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Summary

The topographic variability in karst regions is thought to be different than in non-

carbonate regions. Deep learning approaches were used on digital elevation data to

distinguish whether karst occurs in a certain area or not. Quantifying the strength

of weathering in karst regions was the second objective of this work. With this in-

formation regions with unreliable carbonate rock estimates could be mapped more

reliably. A digital elevation model with a 1 arcsec resolution covering the majority

of Europe was used to train a convolutional neural network, as well as a Quantile

Regression forest, along with the karst regions set in the world karst aquifer map.

Similarly a convolutional neural network and a quantile regression forest were trained

on a smaller scale Digital Terrain model covering Slovenia, which is a highly karsti-

fied country. Simulations and predictions of the convolutional neural network were

insufficient. A sensitivity analysis was conducted increasing the topographic param-

eters by 5, 10 and 20%. The sensitivity analysis showed that even a 5% increase of

terrain parameters raised training accuracy from 0.64 to 0.79. With a 20% increase

the convolutional neural network predicted the occurrence of karst in 98% of cases

correctly. It was possible to classify topographically distinct regions as karstified

with a quantile regression forest, although accuracy measures over the whole dataset

didn’t surpass the random assignment of karst regions given the proportion of their

extent. Considering the high resolution data for training the convolutional neural

network, the accuracy achieved was higher. A maximum testing accuracy of 0.96

and 0.92 along with maximum training accuracy of 0.82 and 0.80 for different loss

functions was found. At visual inspection of the predictions of these models, the high

accuracy was not representable for the model’s ability to predict karst in a suficcient

way, caused by large class imbalances that not even a more robust loss function could

overcome. Finally the quantile regression forest trained with the high resolution data

showed similar results to the convolutional neural network. Reported accuracy was

high, but the predictions didn’t outperform a random assignment significantly. For
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the data with higher resolution the convolutional neural network was able to identify

features and relate them to the ocurrence of karst. Possible reasons of failure to make

reliable predictions are (1) very limited computing power (2) choice of preprocessing

(3) high abstraction level of the data.

Keywords:

Deep Learning, Machine Learning, Convolutional Neural Network, Quantile Regres-

sion Forest, Karstification, Karst, Carbonate rock, Digital Elevation Model



Zusammenfassung

Es wird angenommen, dass die topographische Variabilität in Karstgebieten anders

ist als in Nicht-Karbonatgebieten. In dieser Arbeit wurden Deep-Learning-Ansätze

für digitale Höhendaten verwendet, um zu unterscheiden, ob in einem bestimmten

Gebiet Karst vorkommt oder nicht. Die Quantifizierung der Stärke der Verwitterung

in Karstregionen war das Ziel des zweiten Schritts dieser Arbeit. Mit diesen Informa-

tionen konnten Regionen mit unzuverlässigen Karbonatgesteinsschätzungen zuverläs-

siger kartiert werden. Ein digitales Höhenmodell mit einer Auflösung von 1 arcsec,

das den größten Teil Europas abdeckt, wurde verwendet, um ein Convolutional Neu-

ral Network sowie einen Quantile Regression Forest zusammen mit den Karstregio-

nen der weltweiten Karstaquiferkarte zu trainieren. In ähnlicher Weise wurden ein

Convolutional Neural Network und ein Quantile Regression Forest auf ein digitales

Geländemodell in kleinerem Maßstab trainiert, welches das stark verkarstete Land

Slovenien abdeckt. Die Simulationen und Vorhersagen des Convolutional Neural Net-

work waren unzureichend. Es wurde eine Sensitivitätsanalyse durchgeführt, bei der

die topographischen Parameter um 5, 10 und 20% erhöht wurden. Die Sensitivitäts-

analyse zeigte, dass eine Erhöhung der Parameter um 5% zu einer Verbesserung der

Trainingsgenauigkeit von 0,64 auf 0,79 führte. Bei einer Erhöhung um 20% sagte

das Convolutional Neural Network das Auftreten von Karst in 98% der Fälle korrekt

vorher. Es war möglich mit einem Quantile Regression Forest verkarstete Regio-

nen zu klassifizieren, obwohl die Genauigkeitsmaße über den gesamten Datensatz

die zufällige Zuordnung von Karstregionen angesichts des Anteils ihrer Ausdehnung,

nicht übertraf. In Anbetracht der hochauflösenden Daten für das Training des kon-

volutionären neuronalen Netzes war die erreichte Genauigkeit höher. Es konnte eine

maximale Testgenauigkeit von 0,96 und 0,92 zusammen mit einer maximalen Train-

ingsgenauigkeit von 0,82 und 0,80 für verschiedene Loss Function erreicht werden.

Eine visuelle Analyse der Modellvorhersagen zeigte, dass die hohe Genauigkeit der

Modelle nicht ihre Fähigkeit Karst in ausreichender Weise vorherzusagen repräsen-
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tiert. Dem zugrunde liegen große Klassenungleichgewichte, welche nicht einmal eine

robustere Loss-Function überwinden konnte. Schließlich zeigte der mit den hochau-

flösenden Daten trainierte Quantile Regression Forest ähnliche Ergebnisse wie das

Convolutional Neural Network. Die berichtete Genauigkeit war hoch, aber die Vorher-

sagen übertrafen eine Zufallszuweisung nicht signifikant. Bei den Daten mit höherer

Auflösung war das Convolutional Neural Network in der Lage, Merkmale zu iden-

tifizieren und sie mit dem Auftreten von Karst in Beziehung zu setzen. Mögliche

Gründe für das Scheitern zuverlässiger Vorhersagen sind (1) sehr begrenzte Rechen-

leistung (2) falsche Wahl der Vorverarbeitung (3) hoher Abstraktionsgrad der Daten.

Stichworte:

Deep Learning, Machine Learning, Convolutional Neural Network, Quantile Regres-

sion Forest, Verkarstung, Karst, Karbonatgestein, Digitales Geländemodell
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1. Introduction

The first scientific descriptions of karst landscapes and the term "karst" originated

from inhabitants of the Dinaric karst (Bonacci, 1987). The historical importance of

karst, according to Parise and Sammarco (2015), is manifested in the circumstance

that inhabitants of karstified areas were forced to develop deeper understanding of the

underlying geologic structures and develop techniques to distribute water. This factor

was leading to a main driving force in the development of many karstified regions.

Nowadays karst is of great economic and hydrologic importance since approximately

15 % of global drinking water is supplied by karst aquifers (Parise and Sammarco,

2015). The entanglement of karst aquifers in combination with its high relevance for

water supply remain some of the lesser understood and addressed topics in hydrology

(Bonacci, 1987).

The Evolution of karst, more precisely the physical and chemical processes relevant in

the evolution of karst, is called karstification. Karst is prone to being highly impacted

by weathering and erosion. Karst rocks (evaporites: gypsum, rock salt, anhydrite;

limestone: marble, dolomite) share the property of being soluble in water, therefore

erosion due to dissolving is their major type of weathering. The close relationship

between karst and hydrology becomes immediately clear (Gunn, 2004). One of the

main characteristics of karst landscapes is the absence of surface waters. With an

increasing degree of karstification the application of standard hydrologic models and

concepts cannot be used as an accurate description of hydrologic processes in affected

regions (Bonacci, 1987). This issue has been addressed by researchers who developed

catchment scale models to simulate hydrological processes in karst areas (Parise et al.,

2018). Thus the disregard of karst occurrence may result in a large amount of error

in prediction of river discharge or spring discharge as well as other estimates based

on models of any scale.

Machine learning (ML) is an emerging field in applied various disciplines including

Hydrology (Shen et al., 2018). Rosenblatt (1958) was trying to understand and
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recreate biological systems and neurological information processing. He developed

the Perceptron, the key element of neural networks. Since his discovery Rumelhart

et al. (1986) introduced backpropagation as an imitation of the natural learning

processes for networks of perceptrons and in 1995 the first neural network specialized

on computer vision problems was proposed (Bengio et al., 1995). Despite the early

discovery of these relatively simple model structures it is only today that their full

potential can be realized. Besides new ML techniques the main reason for the recent

success of neural networks is the availability of Big Data (Barnes, 2013) and increasing

computing power. In fact, Krizhevsky et al. (2012) claimed that their results on

image recognition tasks are solely limited by the availability of memory on their two

graphics processing units (GPU’s) and the size of training datasets. Even tough

this statement is likely to contain some truth, Xie et al. (2019) for example showed

that ML advances don’t depend exclusively on technical advances. On one hand their

research was conducted with more advanced processors. On the other hand the newly

introduced self-learning technique contributed majorly to the advance in performance

of their model on the ImageNet task.

"Deep learning (DL) is a suite of tools centered on artfully designed large-

size artificial neural networks." Shen et al.

(2018)

The depth of a neural network is connected with its amount of layers. Deep learning

is a branch of artificial intelligence that shows the greatest capacity to extract rele-

vant information from large datasets (Shen et al., 2018). The deep structure makes

the prediction of non-linear relationships between input images and labels given to

each pixel possible. The task of labeling a pixel of each image with a certain class

is called semantic segmentation in Data science. It can be applied successfully to

remote sensing images (Zhu et al., 2017). The main focus of this work are super-

vised deep learning networks, namely convolutional neural networks (CNN), which

have proven to be very successful in image segmentation tasks (Long et al., 2015).

2



CHAPTER 1. INTRODUCTION 3

Inferring karst areas and quantifying the weathering of carbonate rock landscapes is

crucial to improve hydrologic models on a large (possibly global) scale and identify

false model behavior in smaller scale models due to karstification. Simultaneously by

training a machine learning algorithm to identify karst regions reverse conclusion on

which topological factors are the most influential to define karst areas, is possible.

This thesis represents an intersection between deep learning, geomorphometry and

remote sensing with focus on applying the acquired knowledge and data to hydrologic

models and understanding of hydrologic behavior of karstified regions.

CNNs have been applied to geodata. A brief summary of such applications can be

found in Zhu et al. (2017) and will be elaborated further in the following literature

survey. There are several different related fields of application of deep learning on

spatial data. Most of the projects are realized using satellite images. The remote

sensing tasks that have been successfully automated using DL are:

• Identifying above-ground structures

• Digital soil mapping

• Identifying land cover and crop types

• Natural disasters (landslides and sinkholes)

• Karst rocky desertification

Using digital elevation models (DEM) and DL to identify above-ground structures

with focus on determining trees and buildings in urban areas (Marmanis et al., 2015).

In this study a deep multilayer perceptron algorithm (MLP) was chosen over the more

complex and statistically promising CNN due to sufficient classification skills of the

simple algorithm and the ability to quickly process large amounts of remotely sensed

data. They also state that other DL architectures are likely to result in better pre-

dictions.



Another field of application for DL in remote sensing are land cover and soil map-

ping tasks (Heung et al., 2016). A study conducting digital soil mapping tasks using

a CNN (Padarian et al., 2019) and a study to determine soil moisture distribution

with an MLP (Song et al., 2016) have been executed. In both cases the DL Models

outperformed conventional models in calculation time and accuracy. Padarian et al.

(2019) used a 3 arcsec resolution DEM and derived slope and topographic wetness

index along with annual temperature and rainfall data. All data was standardized

to a 100m grid. The closest related study to the following project is an attempt to

map superficial geology in northern Canada (Latifovic et al., 2018). The authors

used RGB imagery from Landsat data and derived information about the landcover

e.g. normalized difference vegetation index from it. Additionally they included air

photos and a DEM with 8 m spatial resolution and superficial material categorized

by experts to train the CNN. Other studies have shown that deep learning (a multi

layer feed-forward artificial neural network) methods can outperform other methods

(gaussian pyramid and random forest) results on digital soil mapping tasks with the

input parameters being derived from DEM information prior to training (Behrens

et al., 2018).

Wurm et al. (2019) demonstrated that a fully convolutional network (FCN ) can be

used to map slums in mega cities like Mumbai, India. The authors used satellite

images from different sources and with different resolutions to map areas that are

likely to be a part of a slum. With the highest resolution satellite images (Quick-

Bird) Wurm et al. (2019) were able to achieve a 88.39% accuracy for detecting slum

pixels.

A CNN and a MLP were compared to segment and predict crop types and land covers

in Ukraine based on Satellite (Landsat-8 and Sentinel-1A RS ) images (Kussul et al.,

2017). The ensemble CNNs trained on the specific data outperformed the MLP and

was able to identify major crop types with an accuracy of 85 %.

A CNN has been used in natural hazard management to detect landslides in Shenzen

area, China (Ding et al., 2016). The authors suggest to use texture change and a

4



CHAPTER 1. INTRODUCTION 5

specially trained CNN to detect areas where landslides occurred. Similar applica-

tions of deep learning on hazards happening in carbonate rock landscapes, which are

mainly collapses have been studied using a CNN to forecast sinkholes (Hoai et al.,

2019) and Bayes-based machine learning algorithms to map current sinkholes (Taheri

et al., 2019). Identification of underground cavities with ground-penetrating radar

was successfully realized using a CNN in Seoul, South Korea (Kang et al., 2019).

Support vector machines have been used to identify karst related geomorphological

features using extensive data like karst rocky desertification and multi-spectral satel-

lite images (Xu et al., 2015).

Interestingly CNNs have been applied to identify and label pixels in magnetic res-

onance imaging pictures to detect brain tumors (Havaei et al., 2017). The kind of

brain tumor the authors examined can appear at any location of the brain and have

numerous shapes, but still the CNN was able to segment it with higher accuracy and

in a shorter time than the models trained on the same problem before that. This

study is of interest to this project because the magnetic resonance images are an

abstraction of the brain as DEMs are an abstraction of the earths surface. While

most of the described studies utilize satellite images in combination with other data

that are as good as photos of the earths surface, Havaei et al. (2017) show the ability

of CNNs to extract patterns from more abstract data.

The main focus of this survey is on applying a CNN to identify karst areas. In

addition to this a quantile regression forest (QRF) was set up and evaluated as a

promising method to identify karstified areas. Random forests were introduced by

Breiman (2001) and they have been used successfully for various regression and clas-

sification tasks. A review of their application can be found in Tyralis et al. (2019).

A further description of the application of QRFs in remote sensing and other classi-

fication tasks exceeds the capacity of this work and is not carried out at this point.



Artugyan and Urdea (2016) conducted a survey they claim to be the first description

of a karstified mining area in South-West Romania. They found that the terrain

parameters extracted from the DEM are related to the areas grade of karstification,

which they related to the occurrence of dolines. Slope gradient, drainage depth,

drainage density, topographic wetness index (TWI) and topographic position index

(TPI) were calculated to quantify the stage of karstification. Low slope gradients in-

dicate strong karstification due to slow drainage of the areas, which was validated by

matching sinkhole occurence and slope gradient. Drainage depth represents the range

of slopes in a certain area leading to a representation of plateaus. This index showed

a positive correlation to karstification. Low Drainage density is considered one of

the main characteristics for karst areas (Bonacci, 1987). Similarily Marjan Temovski

and Ivica Milevski (2015) conducted a classical geomorphometric research on karst

areas in Macedonia using a DEM of 15 m resolution to characterize karst areas. The

authors found that the elevation was higher, slope was significantly higher and aspect

was slightly more prone to being eastern and western exposed for karst areas, com-

paring the distributions of parameters to the rest of the countries geomorphometric

properties.
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2. Objective

It seems that using only DEMs to predict the strength of weathering in a way that

is unrelated to a specific karst phenomenum, for example sinkholes, is a very novel

approach that has not been done in this manner before. Geomorphometric analysis

suggest that the approach is promising (Artugyan and Urdea, 2016; Marjan Temovski

and Ivica Milevski, 2015). According to Artugyan and Urdea (2016) the information

if karstification occurs in certain regions and to which extent it is present must be

contained in a DEM and therefore the current CNNs should be able to "see" and

structure the data in a way to make this information accessible (Long et al., 2015).

The Objective of this work is to use a machine learning algorithm to segment DEM

images into areas affected by karstification and non-karstified areas and quantify the

grade of karstification. The following research questions are to be answered during

this project:

1. Can a CNN or a QRF be trained to predict the boundaries of karst areas on

the basis of elevation data with an adequate accuracy?

2. Is the strength of weathering derivable from this data as well?

3. Can deep learning be used to improve karst mapping globally?

Thus the Null Hypothesis of this thesis is:

Deep learning can improve the current state of mapping carbonate rock regions.

In which the current state of mapping refers to the extent of the carbonate rock

regions as well as the strength of weathering present in those regions.

7



3. Methods

The steps taken in order to model the occurrence of karst are summarized in the

flowchart in figure 3.1. A number of topographic parameters were derived from the

original elevation data. The dataset was explored using traditional statistical methods

and a binomial regression was performed to get a first idea of influential variables.

Slope and elevation were classified and related to the occurrence of karst. Afterwards

a CNN was set up and trained on the data and three augmented datasets with an

artificially increased input signal for detection. Furthermore the CNN was trained

using different objective functions. Another CNN with was trained using data with a

higher resolution to examine the influence of resolution. Finally a quantile regression

forest was trained as a second approach to predict karstified areas for both datasets.

All models and datasets required individual preprocessing.

Predicting the
presence of

carbonate rock

CNN

deriving terrain
parameters

Statistical
 pre-analysis

Lidar data 
Slovenia

SRTM data
Europe

terrain
parameters

+20%

terrain
parameters

+10%

terrain
parameters

+5%

Resampling

QRFQRF

Resampling

CNN

raster preprocessing rescaling  rescaling 
histogram equalization

rescaling 
transfer to table

Figure 3.1: This flowchart shows the different ML models trained in this work and
the datasets used. Additionally the links between the boxes represent
the steps taken to process data or train models. The usage of different
loss functions on the SRTM data was emitted for simplicity.
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CHAPTER 3. METHODS 9

3.1 Data

Karst areas are mapped very reliably for countries in Europe and parts of North

America by Chen et al. (2017) in the corresponding datasets. Those karst regions

were assumed to be the ground-truth masks for the models. The DEM provided by

the Space Shuttle Radar Topography Mission (SRTM) (Shuttle Radar Topography

Mission, 2000) was used as the first predictor. On this mission the Earth’s topography

was covered with a 1arcsec resolution, which comes to approximately 30 meters for

80% of the Earth surface. In the second set of models a high resolution Digital Ter-

rain Model (DTM) with a resolution of 1m2 of Slovenia was included (Lidar, 2010).

The data was aquired using light detection and ranging (Lidar), which is a remote

sensing technique that uses lasers of different wavelengths to measure the state of

atmospheric and earth surface parameters. The DTM of Slovenia is freely available

and can be downloaded from the government website (Lidar, 2010).

The SRTM data was provided as raster file and the world karst aquifer map (WOKAM)

data was available as ESRI shapefile. The Lidar data was available as compressed

point clouds in .laz format (Lidar, 2010).

3.2 Preprocessing

SRTM

Processing of the SRTM data was done in R (R Development Core Team, 2008), QGis

(QGIS Development Team, 2009) and Python (Travis Oliphant, 2006–; GDAL/OGR

contributors, 2019). The SRTM DGM was split up into tiles of 128 x 128 pixels (figure

3.2, left) resulting in images spanning an area of 14,75 km2. The tile size was approx-

imated to match the extent of the pictures Wurm et al. (2019) used to successfully

identify slums, although they used pictures with a higher resolution, as well as the

images used to identify road scenes by Badrinarayanan et al. (2015) (100 x 100 pixels).



The dataset containing regions of karst areas were converted from shapes to raster

files with the same extent and resolution as the SRTM data, and then cropped to

the same extent as the DEM tiles in Python. Further processing and rescaling into

binary images was implemented in R. Splitting of the European SRTM raster took

several days to compute.

Figure 3.2: Map of karstified areas in Europe based on WOKAM data (right).
Visualization of splitting the raster into tiles of 100x100 pixels (left)

According to Artugyan and Urdea (2016) and Marjan Temovski and Ivica Milevski

(2015) the following parameters were derived from the elevation data, because it was

possible to calculate them without including any further data. A selection of those

parameters was used as additional predictors.

• slope, calculated according to Horn (1981) taking patches of 3x3 cells into

account

10



CHAPTER 3. METHODS 11

• surface roughness, calculated as the difference of the maximum and minimum

value of a patch of 3x3 cells

• aspect, also according to Horn (1981)

• TPI, which is the difference between a cell value and the mean value of its

surrounding cells (Wilson et al., 2007)

• Terrain Ruggedness Index (TRI), for which the mean of the difference of a cell

and each of its surrounding cells is calculated (Wilson et al., 2007)

• flow direction which indicates the direction of the largest descend in elevation

or the minimum ascend if all surrounding cells are higher

These Parameters were calculated using the R package raster (Hijmans and van Etten,

2012).

Lidar

The Slovenian government provides lidar tiles with an extent of 1000 x 1000 pixels

and a resolution of 1 m. Each tile spans an area of 1 km2. Since most of Slovenia’s

surface is karstified (see figure 3.3) only the tiles containing bordering areas were used

in this study. Downloading the files was automatized in R with a prior selection of

relevant files to download using a grid shapefile containing all filenames of available

tiles. Figure 3.3 shows the selected tiles that contained karst and non-karst areas

from the WOKAM map. In the left window a zoomed tile is visible displaying the

elevation values before rescaling the picture.

The compressed point clouds were extracted and processed in R. The points flagged

with return level 2 and 8, which coresponds to water and earth surface reflection

of laser were selected and then interpolated using a triangulated irregular network

algorithm implemented in R, based on Zhu et al. (2008). To minimize computing

time the corresponding karst masks were cropped from the WOKAM raster gener-



Figure 3.3: Map of karstified areas in Slovenia based on WOKAM data. Grey boxes
are marking the position of Lidar point clouds that cover areas
containing pixels classified as karst and non-karst, which were selected
for the study. The inserted map of the tile gives an insight in the
resolution and quality of the Lidar data.

ated for the SRTM data, then upsampled using a nearest neighbour algorithm and

reclassification to binary information. Slope and flow direction were calculated for

the Lidar data as described before for the SRTM data.

Statistical Pre-Analysis

Thorough statistical pre-analysis was performed only on the SRTM data. With re-

gards to Ozturk et al. (2018), who related the occurrence of dolines to elevation,

the occurrence of karst was linked to the slope or elevation of a pixel. The topo-

graphic parameters were categorized in a way that the same amount of pixels fall in

every class. After that, karstified pixels and non-karstified pixels in every group were

counted to see if a higher ratio of karstified pixels occur in a certain class of the given

parameter.

12
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Figure 3.4: The preprocessing resulted in tiles of SRTM data and their coresponding
binary masks. In order to choose to include slope, elevation and flow
direction in the input data a binomial regression and cluster analysis
was performed. This data was generated to be passed on to the CNN.

To get a first impression on the predictability of the karstified regions trough the

elevation data of Europe (figure 3.2, left) two subsets of 10 000 and 20 000 regularly

sampled pixels values were used in a binomial multiple regression to predict, if the

corresponding area was karstified. In regular sampling of a raster the number of

cells to be extracted is evenly distributed over the whole area with an equal distance

between all sampling points. This sampling method ensured values from all over

Europe to be included in the regression. The multiple regression was conducted

assuming a binomial distribution for the output data with corresponding values of

"1" for a karstified pixel and "0" for a karst-free pixel (Dormann, 2013). The most

significant predictors for the karst areas were included in the data to be passed to

the CNN afterwards. Traditional measures for the goodness of fit (e.g. R2) are not

suitable for binary data. Therefore the goodness of fit was accessed by comparing the

null deviance with the residual deviance. The null deviance describes the performance

of a model with only the intercept and the residual deviance represents how the

model performs including the predictors. A small deviance indicates a higher model

performance (Dormann, 2013). To avoid passing on highly correlated predictors a

cluster analysis was performed (Hoeffding, 1948). If two predictors were significant,



but highly correlated, one of them was excluded since they were not likely to contain

extra information (Dormann, 2013).

3.3 Neural Network Architecture

In the following chapter the basics of CNNs and neural networks in general will be

described based on Hastie et al. (2009) and Li (2019). A neural network is an algo-

rithm freely inspired by the human brain. It consists of neurons, or perceptrons, that

are connected non-linearly. It is therefore a form of complex regression. The neurons

are stacked in layers and there are different types of layers depending on the tasks

they are performing. In the most basic form of a neural network, there are input,

hidden and output layers. The input layer has as many neurons as there are predic-

tors in the model. These predictors are then passed on to the neurons of a hidden

layer. The hidden layers consist of perceptrons and they are linked with weighted

activation functions. The trainable parameters of the network are the weights and

biases associated with the activation function. The number of hidden layers is chosen

according to the complexity of the system and limited by computing power. After

going trough several hidden layers, the Input is mapped into a probability output.

For computer vision, semantic segmentation or object detection tasks this simple

architecture is not sufficient and a number of specified hidden layers have been in-

troduced to successfully identify objects in pictures. The fundamentals of neural

networks and their origins will coarsely be introduced before going into more detail

explaining the features of a CNN and other terms and tools used in this project.

The Perceptron and the Basic Feed Forward Neuralnet

The perceptron is an artificial neuron located in the hidden layer and the basic com-

pound of any neural network. It performs an operation called forward propagation.

The input data (xi) is passed on to the neuron and multiplied with a weight (wi).

14
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The resulting values are summed up and a bias (w0, equivalent to the intercept of a

linear regression) is applied to the sum. Adding the bias allows the activation func-

tion to be shifted. Consecutively non-linearity is added to the data by calculating

the activation function g. Equation 3.1 represents the summing up of weighted in-

put data, bias addition and calculation of the activation function, which is the core

process inside a neuron.

∧
y g(wo

m∑
i 1

wi xi) (3.1)

The output of the neuron (y) is passed on to the neurons in the next hidden layer

as input. During training of the network the weights and biases are assigned to the

neurons in order to minimize the loss function. The activation function (g) can be

binary to turn a neuron on/off fully or gradual like a logistic sigmoid function.

Convolutional Neural Networks

CNNs are particularly suitable for classifying image data, because their hidden layers

are not only a string of neurons, but they apply activation functions over sliding win-

dows that scan the picture retaining the spatial relation of pixels. CNN’s are usually

a sequence of convolutional layers with a Rectified linear unit (ReLU) activation func-

tion followed by pooling layers for feature learning. After this sequence, also referred

to as downscaling, the following layers are fully connected layers. The last layer is a

softmax or sigmoid layer in the end to perform the classification Badrinarayanan et al.

(2015); Kendall et al. (2015). In this project the structure suggested by Ronneberger

et al. (2015) for biomedical image segmentation was used. It is structured similar to

SegNet suggested by (Badrinarayanan et al., 2015) (figure 3.5) with a different mech-

anism upscaling the picture. Since Badrinarayanan et al. (2015) provided a superior

visualisation of the network, it was chosen as a representative in this work.



Figure 3.5: Exempalry scheme of a CNN from Badrinarayanan et al. (2015).
Feature extraction is performed in the Encoder using convolution and
maxpooling, afterwards the picture is upscaled and classified with a
propability function. Batch normalization is used as a technique for
regularization.

Convolution

Convolution can be seen as a way of scanning the picture and is a part of the down-

scaling and upscaling process. During convolution a filter is applied to the image. The

filter is a fixed width and height window that slides over the image and performs a

matrix multiplication using all the values on the picture (also called receptive field).

Then the multiplied values are inserted into an new array which is called the fea-

ture/activation map. By using filters of different size, different features on different

scales in the receptive field are considered. The filter can also be more specialized

and sharpen the image or perform edge detection.

The parameters that need to be defined for the convolution layer are the window size,

the number of filters, their spatial extent, the stride and the amount of zero padding.

The stride is conventionally set to two and specifies the amount of pixels the filter

moves in every step of convolution. The Zero padding refers to the way the boarders

of the image are treated and weather or not zeros will be inserted in the feature map

when the filter exceeds the edge of the image. For the SRTM and Lidar data the

same window sizes of 3 x 3 pixels were chosen. Zero padding was not necessary and

the stride was set to two.

16
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Activation

Convolution results in a feature map of weighted values that will be passed on to

an activation function as described in the introductory section about perceptrons.

In CNNs the ReLU function is used frequently as an activation function of the con-

volutional layers. The ReLU function can be approximated by the following equation:

ReLU(x) max(0,x)≈ log(1 ex) (3.2)

The ReLU function increases training time compared to the classical sigmoid func-

tion.

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid
ReLU

Figure 3.6: Diagram of the two activation functions used in this study (Li, 2019).
The ReLU function was used in the hidden layers and the output
propability was mapped using the sigmoid function.

Rescaling

Neural networks operating with ReLU functions suffer from mainly two numerical

instabilities when faced with non-normalized data: Exploding gradient problem and



dying ReLU problem. In this case the output of the activation layers is so large/small

that the only way to recreate an accurate output is to scale the weights in opposite

directions. The weights then become 0 or Infinite values that cause the network to

collapse. On the other hand the combination of ReLU functions, weights and biases

is unable to predict a propability which lies between 1 and 0 from values over a big

range such as elevation which can range between values of 0 and several thousand

meters. For these reasons the input data of the CNN must be normalized between

0 and 1 in order to avoid numerical instabilities. Therefore all values in this work

were normalized and are unitless. Each tile was rescaled between its minimum and

maximum value to 0 and 1 which is called feature scaling in machine learning. With

x′ being the rescaled data and x being the original values, rescaling was implemented

as follows:

x′
x−min(x)

max(x)−min(x) (3.3)

Histogram equalization is a technique to improve contrast in images. Most frequent

intensity values are spread out over the histogram and therefore the intensity range

of the image is stretched. Histogram equalization was applied to the data before

passing it to the network in this study.

Pooling

Pooling is a way of downsampling in which a pool of cells, for example a window of

2x2 cells like in figure 3.6, is summarised into one value. The average of the cells

(figure 3.7, right) can be used as well as the maximum value of pixels in the pool

(figure 3.7, left). The same parameters as for the convolutional layers have to be

defined for pooling layers ecxept it is not common to include zero padding and there

is only one filter, of which the size has to be defined.
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Figure 3.7: Downscaling the picture by choosing the maximum pixel value inside a
window and mapping it to a smaller resolution image to extract features
(Li, 2019).

Upscaling

In the process of upscaling the feature extraction is reversed and the downscaled

image is brought back to its original format . The positioning information of the

maximum value found in each window during the pooling operation is retained. In

this step the features extracted in the different downscaling layers are extracted while

the image is brought back to its original format allowing a link between the features

and the output.

Classification

The classification layer, which lies at the end of the decoder and performs the final

classification task uses a sigmoid activation function to map the values between 0

and 1 giving a class propability between the two possible outcomes. The sigmoid is

pictured in figure 3.6 and is defined in equation 3.4. This function converts the input

vector into a propability distribution that includes the same number of propabilities

as the input vector. Simply the function returns a vector with a propability for each

of the pre-defined classes. The sigmoid function can be described given the vector



input (x) and the weight vectors (wi) according to Li (2019):

sigmoid(x) 1
1 e−1 (3.4)

The output of the function is a vector of propabilities of each pre-defined class. In

some of the networks trained in this study one-hot encoding is used for the predicted

variables. Usually one-hot encoding is used for multi-classification problems. This

encoding is binary and every class is assigned with a channel in an array. Each pixel

belonging to class n would be assigned with 1 in channel in the array and all pixels

belonging to other classes are assigned 0 in this channel. The network outputs a

propability for every channel and the maximum is selected to predict the class.

Implementation

The project was realized using Tensorflow (Martin Abadi et al., 2015) with a Python

frontend. As shown in figure 3.8 the final model consists of three convolutional blocks

containing convolutional, max pooling, batch normalization, and a ReLU activation

layer. For a comparison of two different loss functions two further models with an

additional convolution block were trained. The model trained on the high resolution

data included an additional convolutional block as well. The output layer is one-

hot encoded, when suitable for the chosen loss function. The resulting models had

537203 / 536934 trainable parameters for the SRTM/Lidar data including weights of

the convolutional filters and biases.
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Figure 3.8: Final model structure with 3- stage convolution and deconvolution.
Unmarked boxes implicate batch normalization layers.

Training was performed on an Intel(R) Core i7 CPU in combination with 8GB RAM.

Although a Nvidia GPU was accessible with tensorflow, the available space limited

the batch size to three pictures at a time which is too low for a reliable gradient

estimation for optimization (Keskar et al., 2016).

3.4 Training

The CNN was trained using backpropagation method and adam optimizer, which

is a stochastic gradient-based optimization method (Kingma and Ba, 2014). Adam

has proven to be a robust optimizer for ML purposes and is more efficient than the

standard stochastic gradient descent optimizer (Loshchilov and Hutter, 2015). A data

generator performing real-time augmentation, rescaling and histogram equalization

was used to feed a number of images (batch) at a time to the network. For the SRTM

data 3-channel images including elevation, slope and flow direction ( see figure 3.4

) were yielded directly from the GeoTIFF file and passed to the network as a three

channel array. In every step of the training a number of 64 images was randomly

chosen from the training data and loaded into Python. For the high resolution data



only the elevation was used as a predictor. Due to memory limitations the batch

size for Lidar data was limited to two. Keskar et al. (2016) found that batch sizes

of 32-512 datapoints perform best on estimating the gradient. The CNN was trained

for 100 epochs, with one epoch corresponding to an iteration over the total number

of images in the training dataset.

After undergoing the steps described in the first sections of this chapter the difference

between the model output and the expected output (loss function) was calculated

for every picture of the batch. The weights and biases are adjusted iteratively for

the distribution of predictions to match the distribution of expected values. The

magnitude of adaptation of the parameters is controlled by the learning rate, with

higher learning rates corresponding to a quicker reaction to gradients by the optimizer

(Loshchilov and Hutter, 2015). To eliminate sources of error associated with the

choice of loss function or model structure two models with an additional convolutional

block and two different loss functions were trained.

Loss Function

The loss function is a way to assess the error that comes along with the output a

model produces. The loss is calculated separately on the training and testing data.

The optimizer iteratively adjusts the weights and biases in the network with an

objective of minimizing the loss, hence the Error, of the model. For the main model

a sigmoid categorical crossentropy function was chosen. Crossentropy functions are

widely used for classification problems with the sigmoid crossentropy being a special

case for binary classification. The function is suitable for one-hot encoded outputs

and with yt being the expected output and yp being the predicted output the loss

function is defined for yp ≥ 0 as follows:

H(yp,yt) −yp yt log(1 e−|yp|) (3.5)
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Additionally the model was trained with the dice loss function suggested by (Shamir

et al., 2018), described in equation 3.6 and the binary crossentropy loss from ten-

sorflows default loss functions. Binary crossentropy is a special form of the sigmoid

crossentropy (equation 3.5) considering exclusively two classes.

D(yp,yt)
2|yp∩yt|
|yt| |yp|

(3.6)

The dice coefficient was developed for binary segmentation of medical images, which

show large imbalances in class occurrence.

Accuracy

Accuracy is calculated additionally to the loss function. A lower loss usually corre-

sponds to a higher accuracy. Accuracy is calculated not in order to learn the model

Parameters but to give the user an idea of how well the model performs. Therefore

it is usually a percentage or a understandable rate of correct predictions. In the case

of karst prediction the accuracy of a picture which contains 100 pixels of which 60

were predicted correctly the accuracy is 60%.

Overfitting

A common problem of machine learning models is overfitting in which the model is

performing very well on the training data but due to its over specialization fails to

generalize. This lack of generalization leads to bad performance on the testing data

and inability to predict unknown images. It is very common with deep networks

containing large number of parameters, since they are very specialized.

To avoid the occurrence of overfitting regularization techniques are applied. In this

study dropout layers were used to prevent overfitting. Dropout layers induce a certain

percentage of random neurons in a layer to be deactivated. This prevents specializa-

tion of the network because the weights associated with other neurons in the layer



will be adjusted in a changed environment. Furthermore the pathways trough the

network are diverged by putting blockages where the neuron is dropped out. In this

case the network cannot be depending on only one way to pass trough the informa-

tion from the input image. Dropout layers were implemented in the decoder of this

network leaving out 50% of the connections between the neurons randomly.

Sensitivity Analysis

One of the objectives of this work is to find the influencing factors for the CNN

to classify a pixel as karstified and which informatio is missing in case the model

cannot be trained successfully. To find out if the CNN could identify karstified

areas with more success if the differences in topography between karst and non-karst

were more pronounced, the data was augmented. The model was trained with the

same amount of pictures and under the same training conditions using three different

inputs. The pixel values were increased by 5 %, 10 % and 20 % of the original value

for elevation, slope and flow direction befor rescaling the data. Performance of the

model was evaluated for all three scenarios. The increase in values for only one class

is regarded as an increase in signal strength for the network, hence conclusions about

the sensitivity of the model can be drawn. Augmentation was implemented in the

generator, augmented data was created on the fly, so only the original tiles are saved

as files.

3.5 Quantile Regression Forest

As described in Tyralis et al. (2019) a regression tree parts the variable space in two

according to a rule or threshold. Within those two seperate variable spaces the same

operation is applied with new rules. The splits are called nodes and at the end of

the node there is a so-called leave that applies the classification. When applied in its

original form (Breiman, 2001) the best model is estimated by minimizing the sum of
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squares and finding the best possible estimate of the conditional mean. Furthermore

a forest of regression tree is grown using a subset of the data. To make a prediction

the average of all trees in the forest is used to estimate the output. Meinshausen

(2006) suggests a forest regressor predicting quantile ranges of the estimated class.

Therefore in a QRF the quantile loss is minimized to predict a certain quantile. Ac-

tually the QRF computes a distribution function for all estimates of the output.

The proposed algorithm was made available in the R package quantregForest which

was used in this study. The number of trees grown was set to 500 and the trees were

limited to have 20 endnodes to lower computational time and avoid memory issues

and overfitting. Performance of the QRF was accessed as the percentage of correctly

predicted pixels, as it is for the CNN. Since high accuracies can occur due to the

uneven distribution of pixels belonging to a class the predictions of the QRF were

benchmarked with a random model, which predicts a certain class with the propor-

tion of its occurrence in the dataset.

To train the QRF the Raster was converted into a table linking the values for slope,

elevation and flow direction to the occurrence of karst, as described for the binomial

regression in the statistical pre-analysis. For the SRTM data a regular sample of 10

000 pixels was taken and split randomly into training and testing points that were

scatered over the whole area. 60% of the number of observations were used for train-

ing and 40 % was used for testing. To train the QRF for the Lidar data 39 tiles of

1000 x 1000 pixels were randomly chosen. Each of them was resampled regularly to

1000 pixels due to memory availability using trial and error to find the maximum

possible resampling rate. Each of the 1000 values of 39 pictures were then joined

to train a regression forest. Training was performed on one tile with a resampling

number of 10 000 pixels.

When using a regression forest for classification, the input is only the pixel values

and the output is the class assigned to that particular pixel. Neighbouring pixels are

not taken into account and the spatial distribution of the data is neglected.

It should be noted here that the QRF was mainly implemented to validate the sen-



sitivity analysis carried out on the CNN. In case of the CNN performing badly on

the data with 20 % increased values for elevation, slope and flow directon, the QRF

can be used to approve the false choice of computer vision methods, if it succeeds to

model the occurrence of karst. Vice versa if it also fails to identify karstified areas the

underlying data is probably not sufficient to model the geological parameter.
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4. Results

The SRTM data was classified into ten bins of slope and elevation values with the

same number of pixels in each bin. Figure 4.1 shows the occurrence of karstified

pixels within each class. The sum of karstified and non-karstified pixels is always the

same for each class. Pixels at a higher altitude and pixels with higher slopes (steeper

topography) tend to show a higher ratio of karstified pixels. Figure 4.1 clearly shows

a decline in pixels without karst and an increase in pixels that fall into karst areas

with ascending elevation and slope values.

Figure 4.1: pre-analysis of the data classifying the raster values and relating Karst
pixel occurrence to slope and elevation. A positive trend is visible for
both predictors.

The statistical pre-analysis showed that, out of the seven predictors (elevation, slope,

aspect, TPI, TRI, roughness and flow direction), elevation and slope were highly

significant in explaining the presence of karst ( p-value 2e−7 and 6.44e−15) and

surface roughness was almost significant (p-value 0.0554) for the subset of 20 000

values. For the second subset of 10 000 values the slope and elevation also showed

the highest significance ( p-values 2e−7), roughness was even more significant as

before and flow direction showed a high p-value of 0.06 as well. TPI, TRI and aspect

were irrelevant in predicting the occurrence of karst and therefore they were discarded
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in the further study. In the case of 10 000 points the null deviance of 12 100 on 9999

degrees of freedom declined to 11 865 on 9992 degrees of freedom. For the subset of

20 000 values the deviance declined from 11469 to 11262 and the degrees of freedom

lowered from 9504 to 9497. These declines indicate an increase in predictability of

karst presence. The Cluster Analysis showed that the slope and roughness are very

closely correlated and it was assumed that including both of them in the model does

not add more information but duplicates a predictor. Therefore elevation, slope and

flow direction were chosen as three predictors to be added to the model input.

CNN with SRTM Data
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Figure 4.2: Development of the loss and accuracy during training of the model
using the raw data and 5%, 10% and 20% increased values of elevation,
slope and flow direction.

The final SRTM data consisted of 8827 (1 GB) image files to train and test the model.

7059 (80%) of those images were used for training and 1768 were used to test the
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model. The CPU reached its maximum during training with a batch size of 68 images

at a time. Figure 4.2 shows the development of model loss and accuracy over 100

epochs. Ideally the testing and training loss as well as accuracy converges over the

epochs, showing a decline in loss and a rise in accuracy. The model trained on the

raw data (grey line in figure 4.2) oscillates randomly around a high loss (between

0.69 and 0.73) and a corresponding low accuracy (between 0.64 and 0.38). There is

no trend apparent in the development of the training evaluation criteria. Figure 4.2

shows that the models trained with the augmented data (5 % 10 % and 20 %) are

converging slightly during the training. Overall the span of accuracy and loss values

explored by all the models is very narrow. This is also represented by the width of

the boxplots in figure 4.3. The models derived from augmented data rise in accuracy

and decline in their loss as visible in both, figure 4.5 and figure 4.3
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Figure 4.3: Boxplots of the measures for goodness of fit for the models trained on
the raw data, and augmented datasets.



Table 4.1 summarizes the lowest losses and the corresponding accuracies, as well as

the highest training and testing accuracies. It is noticeable that for the augmented

data, the lower losses and higher accuracies occurred mainly in later stages of the

training, except for the highest training accuracy of the dataset increased by 20 %,

which occurred in the middle of the training. The models trained on the raw data

reached the highest accuracy in training after 11 epochs, the lowest loss was found

at epoch 56 and the testing accuracy didn’t improve trough the whole training. The

models trained on raw data reached a maximum training accuracy of 0.64 and a

corresponding testing accuracy of 0.53 (see table 4.1). The maximum testing accuracy

was at 0.59 with a parameter set that reached an accuracy of 0.51 on the training

dataset.

The highest training accuracy reached by the network improved from 0.64 to 0.79 for

an increase of topographical parameter differences by 5 %, followed by an increase to

0.89 and 0.98 for an augmentation of 10 % and 20 %. This development is as expected

and the augmentation made it possible for the model to connect the input parame-

ters to the output mask. The same trend is apparent in figure 4.3 where the median

accuracy is increasing and loss values are decreasing with augmentation. Maximum

training accuracy at an augmentation rate of 20 % was 34 % higher than with the

raw data. Maximum testing accuracy increased at the exact same rate. In table 4.1

the high testing accuracies don’t seem to correlate with high training accuracies for

the raