Gupta et al., 1998) emphasized that the factor currently 

limiting model performance is model (structural) error arising from the imperfect and 

aggregated representation of the real system. It is therefore generally advisable to explicitly 

address the uncertainty originating from model structural inadequacies and errors and 

particularly of interest to assess the usefulness of increased model complexity. Yet, the nature 

of model structural error does not allow the estimation of a probabilistic structure (e.g., in the 

construction of an appropriate OF) to describe it, since the errors are not random in a 

probabilistic sense (Gupta et al., 1998). However, some of the consequences of this 

uncertainty can be detected and even used for improvements in the model structure. 
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A major consequence of model structural imperfection is that the model is incapable of 

reproducing all aspects and portions of the catchment behavior equally well with a single 

parameter set (Gupta et al., 1998). Thus, structural insufficiency and uncertainty does become 

visible in the finding that strongly differing parameter sets are required to enable the model to 

reproduce, for instance, the hydrograph and different aspects soil moisture state 

simultaneously, with strong trade-offs between the conflicting objectives. This can be 

analyzed in terms of the multiple-criteria strategy for watershed model parameter estimation 

proposed by Gupta et al. (1998) based on methods from the field of economic analysis 

(Pareto, 1906). Following Gupta et al. (1998), the multi-criteria model calibration problem 

can then be formally stated as the optimization problem: 

 

[ ]1 2min ( ) ( ), ( ),  ... , ( )mF F F F
f

f f f f
ÎF

=  

where the goal is to find the parameter set �  within the feasible set 
  that simultaneously 

minimizes all of the m criteria (here, m equals 4). This problem does not, in general, have a 

unique solution that simultaneously optimizes each criterion due to errors in the model 

structure (and other possible sources). Instead, it is generally necessary to adopt a Pareto set 

of solutions (often times referred to as the trade-off set, non-inferior set, non-dominated set, or 

the efficient set) which have the property that moving from one solution to another will result 

in the improvement of at least one criterion while causing deterioration in at least one other. It 

is thus impossible to distinguish any of the Pareto solutions as being objectively better than 

any of the other Pareto solutions, such that the Pareto set defines the minimum uncertainty in 

the parameter selection that can be achieved without stating a subjective relative preference 

for minimizing one specific component of F(� ) at the expense of another (Gupta et al., 1998; 

Vrugt et al., 2003a). However, the identified Pareto set can be used by the analysis of multiple 

objectives which allows to evaluate the correlation and trade-offs between different objective 

functions. Further, the Pareto-solution set can be used to generate a Pareto-ensemble of 

simulated responses and can be displayed as a trade-off-uncertainty region on the runoff or 

soil mositure timeseries plots. This shows the uncertainty in the model simulations due to 

different possible ways of trading-off the model errors (and other errors) (Gupta et al., 1998). 

The use of Pareto parameter sets to represent model structural uncertainty and Pareto-

ensemble simulations to represent model output uncertainty can provide useful ways for 

evaluating models and their performance. 
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�
3.3.3.3. Parameter sampling  
�
Both approaches used here to assess model related uncertainties require sampling of the 

parameter space with respect to multiple criteria. The selection of an appropriate sampling 

strategy is particularly important when using distributed models, which are more 

computationally demanding than lumped models and require a larger number of model runs 

for calibration and uncertainty asessment owing to their complexity (Blasone et al., 2008). 

While lumped model runs can be performed in seconds, even a simple distributed model like 

Hill-Vi requires several minutes for a single run (depending on the size of the domain and 

number of time steps evaluated). This clearly limits the applicability of the commonly used 

sampling schemes such as uniform random or Latin hypercube sampling with distributed 

models (McMichael et al., 2006). Instead, a more efficient sampling scheme is preferable that 

further has the capability to handle multiple OFs. 

Blasone et al. (2008) have recently demonstrated that using a Markov chain Monte Carlo 

(MCMC) sampling scheme in combination with GLUE significantly improves the efficiency 

and effectiveness of the methodology. In their revised version of the GLUE procedure, the 

shuffled complex evolution metropolis (SCEM-UA) algorithm by Vrugt et al. (2003b) is used 

as sampler of the prior parameter distributions. They further used a flexible objective 

(likelihood) function, balancing different calibration criteria to include multiple information in 

their uncertainty assessment. However, since an estimate of the Pareto solution set (see 

below) is also required in this study, the Multiobjective Shuffled Complex Evolution 

Metropolis (MOSCEM-UA) algorithm by Vrugt et al. (2003a) is used here. The MOSCEM-

UA algorithm is a MCMC sampler that merges the strengths of complex shuffling employed 

in the shuffled complex evolution (SCE-UA) algorithm (Duan et al., 1992) with the 

probabilistic covariance-based search methodology of the Metropolis algorithm and an 

improved fitness assignment concept of Zitzler and Thiele (1999) to construct an efficient and 

uniform estimate of the Pareto solution set. It uses an innovative concept of Pareto dominance 

rather than direct-objective function evaluations (such as the SCEM-UA algorithm) and is 

capable of generating a fairly uniform approximation of the ‘‘true’’ Pareto frontier (which 

should include the single-criteria end points of the Pareto solution set) within a single 

optimization run (Vrugt et al., 2003a). 

A MATLAB implementation of the MOSCEM-UA algorithm provided by Hoshin V. Gupta 

(personal communication) was used for this study. Since the Hill-Vi model was programmed 
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in IDL, the computer code of both the algorithm and the model had to be modified to facilitate 

their simultaneous usage. Since IDL programs are not compilable, a communication (i.e. 

transfer of generated parameter samples and model outputs) between the programming 

environments was set up via text files. 

For each model complexity investigated, the MOSCEM-UA algorithm was run for all 

possible combinations (six in total) of the four objective functions CORR, MAE, MSHE, and 

CSMR. The algorithm (as used here) has two algorithmic parameters that must be specified 

by the user. The number of complexes was set to a value of two and the population size was 

set to a value of 16 (i.e., eight members per complex) as recommended by Jasper Vrugt 

(personal communication). For each pair of OFs, the algorithm was run for 22 loops (resulting 

in a total of 368 model evaluations). The entire population of parameter sets visited during the 

individual MOSCEM-UA runs for a given model complexity were then merged (resulting in a 

total of 2208 parameter sets and model evaluations per complexity) and used as bais for the 

further analysis. This parameter sampling strategy should generally be well-suited to obtain 

(1) a sufficiently dense sample of parameter sets in the high probability density region of the 

feasible parameter space, (2) a reasonable estimate of the Pareto set, and (3) maintain 

computational feasibility at the same time. It provides the advantage of allowing for both the 

GLUE and Pareto concepts to be applied from a single sample. However, the rather small 

number of model runs feasible given the temporal constraints imposed on this work is likely 

insufficient to obtain a reliable estimate of the high probability density region in the parameter 

space and the Pareto set such that the subsequent analysis is subject to uncertainty. 
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4. Results and Discussion 
 

A set of state-of-the-art inverse modeling methods was coupled to the Hill-Vi to provide the 

ability for a detailed assessment of the model structural and parameter uncertainty. However, 

while a large amount of effort was spent to compile an appropriate data set and set up the 

model such as to properly suite the catchment under study, no sufficient agreement between 

the model and the data could be established that would allow for reliable conclusions about 

either the value of the soil moisture data to constrain the model parameterization or for the 

rejection/justification of an increase in model complexity. Also, it is evident that the 

MOSCEM-UA algorithm did not properly converge during several trials. This should not be 

attributed to the incapability of the algorithm, but rather to the limited number of model 

evaluations that could be conducted. 

Nevertheless, a suite of figures is provided that should, however, be considered as indicative 

of the possibilities provided by the framework set up in this work to evaluate the model with 

respect to the soil moisture data. Fig. 5 shows identifiability plots of the hill-Vi model 

parameters by conditioning on the various OFs and for various model complexities. High 

gradients in the cumulative distribution indicate high identifiability in the top performing 

model parameters whereas shallower gradients indicate low identifiability. The maximum 

gradient can be considered as a metric of parameter identifiability, and likewise the percentile 

ranges associated with the cumulative parameter distribution shown in Fig. 6. Given these 

preliminary results, the runoff data clearly imposes a much stronger constraint on the model 

parameterization than the relative saturation and associated OFs, repectively. When both data 

sources are combined, the resulting parameter uncertainty is clearly larger compared to the 

case when only the runoff-based OF CORR is used. In fact, this is not an unlikely result, 

given that adequate representation of runoff and relative saturation may provide conflicting 

targets to track for a model. The existence of a strong trade-off between the ability of the 

model to simultaneously match the various OFs used in this study is indicated by the multi-

objective plots shown in Fig. 7. Note that these two-dimensional plots show the four-criteria 

rather than the two-criteria Pareto optimal sets, i.e. the rank one solutions with respect to all 

four criteria. Fig. 7 further indicates problems of algorithm onvergence to the true extend of 

the Pareto front. 

�
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Figure 5: Identifiability plots showing the cumulative distribution (dashed lines) of the top 10-percent 
of the parameter populations for model complexities 1 (blue), 2 (turquoise), 3 (orange), and 4 (red) and 
in terms of the objective function values for (from left to right) CORR, MAE, CSMR, MSHE, all OFs 
with respect to relative saturation data and all OFs. Stair plots indicate the (rescaled) distribution of 
gradients of the cumulative distribution across the parameter range splitted into ten bins. 
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Figure 6: Parameter uncertainly of the Hill-Vi model vs. the model complexity after conditioning on 
runoff data only (OF: CORR; left column), relative saturation data only (OFs: MAE, CMSR, MSHE; 
central column), and all data and objective functions, respectively (right column). Light gray shading 
indicates parameter uncertainty associated with the Pareto set of solutions. Medium grey shading and 
dark grey line indicate the 95 % confidence limits and median parameter values based on the 
cumulative parameter distributions (top 10 %). The best performing parameter set is shown as a black 
line. 
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Figure 7: Four-criteria trade-off surfaces in two-dimensional objective spaces for model complexities 
1 (blue), 2 (turquoise), 3 (orange), and 4 (red). 

 
The parameter uncertainty is propagated into the output uncertainty as shown in Figs 8 to 11. 

Constraining the data to runoff does result in extremely narrow output confidence intervals for 

both runoff and basin mean relative saturation simulations. The precision of the simulated 

response is high, yet the accuracy of the runoff simulations (Figs 8 and 9) is low.  While 

“acceptably“ high correlation coefficients were archieved for all of the four model 

complexities, none of the models is capable of achieving a bias smaller than 35 % in 

simulated flow volumes. Given a runoff coefficient of 0.77 over the evaluation period, this is 

not surprising. Clearly, the model fails to closely match the runoff particularly during high 

flow periods in the winter, which can be related to the insufficiency of the snow module. This 

is true for all simulations, including the single-objective optimal solution. Including the soil 

moisture data to condition the model parameterization leads to strongly widened confidence 

intervals, reflecting the increased parameter uncertainty (Figs 5 and 6). Note also the wide 
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uncertainty intervals associated with the Pareto set of solutions, indicating the strong trade-off 

between the ability of the model to represent the behaviors associated with the multiple-

objectives simultaneously.  

�

Figure 8: Timeseries of rainfall and observed (red) and simulated runoff for parameter populations 
conditioned on runoff only and for model complexities 1 to 4 (top to bottom). Light grey shading 
indicates output uncertainty ranges associated with the Pareto set of solutions. Medium grey shading 
and dark grey line indicate the 95 % central range based on the behavioral parameter sets. The output 
associated with the best parameter set is shown as a black line. 
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Figure 9: Timeseries of rainfall and observed (red) and simulated basin mean relative saturation for 
parameter populations conditioned on runoff and relative saturation observations and for model 
complexities 1 to 4 (top to bottom). Light grey shading indicates output uncertainty ranges associated 
with the Pareto set of solutions. Medium grey shading and dark grey line indicate the 95 % central 
range based on the behavioral parameter sets. The output associated with the best parameter set is 
shown as a black line. 
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Figure 10: Timeseries of rainfall and observed (red) and simulated basin mean relative saturation for 
parameter populations conditioned on runoff only and for model complexities 1 to 4 (top to bottom). 
Light grey shading indicates output uncertainty ranges associated with the Pareto set of solutions. 
Medium grey shading and dark grey line indicate the 95 % central range based on the behavioral 
parameter sets. The output associated with the best parameter set is shown as a black line. 
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Figure 11: Timeseries of rainfall and observed (red) and simulated basin mean relative saturation for 
parameter populations conditioned on runoff and relative saturation observations and for model 
complexities 1 to 4 (top to bottom). Light grey shading indicates output uncertainty ranges associated 
with the Pareto set of solutions. Medium grey shading and dark grey line indicate the 95 % central 
range based on the behavioral parameter sets. The output associated with the best parameter set is 
shown as a black line. 

As an example, Fig. 12 shows a map of observed relative saturation on January 15, 2009, 

which is representative of a wet catchment state, when lateral water movement can be 

expected to be the main process controlling the soil moisture variability across the entire 

catchment. It will be interesting to further investigate such maps for different diagnostic 

periods to assess deficiencies and benefits, respectively, of vaying model complexities. 
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Table 4: Model performance with respect to the four objective functions for the best parameter set and 
the best parameter set after conditioning (cond) the model to all objective functions. 
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The assessment of model complexity using auxiliary spatial data has proven a valuable 

approach (e.g., Tromp-van Meerveld and Weiler, 2008). As for now, increasing the model 

complexity did result in neither improved identifiability of model parameters (Figs 6 and 7) 

nor in improved performance (Tab. 4) in simulating the observed runoff and soil moisture 

dynamics. However, given the uncertainties involved in this study, it would be assumptive to 

draw any conclusions on the importance of the investigated model refinements. Clearly, the 

impact of bedrock seepage (e.g., Tromp-van Meerveld and Weiler, 2008), throughfall 

variability (e.g., Keim et al., 2005), and variable soil depth (e.g., Woods and Rowe, 1996; 

Freer et al., 1997) on the simulated runoff response and soil moisture variability and 

connectivity deserve further investigation. It remains to be investigated whether or not soil 

moisture data is appropriate to constrain the Hill-Vi model and judge the value of the applied 

modifications. Further modifications may as well be tested, such as the impact of pipeflow 

and spatially variable soil properties. A representation of pipeflow is implemented in Hill-Vi 

(Weiler and McDonnell, 2007) and a parameter-free representation of variable soil properties 

between cambisols and near stream stagnic and gleyic soils was already implemented for the 

study site and is ready to be tested. 

In this study, only OFs have been used that may be classified as global. This avoids the 

otherwise necessary locationally explicit comparison of point measurments and model grid 

simulations or interpolation to the grid assuming a fitted statistical model to be true. A further 

practical advantage of using global metrics is the ability to apply them in cases where a model 

has a stochastic component, such as the throughfall variability representation implemented for 

this study. It is, however, still unclear which OF should be used for a given data. Further 

metrics were implemented in MATLAB are ready to be used when more reliable data 

becomes available and with more model evaluations. Among others, connectifity functions 
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(Western et al., 2001) were implemented based on pseudo code provided by Andrew Western 

(personal communication). These functions provide promising means for characterizing 

organized features that exist in observed spatial fields and that can have an important 

influence on hydrologic behavior. Based on these functions, the integral connectivity scale 

can be computed and used to asess as a measure of the presence of hydrologic connectivity. 

The correlation of the relation between mean relative saturation and standard deviation also 

provides an interesting function to investigate. Note that the standard deviation versus mean 

relation may be better suited for the OF type used here as compared to the coefficient of 

variation, given that the former was often found to have a convex rather than linear form 

(Owe et al., 1982), thus imposing a stronger constraint on the value of a correlation 

coefficient.  An interesting aspect to consider is that this function may even be applied to 

constrain the parameter space and evaluate models even when no soil moisture data is 

available. This could be implemented, for example, by assuming an appropriate functional 

form (e.g., Famiglietti et al. 2008; Vereecken et al., 2008) for a standardized soil moisture 

variability-mean relation for a given location and scale the model is to be applied to and then 

evaluating the standardized model simulations against this relation. 

This study has unwantedly demonstrated that it is highly important to be able to 

appropriatetely characterize not only one state variable such as, for instance, soil moisture, but 

to have reliable data available with respect to all major hydrological fluxes and ideally 

additional important state variables such as groundwater level as well as soil properties. As 

stated by Vereecken et al. (2008), the collection of such data sets at the catchment scale is an 

important challenge that should be addressed in the terrestrial observatories that are currently 

being established. It is hoped that more appropriate forcing data will be available for the 

Wüstebach site to make optimal use of the high-quality soil moisture data in the framework of 

hydrological inverse modeling. 
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Figure 12: Top: Map of observed relative saturation (%) during a wet period on January 15, 2009 
(interpolated using Ordinary Kriging). Middle row: Maps of simulated relative saturation using 
increasingly complex models (from left to right) conditioned on relative saturation and runoff. Bottom 
row: Maps of relative residuals for the increasingly complex models (from left to right). 

 

�
�

�

�

�

�

�

�

�

�

�

�

�



<�����
,���

�

�

-6!.�
�

References 
�

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E. and Rasmussen, J. (1986) An 
introduction to the European Hydrological System – Système Hydrologique Européen, 
"SHE," 1: History and philosophy of a physically-based, distributed modelling system, 
Journal of Hydrology, 87, 45-59. 
 
Abbott, M.B. and Refsgaard J.C. (eds) (1996) Distributed hydrological modelling, Water 
Science and Technology Library, 22, 321 pp. 
 
Albertson, J. D. and Montaldo, N. (2003) Temporal dynamics of soil moisture variability: 1. 
Theoretical basis, Water Resources Research, 39(10), 1274, doi:10.1029/2002WR001616. 
 
Ali, G. A., Roy, A.G. and Legendre, P. (2010) Spatial relationships between soil moisture 
patterns and topographic variables at multiple scales in a humid temperate forested catchment, 
Water Resources Research, 46, W10526, doi:10.1029/2009WR008804. 
 
Allard, J.F. (1993) Sound proppagation in porous media: Modeling sound absorbing 
materials. Elsevier, London. 
 
Allard, J.F., Castagnede, B., Henry, M. and Lauriks, W. (1994) Evaluation of tortuosity in 
acoustic porous materilas saturated by air. Revue of Scientific Instruments, 65, 754-755. 
 
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998) Crop evapotranspiration – 
Guidelines for computing crop water requiresments - FAO Irrigation and drainage paper 56, 
FAO Rome, M-56, ISBN: 92-5-10421. 
 
Anderton, S.P., Latron, J., White, S. M., Llorens, P., Gallart, F., Salvany, C., O'Connell, P. E. 
(2002) Internal evaluation of a physically-based distributed model using data from a 
Mediterranean mountain catchment, Hydrology and Earth System Sciences, Volume 6, Issue 
1, 2002, pp. 67-84. 
 
Anderson, M. G. and Bates, P. D. (eds) (2001) Model Validation: Perspectives in 
Hydrological Science, Wiley: Chichester. 
 
ASCE - Task Committee on definition of criteria for evaluation of watershed models (1993) 
Criteria for evaluation of watershed models, Journal of irrigation and drainage engineering, 
American Society of Civil Engineers, 119, 429-442. 
 
Beier, C., Hansen, K. and Gundersen, P. (1993) Spatial variability of throughfall fluxes in a 
spruce forest. Environmental Pollutution, 81, 257- 267. 
 



<�����
,���

�

�

-60.�
�

Beven, K. J. (1987) Towards the use of catchment geomorphology in flood frequency 
predictions, Earth Surface Processes and Landforms, 12, 1, 69-82. 
 
Beven, K.J. (1989) Changing ideas in hydrology - The case of physically based models, 
Journal of Hydrology, 105, 1-2, 157-172. 
 
Beven, K.J. (2000) Uniqueness of place and process representations in hydrological 
modelling, Hydrology and Earth System Sciences, 4, 203–213. 
 
Beven, K. J. (2005) On the concept of model structural error, Water Science and Technology 
52,167-175. 
 
Beven, K.J. and Kirkby, M. J. (1979) A physically based variable contributing area model of 
basin hydrology, Hydrological Sciences Bulletin, 24, 43-69. 
 
Beven, K.J., Calven, A. and Morris, E.M. (1987) The Institute of Hydrology Distributed 
Model, Institute of Hydrology Report 98, Wallingford, UK. 
 
Beven, K.J. and Binley, A.M. (1992) The future of distributed models: Model calibration and 
uncertainty prediction, Hydrological Processes, 6, 279-298. 
 
Beven, K.J. and Freer, J. (2001) Equifinality, data assimilation, and uncertainty estimation in 
mechanistic modelling of complex environmental systems using the GLUE methodology, 
Journal of Hydrology, 249, 11-29. 
 
Blasone, R., Vrugt, J.A., Madesen, H., Rosbjerg, D., Robinson, B.A. and Zyvoloski, G.A. 
(2008) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain 
Monte Carlo sampling, Advances in Water Resources, 31, 630-648.  
 
Blazkova, S., Beven, K.J., Kulasova, A. (2002) On constraining TOPMODEL hydrograph 
simulations using partial saturated area information, Hydrological Processes, 16, 441-458. 
 
Blazkova, S. and Beven, K. J. (2002) Flood Frequency Estimation by Continuous Simulation 
for a Catchment treated as Ungauged (with Uncertainty), Water Resources Research, 38, doi: 
10.1029/2001/WR000500. 
 
Bodenkundliche Kartieranleitung (2005) Ad-hoc-AG Boden. In Kommission: E. 
Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, 438 pp. 
 
Bogena, H.R., Huisman, J.A., Meier, H., Rosenbaum U. and Weuthen, A. (2009) Hybrid 
wireless underground sensor networks: Quantification of signal attenuation due to soil 
adsorption. Vadose Zone Journal, 8, 755-761. 
 



<�����
,���

�

�

-61.�
�

Bogena, H.R., Herbst, M., Huismann, J.A., Rosenbaum, U., Weuthen, A. and Vereecken, H. 
(2010) Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability, 
Vadose Zone Journal, 9, 1002-1013. 
 
Bonell, M. (1993) Progress in the understanding of runoff generation dynamics in forests, 
Journal of Hydrology, 150, 2-4, 217-275.  
 
Bonell, M. (1998) Selected challenges in outflow generation research in forests from the 
hillslope to headwater drainage basin scale, Journal of the American Water Resources 
Association, 34, 765-785. 
 
Bouten, W., Heimovaara, T.J. and Tiktak, A. (1992) Spatial patterns of throughfall and soil-
water dynamics in a Douglas-fir stand, Water Resources Research, 28, 3227-3233. 
 
Boyle, D.P., Gupta, H.V. and Sorooshian, S. (2000) Toward improved calibration of 
hydrologic models: Combining the strengths of manual and automatic methods, Water 
Resources Research, 36, 12, 3663-3674. 
 
Brakensiek, D.L. and Rawls, W.J. (1994) Soil containing rock fragments: effects on 
infiltration, Catena, 23, 99-110.  
 
Brocca, L., Morbidelli, R., Melone, F. and Moramarco, T. (2007a) Soil moisture spatial 
variability in experimental areas of central Italy, Journal of Hydrology, 333, 2-4, 356-373. 
 
Brocca, L., Melone, F. and Moramarco, T. (2007) Storm runoff estimation based on the soil 
conservation service – curve number method with soil moisture data assimilation., 
Uncertainties in the ‘monitoring-conceptualisation-modelling’ sequence of catchment 
research, L. Pfilster, L. Hoffmann Eds., IHP-VI, Technical Documents in Hydrology, 81 
(UNESCO), 141-148. 
 
Brooks, R.H. and Corey, A.T. (1964) Hydraulic properties of porous media, Hydrology Paper 
No.3, Civil Engineering Department. Colorado State University, 24 pp. 
 
Buttafuoco, G., Castrignanò, A., Busoni, E. and Dimase, A. C. (2005) Studying the spatial 
structure evolution of soil water content using multivariate geostatistics, Journal of 
Hydrology, 311, 202-218. 
 
Calder, I.R. (1977) A model of transpiration and interception loss from a spruce forest in 
Plynlimon, central Wales, Journal of Hydrology, 33, 247-265.  
 
Calver, A. and Cammeraat, L.H. (1993) Testing a physically-based runoff model against field 
observations on a Luxembourg hillslope, Catena, 20, 3, 273-288.  
 



<�����
,���

�

�

-66.�
�

Cardell-Oliver, R., Smettem, K., Kranz, M. and Mayer, K. (2005) A reactive soil moisture 
sensor network: Design and field evaluation, International Journal of Distributed Sensor 
Networks, 12, 149-162. 
 
Chirico, G.B., Grayson, R.B. and Western, A.W. (2003) A downward approach to identifying 
the structure and parameters of a process-based model for a small experimental catchment, 
Hydrological Processes, 17, 2239-2258. 
 
Cohen, J. (1960) A coefficient of agreement for nominal scales, Educational and 
Psychological Measurement, 20, 37-46. 
 
Costanza, R. (1989) Model goodness of fit: a multiple resolution procedure, Ecological 
Modelling, 47, 199-215.Ecological Modelling, 47 (1989) 199-215 199  
 
Cornelis, W.M., Ronsyn, J., Meirvenne, M.V. and Hartmann R. (2001) Evaluation of 
Pedotransfer Functions for Predicting the Soil Moisture Retention Curve, Soil Science Society 
of America Journal, 65, 638-648. 
 
Coronato, R. and Bertiller, M. (1996) Precipitation, landscape and grazing related effects on 
soil moisture in semiarid Patagonia, Journal of Arid environments, 34, 1-9. 
 
Cosh, M.H., Jackson, T.J., Starks, P. and Heathman G. (2006) Temporal stability of surface 
soil moisture in the Little Washita River watershed and its applications in satellite soil 
moisture product validation, Journal of Hydrology, 323, 168-177. 
 
Cosh, M.H., Jackson, T.J., Bindlish, R. and Prueger, J.H. (2004) Watershed scale temporal 
and spatial stability of soil moisture and its role in validating satellite estimates, Remote 
Sensing of Environment, 92, 4, 427-435.   
 
Crow, W.T. and Wood, E.F. (1999) Multi%scale dynamics of soil moisture variability 
observed during SGP'97, Geophysical Research Letters, 26, 23, 3485-3488. 
 
Davies, J.A. and Allen, C.D. (1973) Equlibrium, potential and actual evaporation from 
cropped surfaces in southern Ontario, Journal of Applied Meteorology, 12, 649-657. 
 
Davis, R.E., Metcalfe, J.R., Hardy, J.P. and Goodison, B. (1998) Variations of snow 
accumulation in the southern boreal forest: Analyses of snow measurements 1993±1994 and 
1994±1995, Proceedings of the Eastern Snow Conference 55, 153-164. 
 
De Lannoy, G. J. M., Houser, P.R., Pauwels, V.R.N. and Verhoest, N.E.C. (2006a) 
Assessment of model uncertainty for soil moisture through ensemble verification, Journal of 
Geophysical Research, 111, D10101, doi:10.1029/2005JD006367. 
 



<�����
,���

�

�

-62.�
�

De Lannoy, G. J. M., Verhoest, N.E.C., Houser, P.R. and Gish, T. (2006b) Spatial and 
temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE), 
Journal of Hydrology, 331, 719–730. 
 
Duan, Q., Sorooshian, S. and Gupta, H. V. (1992) Effective and Efficient Global Optimization 
for Conceptual Rainfall-Runoff Models, Water Resources Research, 28, 1015-1031.  
 
Dunn, S.M. (1999) Imposing constraints on parameter values of a conceptual hydrological 
model using baseflow response, Hydrology and Earth Science, 3, 271-284.  
 
Dunne T., Moore, T.R. and Taylor, C.H. (1975) Recognition and prediction of runoff-
producing zones in humid regions, Hydrological Science Bulletin, 20, 305-327. 
 
Dunne T. (1978) Field studies of hillsope flow processes, In: Kirkby, M.J. (ed). Hillslope 
hydrology. Chichester: Wiley;. pp. 227–93. 
 
Eltahir, E. A. B. and Bras, R.L. (1993) A Description of Rainfall Interception Over Large-
areas, Journal of Climate, 6, 1002-1008.  
 
Eschner, A.R. (1967) Interception and soil moisture distribution. In: Sopper, W.E., Lull, H.W. 
(eds), Forest Hydrology. Pergamon, Oxford, pp. 191–200. 
 
Faeh, A.O., Scherrer, S. and Naef, F. (1997) A combined field and numerical approach to 
Investigate flow processes in natural macroporous soils under extreme precipitation, 
Hydrology and Earth System Sciences, 1, 4, 787-800. 
 
Famiglietti, J. S., Rudnicki, J.W. and Rodell, M. (1998) Variability in surface moisture 
content along a hillslope transect: Rattlesnake Hill, Texas, Journal of Hydrology, 210, 259-
281. 
 
Famiglietti, J. S., Devereaux, J. A., Laymon, C. A., Segaye, T., Houser, P. R., Jackson, T. J., 
Graham, S.T., Rodell, M. and van Oevelen, P. (1999) Ground- based investigation of soil 
moisture variability within remote sensing footprints during the Southern Great Plains (1997) 
Hydrology Experiment, Water Resources Research, 35, 1839-1851,  
 
Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson (2008) Field observations 
of soil moisture variability across scales, Water Resources Research, 44, W01423, 
doi:10.1029/2006WR005804. 
 
Federer, C.A. and Lash, D. (1978) BROOK: A hydrologic simulation model for eastern 
forests. University of New Hampshire Water Resources Research Center, Research Report 19, 
94 pp., Durham, New Hampshire. 
 
 



<�����
,���

�

�

-63.�
�

Federer, C.A. (1982) Transpirational supply and demand: Plant, soil, and atmospheric effects 
evaluated by simulation, Water Resources Research, 18, 355-362. 
 
Finnerty, B. D., Smith, M. B., Seo, D.-J., Koren, V. and Moglen, G. E. (1997) Space–time 
scale sensitivity of the Sacramento model to radar-gage precipitation inputs, Journal of 
Hydrology, 203, 21-38. 
 
Fisher, R.F. and Binkley, D. (2000) Ecology and Management of Forest Soils. New York: 
John Wiley & Sons. 489 pp.  
 
Franks, S.W., Gineste, P., Beven, K.J., and Merot, P. (1998) On constraining the predictions 
of a distributed model: the incorporation of fuzzy estimates of saturated areas in the 
calibration process, Water Resources Research, 34, 787-797. 
 
Freer, J., B. Ambroise, and K.J. and Beven, K.J. (1996) Bayesian Estimation of uncertainty in 
runoff prediction and the value of data: An application of the GLUE approach, Water 
Resources Research, 32, 7, 2161-2173. 
 
Freer, J.E., McMillan, H., McDonnell, J.J. and Beven, K.J. (2003) Constraining dynamic 
TOPMODEL responses for imprecise water table information using fuzzy rule based 
performance measures, Journal of Hydrology, 291, 254-277. 
 
Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice-Hall, Inc., Englewood Cliffs, NJ, 
604 pp. 
 
Garrote, L. and Bras, R.L. (1995) A distributed model for real-time flood forecasting using 
digital elevation models, Journal of Hydrology, 167, 279-306.  
 
Goodrich, D.C., Faures, J.M., Woolhiser, D.A., Lane, L.J. and Sorooshian, S. (1995) 
Measurement and analysis of small-scale convective storm rainfall variability, Journal of 
Hydrology, 173, 283-308. 
 
Goovaerts P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, 
New York. 
 
Grayson, R. B., Moore, I. D. and McMahon, T. A. (1992) Physically based hydrologic 
modelling. 2: Is the concept realistic? Water Resources Research, 28, 2659-2666. 
 
Grayson, R.B., Western, A.W., Chiew, F.H.S. and Blöschl, G. (1997) Preferred states in 
spatial soil moisture patterns: Local and nonlocal controls, Water Resources Research, 33, 12, 
2897-2908. 
 



<�����
,���

�

�

-64.�
�

Grayson, R.B. and Western, A.W. (1998) Towards areal estimation of soil water content from 
point measurements: time and space stability of mean response, Journal of Hydrology, 207, 
68-82.  
 
Grayson, R.B. and Blöschl, G. (2000a) Spatial processes, organisation and patterns. Chapter 1 
in: Spatial Patterns in Catchment Hydrology: Observations and Modelling. Cambridge 
University Press. pp. 3-16. 
 
Grayson, R.B. and Blöschl, G. (2000b) Spatial modelling of catchment dynamics. Chapter 3 
in Spatial Patterns in Catchment Hydrology: Observations and Modelling, Cambridge 
University Press. pp. 51-81. 
 
Grayson, R.B. and Blöschl, G. (2000c) Summary of pattern comparison and concluding 
remarks. Chapter 14 in: Spatial Patterns in Catchment Hydrology: Observations and 
Modelling. Cambridge University Press. pp. 355-367. 
 
Grayson, R.B., Blöschl, G., Western, A.W. and McMahon, T.A. (2002) Advances in the use 
of observed spatial patterns of catchment hydrological response, Advances in Water 
Resources, 25, 1313-1334. 
 
Güntner, A., Seibert, J. and Uhlenbrook, S. (2004) Modeling spatial pat- terns of saturated 
areas: An evaluation of different terrain indices, Water Resources Research, 40, W05114, 
doi:10.1029/2003WR002864. 
 
Gupta, H.V., Beven, K.J. and Wagener, T. (2005) Model calibration and uncertainty 
estimation. In: Anderson, M.G. et al. (eds) Encyclopedia of hydrological sciences. John Wiley 
& Sons Ltd., Chichester, UK, pp. 1-17. 
 
Gupta H.V., Sorooshian S., Automatic calibration of conceptual rainfall-runoff models: 
sensitivity to calibration data, Journal of Hydrology, 181, 23-48 
 
Gupta, V.K., Sorooshian, S., and Yapo, P.O. (1998) Toward improved calibration of 
hydrologic models: multiple and non-commensurable measures of information, Water 
Resources Research 34, 751-763. 
 
Hammel, K. and Kennel, M. (2001) Charakterisierung und Analyse der Wasserverfügbarkeit 
und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell 
Brook90. Forstwirtschaftliche Forschungsberichte, München 185 pp. 
 
Hawley, M.E., Jackson, T.J. and McCuen, R.H. (1983) Surface soil moisture variation on 
small agricultural watersheds, Journal of Hydrology, 62, 179-200. 
 



<�����
,���

�

�

-65.�
�

Hornberger G.M., and Spear, R.C. (1981) An approach to the preliminary analysis of 
environmental systems, Journal of Environmental Management, 12, 7-18. 
 
Hunter, N.M., Bates, P.D., Horritt, M.S., De Roo, P.J. and Werner, M.G.F. (2005) Utility of 
different data types for calibrating flood inundation models within a GLUE framework, 
Hydrology and Earth System Sciences, 9, 4, 412-430.  
 
Hupet, F. and Vanclooster, M. (2002) Intraseasonal dynamics of soil moisture variability 
within a small agricultural maize cropped field, Journal of Hydrology, 261, 86-101. 
 
Ivanov, V.Y., Vivoni, E.R., Bras, R.L. and Entekhabi, D. (2004) Catchment hydrologic 
response with a fully distributed triangulated irregular network model, Water Resources 
Research, 40, W11102, doi:10.1029/2004WR003218. 
 
Ivanov, V. Y., Fatichi, S., Jenerette, G.D., Espeleta, J.F., Troch, P.A. and Huxman T.E. 
(2010) Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of 
vegetation, Water Resources Research, 46, W09521, doi:10.1029/2009WR008611. 
 
Jacques, D., Šimçnek, J., Timmerman, A. and J. Feyen, J. (2001) Calibration of the Richards’ 
and convection–dispersion equations to field-scale water flow and solute transport under 
rainfall conditions, Journal of Hydrology, 259, 15-31. 
 
Jakeman, A. J. and Hornberger, G. M. (1993) How much complexity is warranted in a 
rainfall-runoff model?, Water Resources Research, 29, 2637-2649. 
 
James, A.L. and Roulet, N.T. (2007) Investigating hydrologic connectivity and its association 
with threshold change in runoff response in a temperate forested watershed, Hydrological 
Processes, 21, 3391-3408. 
 
Jensen, W. and Calabresi, G. (1997) Flood monitoring workshop, ESRIN, Frascati, Italy 26 
27 June 1995. Hydrological Processes 11(10), 1357. 
 
Johnston, P.R. and Pilgrim, D.H. (1976) Parameter Optimization for Watershed Models, 
Water Resources Research, 12, 3, 477-486.  
 
Julien, P.Y. and Saghafian, B. (1991) A two-dimensional watershed rainfall-runoff model-
CASC2D user´s manual, Civil Engineering Report R90-91PYJ-BS-12, Colorado State 
University. 
 
Kachanoski, R.G., and de Jong, E. (1988) Scale dependence and the temporal persistence of 
spatial patterns of soil water storage. Water Resources Research, 24,85-91. 
 
Kamgar, A., Hopmans, J.W., Wallender, W.W. and Wendworth, O. (1993) Plot size and 
sample number for neutron probe measurements, Soil Science, 156, 213-224. 



<�����
,���

�

�

-2".�
�

Hornberger, G.M., and Spear , R.C. (1981) An approach to the preliminary analysis of 
environmental systems, Journal of Environmental Management, 12, 7-18. 
 
Keim, R.F., Skaugset, A.E. and Weiler, M. (2005) Temporal persistence of spatial patterns in 
throughfall, Journal of Hydrology, 314, 1-4, 263-274. 
 
Kuczera, G. and Mroczkowski, M. (1998) Assessment of hydrologic parameter uncertainty 
and the worth of multi-response data, Water Resources Research, 34, 1481-1490. 
 
Lamb, R., Beven, K. and Myrabø, S. (1998) Use of spatially distributed water table 
observations to constrain uncertainty in a rainfall–runoff model, Advances in Water 
Resources, 22, 4, 305–317. 
 
Legates, D.R.and McCabe, G.J. (1999) Evaluating the use of goodness-of-fit measures in 
hydrologic and hydroclimatic model validation, Water Resources Resarch, 35, 233-241. 
 
Lin, H. (2006) Temporal Stability of Soil Moisture Spatial Pattern and Subsurface Preferential 
Flow Pathways in the Shale Hills Catchment, Vadose Zone Journal, 5, 317-340. 
 
Madsen, H. (2003) Parameter estimation in distributed hydrological catchment modelling 
using automatic calibration with multiple objectives, Advances in Water Resources, 26, 205-
216. 
 
McGlynn, B.L., McDonnell, J.J., Seibert, J. and Kendall, C. (2004) Scale effects on headwater 
catchment runoff timing, flow sources, and groundwater – streamflow relations, Water 
Resources Research, 40, W07504, doi:10.1029/2003WR002494. 
 
McGuire, K., Weiler, M. and McDonnell, J.J. (2006) Integrating field experiments with 
modeling to infer water residence times, Advances in Water Resources. 
doi:10.1016/j.advwatres 2006.07.004 
 
McGuire, K.J., Weiler, M. and McDonnel, J.J. (2007) Integrating tracer experiments with 
modeling to assess runoff processes and water transit times, Advances in Water Resources, 
30, 4, 824-837. 
 
McMichael, A. J., Woodruff, R. E. and Hales, S. (2006) Climate change and human health: 
present and future risks, Lancet, 367, 859-869. 
 
Mermoud, A. and Xu, D. (2006) Comparative Analysis of Three Methods to Generate Soil 
Hydraulic Functions, Oil and Tillage Research, 87, 89-100. 
�

Merz, B. and Plate, E. (1997) An Analysis of the Effects of Spatial Variability of Soil and Soil 
Moisture on Runoff. Water Resources Research, 33, 12, 2909-2922. 
 



<�����
,���

�

�

-2#.�
�

Mohanty, B. P. and Skaggs, T.H. (2001) Spatiotemporal evolution and timestable 
characteristics of soil moisture within remote sensing footprints with varying soil, slope, and 
vegetation, Advances in Water Resources, 24, 1051–1067. 
 
Montanari, M., Hostache, R., Matgen, P., Schumann, G., Pfister, L. and Hoffmann, L. (2009) 
Calibration and sequential updating of a coupled hydrologic-hydraulic model using remote 
sensing-derived water stages, Hydrology and Earth System Sciences, 13, 367-380. 
 
Monteith, J.L. (1965) Evaporation and environment. In: Fogg, G.E. (ed.) Symposium of the 
Society for Experimental Biology, The State and Movement of Water in Living Organisms, 
19, 205-234. Academic Press, Inc., NY. 
 
Moore, I.D., O'Loughlin, E.M. and Burch, G.J. (1988) A contour-based topographic model for 
hydrological and ecological applications, Earth Surface Processes and Landforms, 13, 305-
320. 
 
Moore, I.D., Gallant, J.C., Guerra, L. and Kalma, J.D. (1993) Modelling the spatial variability 
of hydrological processes using Geographical Information Systems, in: Kovar, K. and 
Nachtnebel, H.P. (eds). HydroGIS 93: Application of Geographical Information Systems in 
Hydrology and Water Resources, IAHS Publication. No. 211, 161-169.  
Moré, J.J. (1977) the Levenberg-Marquardt Algorithm: Implementation and theory. In: 
Watson, G.A. (ed). Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116. 
Numerical Analysis.  
 
Mroczkowski, M., Raper, G.P. and Kuczera, G. (1997) The quest for more powerful 
validation of conceptual catchment models, Water Resources Research, 33, 2325-2335. 
 
Nash J.E. and Sutcliffe J.V. (1970) River forecasting through conceptual models. Part 1-A. 
Discussion of Principles, Journal of Hydrology, 10, 282-290. 
 
Niemann, K.O. and Edgell, M.C.R. (1993) Preliminary analysis of spatial and temporal 
distribution of soil moisture on a deforested slope, Physical Geography, 14, 449-464. 
 
Oldak, A., Pachepsky, Y., Jackson, T.J. and Rawls, W.J. (2002) Statistical properties of soil 
moisture images revisited, Journal of Hydrology, 255, 12-24. 
 
Owe, M., Jones, E. and Schmugge, T. (1982), Soil moisture variation patterns observed in 
Hand County, South Dakota, Water Resources Bulletin, 18, 949–954. 
 
Owe, M., de Jeu, R. and Holmes, T. (2008) Multisensor historical climatology of satellite-
derived global land surface moisture, Journal of Geophyical Research, 113, 
doi:10.1029/2007JF000769 
 
Parajka J., Merz, R. and Blöschl, G. (2005) Regionale Wasserbilanzkomponenten für 



<�����
,���

�

�

-2!.�
�

Österreich auf Tagesbasis (Regional water balance components in Austria on a daily basis), 
Österreichische Wasser- und Abfallwirtschaft, 57 (3/4), 43-56. 
 
Parajka, J., Merz R. and Blöschl, G. (2007) Uncertainty and multiple objective calibration in 
regional water balance modeling - Case study in 320 Austrian catchments, Hydrological 
Processes, 21, 435-446. 
 
Pareto, V. 1906 Manuale di Economia Politica, Edizione Critica, Aldo. Montesano, Alberto 
Zanni and Luigino Bruni (eds), (Milan: EGEA—Universita`Bocconi Editore). 
 
Pariente, S. (2002) Spatial Patterns of Soil Moisture as Affected by Shrubs, in Different 
Climatic Conditions, Environmental and Assessment, 73, 237-251. 
 
Penman, H.L. (1948) Natural evaporation from open water, bare soil and grass, Proceedings 
of the Royal Meteorological Society (seriesA), 193, 120-146. 
 
Peschke, G., Etzenberg, C., Müller, G., Töpfer, J. and Zimmermann, S. (1999) Das 
wissensbasierte System FLAB – ein Instrument zur rechnergestützten Bestimmung von 
Landschaftseinheiten mit gleicher Abflussbildung. – IHI-Schriften 10, Zittau, 122 pp. 
 
Peters-Lidard, C.D., Pan, F. and Wood, E.F. (2001) A reexamination of modeled and 
measured soil moisture spatial variability and its implications for land surface modeling, 
Advances in Water Resources, 24, 1069-1083. 
 
Plaut-Berger, K. and Entekhabi D. (2001) Basin hydrologic response relations to distributed 
physiographic descriptors and climate, Journal of Hydrology, 247, 169-182. 
 
Pontius, R.G. ( 2000) Quantification error versus locational error in comparison of categorial 
maps, Photogrammetric Engineering and Remote Sensing, 66,1011-1016. 
 
Raat, K.J., Draaijers, G.P.J., Schaap, M.G., Tietema, A. and Verstraten, J.M. (2002) Spatial 
variability of throughfall water and chemistry and forest floor water content in a Douglas fir 
forest stand, Hydrology and Earth System Sciences, 6,363–374. 
 
Rawls, W.J. and Brakensiek, D.L. (1985) Prediction of soil water properties for hydrologic 
modelling. In: Jones E. and Ward T.J. (eds) Watershed Management in the Eighties. Proc. 
Symp. Irrig. Drain. Div. ASCE. Denver, CO. ASCE, New York. 
 
Rawls, W.J. and Brakensieks, D.L. (1985) Estimation of soil water retention and hydraulic 
properties. In: Unsaturated flow in hydrological modeling. in: Morel- Seytoux H.J. (ed.) 
Kluwer, Dordrecht. 
 



<�����
,���

�

�

-20.�
�

Refsgaard, J.C. (1997) Validation and intercomparison of different updating procedures for 
real-time forecasting, Nordic Hydrology, 28, 65-84. 
 
Rodriguez-Iturbe, I., Vogel, C. K., Rigon, R., Entekhabi, D., Castelli, F. and Rinaldo, A. 
(1995) On the spatial organization of soil moisture fields, Geophysical Research Letters, 22, 
2757–2760. 
 
Romano, N. and Santini, A. (1997) Effectiveness of using pedo-transfer functions to quantify 
the spatial variability of soil water retention characteristics, Journal of Hydrology, 202,137-
157. 
 
Ross, T.J. (1995) Fuzzy Logic, with engineering applications. John Wiley and Sons, 
Chichester 
 
Rutter, A.J., Morton, A.J. and Robins, P.C. (1975) A predictive model of inter- 
ception loss in forests: II. Generalization of the model and comparison with observations in 
some coniferous and hardwood stands, Journal of Applied Ecology, 12, 367–380. 
 
Salvucci, G. (1998) Limiting relations between soil moisture and soil texture with 
implications for measured, modeled and remotely sensed estimates, Geophysical Research 
Letters, 25, 10, 1757– 1760. 
 
Satalino, G., Mattia, F., Davidson, M.W.J., Thuy Le Toan, Pasquariello, G. and Borgeaud, M. 
(2002) On current limits of soil moisture retrieval from ERS-SAR data, Geoscience and 
Remote Sensing, 40, 2438-2447. 
 
Schulla J. (1997) Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen 
von Klimaänderungen. Züricher Geographische Schriften, Heft 69, Geographisches Institut 
ETH, Zürich. 
 
Schume, H., Jost, G. and Katzensteiner, K. (2003) Spatiotemporal analysis of the soil water 
content in a mixed Norway spruce (Picea abies (L.) Karst.)-European beech (Fagus sylvatica 
L.) stand. Geoderma, 112, 273–287. 
 
Sciuto, G. and Diekkrüger, B. (2010) Influence of soil heterogeneity and spatial discretization 
on catchment water balance modeling. Vadose Zone J. 9:955–969 
 
Seibert, J. (2000) Multi-criteria calibration of a conceptual runoff model using a genetic 
algorithm, Hydrology and Earth System Sciences, 4, 215 - 224. 
 
Seibert, J. (2001) On the need for benchmarks in hydrological modelling, Hydrological 
Processes, 15, 1063-1064. 
 



<�����
,���

�

�

-21.�
�

Seibert, J. (2002) HBV light 2, User´s Manual. Uppsala University, Institute of Earth 
Sciences, Department of Hydrology, Uppsala, Sweden, 16 pp. 
 
Seibert, J., K. Bishop, and Nyberg, L. (1997), A test of TOPMODEL’s 
ability to predict spatially distributed groundwater levels, Hydrological Processes, 11, 1131–
1144. 
 
Seibert, J., and J. J. McDonnell, (2002) On the dialog between experimentalist and modeler in 
catchment hydrology: Use of soft data for multicriteria model calibration, Water Resources 
Research, 38, 11, 1241, doi:1210.1029/2001WR000978 
 
Seiler, J. and Matzner, E. (1995) Spatial variability of throughfall chemistry and selected soil 
properties as influenced by stem distance in a mature Norway spruce (Picea-abies, Karst) 
stand, Plant Soil, 176, 139–147. 
 
Si, B.C. (2002) Spatial and statistical similarities of local soil water fluxes, Soil Science 
Society of America Journal 66, 753–759. 
 
Singh, V. P. (1995) Computer models of watershed hydrology. Water Resources Publications 
(Highlands Ranch, Colo.),1995 pp. 
 
Sloan, P. G. and Moore, I.D. (1984) Modeling subsurface stormflow on steeply sloping 
forested watersheds, Water Resources Research, 20, 1815-1822. 
 
Soulsby, C., Neal, C., Laudon, H., Burns, D.A., Merot, P., Bonell, M., Dunn, S.M. and 
Tetzlaff, D. (2008) Catchment data for process conceptualization: simply not enough?, 
Hydrological Processes, doi:10.1002/hyp.7068. 
 
Spear, R. and Hornberger, G. (1980) Eutrophication in peel inlet, ii, identification of critical 
uncertainties via general sensitivity analysis, Water Research, 14, 43- 49. 
 
Spittlehouse, D.L. and Black, T.A. (1981) A growing season water balance model applied to 
two Douglas fir stands. Water Resources Research 17, 1651-1656 
 
Starks, P. J., Heathman, G. C., Jackson, T. J., and Cosh, M. H. (2006) Temporal stability of 
profile soil moisture, Journal of Hydrology, 324, 400-411. 
 
Stoll, S. and Weiler, M. (2010) Explicit simulations of stream networks to guide hydrological 
modelling in ungauged basins, Hydrology and Earth System Sciences,14, 8,1435-1448. 
 
Tarboton, D.G. (1997) A new method for determination of flow directions and upslope areas 
in grid digital elevation models, Water Resources Research, 33, 309-319. 
 



<�����
,���

�

�

-26.�
�

Teuling, A.J. and Troch, P.A. (2005) Improved understanding of soil moisture variability 
dynamics, Geophysical Research Letters, 32, L05404, DOI:10.1029/2004GL021935. 
 
Teuling, A. J., Seneviratne, S.I., Williams, C. and Troch, P.A. (2006) Observed timescales of 
evapotranspiration response to soil moisture, Geophysical Research Letters, 33, L23403, 
doi:10.1029/2006GL028178. 
 
Thiemann, M., Trosset, M., Gupta, H.V. and Sorooshian, S. (2001) Bayesian recursive 
parameter estimation for hydrologic models, Water Resources Research, 37, 10, 2521-2535.  
 
Thierfelder, T.K., Grayson, R.B., von Rosena, D. and A.W. Western, A.W. (2003) Inferring 
the location of catchment characteristic soil moisture monitoring sites: Covariance structures 
in the temporal domain, Journal of Hydrology, 280,13-32. 
 
Thompson, M.D., Preat, N.A. and Sommerfeld, A.Y. (1981) LANDSAT for determination 
and mapping of saline soils in dryland areas in southern Alberta. In: Proceedings of 4th 
Canadian Symposium on Remote Sensing, pp. 1213–1215. Winnipeg. 
 
Tietje, O. and Tapkenhinrichs, M. (1993) Evaluation of pedotransfer functions, Soil Science 
Society Am. J., 57, 1088–1095. 
 
Tromp-van Meerveld and McDonnell, J.J. (2006) Threshold relations in subsurface 
stormflow: 2. The fill and spill hypothesis, Water Resources Research, 42, W02411, 
doi:10.1029/2004WR003800. 
 
Tromp-van Meerveld, H. J. and J. J. McDonnell (2006a) Threshold relations in subsurface 
stormflow: 1. A 147-storm analysis of the Panola hillslope, Water Resources Research, 42, 
W02415, doi:10.1029/2004WR003778. 
 
Tromp-van Meerveld, H. J., and McDonnell, J.J. (2006b) On the interactions between the 
spatial patterns of topography, soil moisture, transpiration and species distribution at the 
hillslope scale, Advances in Water Resources, 29, 293 – 310. 
 
Tromp-van Meerveld, H.J. and M. Weiler (2007) How does soil depth variability influence 
subsurface flow variability? Advances in Water Resources, 30.  
 
Tromp-van Meerveld, H.J. and Weiler, M. (2008), Hillslope dynamics modeled with 
increasing complexity, Journal of Hydrology 361, 24-40. 
 
Trubilowicz, J., Cai, K. and Weiler, M. (2009) Viability of motes for hydrological 
measurement, Water Resources Research, 45:W00D22, doi:10.1029/2008WR007046. 
 



<�����
,���

�

�

-22.�
�

Uhlenbrook, S., Seibert, J., Leibundgut, C. and Rodhe, A. (1999) Prediction uncertainty of 
conceptual rainfall-runoff models caused by problems to identify model parameters and 
structure, Hydrologycal Science Journal, 44, 5, 779-797.  
 
Van Straten, G. and Keesman, K.J. (1991) Uncertainty propagation and speculation in 
projective forecasts of environmental change: a lake- eutrophication example. Journal of 
Forecasting, 10, 163-190. 
 
Vereecken H., Maes J., Feyen J. and Darius P. (1989) Estimating the soil moisture retention 
characteristic from texture, bulk density, and carbon content, Soil Science, 148, 389-403. 
 
Vereecken, H., Maes, J. and Feyen, J. (1990) Estimating unsaturated hydraulic conductivity 
from easily measured soil properties, Soil Science, 149, 1, 1-12.  
 
Vereecken, H., Kasteel, R., Vanderborght, J. and Harter, T. (2007a) Upscaling Hydraulic 
Properties and Soil Water Flow Processes in Heterogeneous Soils: A Review, Vadose Zone 
Journal 6, 1-28.  
 
Vereecken, H., Kamai, T., Harter, R., Kasteel, J.W., Hopmans, R. and Vanderborght, J. 
(2007b) Explaining soil moisture variability as a function of mean soil moisture: A stochastic 
unsaturated flow perspective, Geophysical Research Letters, 34, Art. No. L22402. 
 
Vrugt, J.A., Gupta, H.V., Bastidas, L.A., Bouten, W. and Sorooshian, S. (2002) Effective and 
efficient algorithm for multiobjective optimization of hydrologic models, Water Resources 
Research, 39, 1214, doi:10.1029/2002WR001746, 2003. 
 
Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S. (2003a) A shuffled complex 
evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic 
model parameters, Water Resources Research, 39(8), doi: 10.1029/2002WR001642. 
 
Vrugt, J.A., Bouten, W., Gupta, H.V. and Hopmans, J.W. (2003b) Toward improved 
identifiability of soil hydraulic parameters: on the selection of a suitable parametric model, 
Vadose Zone Journal, 2, 98–113, doi:10.2136/vzj2003.0098. 2035, 2037  
 
Vrugt, J. A., Stauffer, P. H., Wöhling, T., Robinson, B.A., and Vesselinov, V.V. (2008a) 
Inverse modeling of subsurface flow and transport properties: a review with new 
developments, Vadose Zone J., 7, 843–864, doi:10.2136/vzj2007.0078. 2021 
 
Vrugt, J.A., Braak, C. J. F., Clark, M. P., Hyman, J. M. and Robinson, B. A. (2008b) 
Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with 
Markov chain Monte Carlo simulation, Water Resources Research, 44, W00B09, 
doi:10.1029/2007WR0067. 2023, 2032. 



<�����
,���

�

�

-23.�
�

Wagener, T. (1998) Developing a knowledgebased system to support rainfall-runoff 
modelling, MSc Thesis, Department of Civil Engineering, Delft University of Technology, 
Netherlands. 
 
Wagener, T., Lees, M.J., Wheater, H.S. (1999) A generic rainfall-runoff modelling toolbox, 
EOS, Transactions of the American Geophysical Union, 80, F203. 
 
Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V. and Sorooshian, S. (2001a) 
A framework for development and application of hydrological models, Hydrology and Earth 
System Sciences, 5, 1, 13-26. 
 
Wagener T., Camacho, L.A., Lees, M.J. and Wheater, H.S. (2001b) Dynamic parameter 
identifiability of a solute transport model. In Beheshti R (ed.). Advances in Design Sciences 
and Technology-Proceedings of EuropIA’8, Delft, April; 251-264. 
 
Wagner, B., Tarnawski, V.R., Hennings, V., Müller, U., Wessolek, G. and Plagge, R. (2002) 
Reply to comments on ‘‘Evaluation of pedo-transfer functions for unsaturated soil hydraulic 
conductivity using an independent data set’’, Geoderma, 108, 301- 304. 
 
Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S. and Gupta, H.V. (2003) Towards 
reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis, 
Hydrological Processes, 17, 455-476.  
�

Wagener, T. and Gupta, H.V. (2005) Model identification for hydrological forecasting under 
uncertainty, Stochastic Environmental Research and Risk Assessment, 19, 378-387.  
 
Wagener, T. and Kollat, J. (2007a) Numerical and visual evaluation of hydrological and 
environmental models using the Monte Carlo analysis toolbox, Environmental Modelling & 
Software, 22, 1021-1033. 
 
Wagener, T., Gupta, H., Yatheendradas, S., Goodrich, D., Unkirch, C. and Schaffner, M. 
(2007b) Understanding sources of uncertainty in flashflood forecasting for semi-arid regions, 
IAHS, 313, 204-212. 
 
Whelan, K.R.T., Smith,T.J., Cahoon, D.R., Lynch, J.C. and Anderson, G.H. (1998) 
Groundwater control of mangrove surface elevation: Shrink and swell varies with soil, 
Estuaries and Coasts, 28, 833-843. 
 
Wealands, S. (2006) Hydrological spatial field comparison, PhD thesis, University of 
Melbourne, Melbourne, Australia, 232 pp. 
 
Weiler, M. (2001) Mechanisms controlling macropore flow during infiltration-dye tracer 
experiments and simulations, ETHZ, Zürich, Switzerland, 151 pp. 



<�����
,���

�

�

-24.�
�

Weiler, M., Naef, F. and Leibundgut, C. (1998) Study of runoff generation on hillslopes using 
tracer experiments and a physically-based numerical hillslope model, IAHS Publication no. 
248, 353-360. 
 
Weiler, M., Uchida T. and McDonnell J.J. (2003) Connectivity due to preferential flow 
controls water flow and solute transport at the hillslope scale. In: Proceedings of MODSIM 
2003, Townsville, Australia. 
 
Weiler, M. and McDonnell, J.J. (2004a) Water storage and soil movement. In: Burley, J., 
Evans, J. and Youngquist , J. (eds), Encyclopedia of Forest Sciences. Elsevier Science 
Publishers, pp. 1253-1260. 
 
Weiler, M. and McDonnell, J.J. (2004b) Soils and Site: Water Storage and Movement 
Encyclopedia of Forest Sciences, Academic Press. 
 
Weiler, M. and McDonnell, J.J. (2006) Testing nutrient flushing hypotheses at the hillslope 
scale: A virtual experiment approach, Journal of Hydrology, 319, 339-356.  
 
Weiler, M. and McDonnell, J.J. (2007) Conceptualizing lateral preferential flow and flow 
networks and simulating the effects on gauged and ungauged hillslopes, Water Resources 
Research, 43, W03403, doi:10.1029/2006WR004867. 
 
Wendroth, O., Pohl, W., Koszinski, S., Rogasik, H., Ritsema, C.J. and Nelson, D.R. (1999) 
Spatiotemporal patterns and covariance structures of soil water status in two Northeast-
German field sites, Journal of Hydrology, 215, 38-58. 
 
Western, A.W. and Grayson, R.B. (1998) The Tarrawarra data set: soil moisture patterns, soil 
characteristics and hydrological flux measurements, Water Resources Research, 34, 2765- 68. 
Western, A.W. and Blöschl, G. (1999a) On the spatial scaling of soil moisture, Journal of 
Hydrology, 217, 203-224. 
 
Western, A.W., Grayson, R.B., Blöschl, G., Willgoose, G.R. and McMahon, T.A. (1999b) 
Observed spatial organization of soil moisture and its relation to terrain indices, Water 
Resources Research, 35, 3, 797-810.  
 
Western, A.W., Blöschl, G. and Grayson, R.B. (2001) Toward capturing hydrologically 
significant connectivity in spatial patterns, Water Resources Research, 37, 1, 83-97.  
 
Western, A.W., Zhou, S.-L., Grayson, R.B., McMahon, T.A., Blöschl, G. and Wilson, D.J. 
(2004) Spatial correlation of soil moisture in small catchments and its relationship to 
dominant spatial hydrological processes, Journal of Hydrology, 286, 113-134. 
 
Wheater, H.S., Bishop, K.H. and Beck, M.B. (1986) The identification of conceptual 
hydrological models for surface water acidification, Hydrological Processes, 1, 89-109. 



<�����
,���

�

�

-25.�
�

 
Wheater, H.S., Jakeman, A.J. and Beven, K.J. (1993) Progress and directions in rainfall-
runoff modeling. In Modeling Change in Environmental Systems, Jakeman, A.J., Beck, M.B. 
and McAleer, M.J. (eds), John Wiley & Sons: UK; 101-132. 
 
Whelan, M.J., Anderson, J.M. (1996) Modelling spatial patterns of throughfall and 
interception loss in a Norway spruce (Picea abies) plantation at the plot scale, Journal of 
Hydrology, 186, 335-354. 
 
Wigmosta, M.S., Lance, W.V. and Lettenmaier, D.P. (1994) A distributed hydrology-
vegetation model for complex terrain, Water Resources Research, 30, 6, 1665-1679. 
 
Wigmosta, M.S. and Lettenmaier, D.P. (1999) A comparison of simplified methods for 
routing topographically driven subsurface flow, Water Resources Research, 35, 255-64. 
 
Wilson, J. P. and Gallant, J.C. (2000) Secondary Topographic Attributes. Terrain Analysis: 
Principles and Applications. J. P. Wilson, Gallant, J. C. New York, John Wiley and Sons: 87-
131. 
 
Wösten J.H.M., Lilly, A., Nemes, A., Le Bas, C. (1998): Using existing soil data to derive 
hydraulic param- eters for simulation models in environmental stud- ies and in land use 
planning, Final Rep. Eur. Un., Wageningen.Yapo P.O.,  
 
Wösten, J.H.M., Pachepsky, Ya.A. and Rawls, W.J. (2001) Pedotransfer functions: bridging 
the gap between available basic soil data and missing hydraulic characterisitics, Journal of 
Hydrology, 251, 123-150. 
 
Ye, Z.H., Baker, A.J.M., Wong, M.H. and Willis, A.J. (1997) Zinc, lead and cadmium 
tolerance, uptake and accumulation in populations of Phragmites australis (Cav.) Trin. ex 
Steudel, Annals of Botany, 80, 363–370. 
 
Young, P.C. (1983) The validity and credibility of models for badly-defined 
systems. In: Beck M.B. and van Straten, G. (eds) Uncertainty and Forecasting of Water 
Quality, Springer-Verlag, Berlin, 69-98 pp. 
 
Young, P.C., Parkinson S. and Lees, M.J. (1996) Simplicity out of complexity in 
environmental modelling: Occham’s razor revisited, Journal of Applied Statistics, 23, 165-
210. 
 
Zhou, J.Z., Xia, B.C., Treves, D.S., Wu, L.Y., Marsh, T.L., O’Neill, R.V., Palumbo, A.V. and 
Tiedje, J.M. (2002) Spatial and resource factors influencing high microbial diversity in soil, 
Applied Environmental Microbiology, 68, 326-334. 



<�����
,���

�

�

-3".�
�

Zitzler, E. and Thiele, L. (1999) Multiobjective Evolutionary Algorithms: A Comparative 
Case Study and the Strength Pareto Approach, IEEE Transactions on Evolutionary 
Computation, 3, 4, 257-271. 

 

�

 

�

�


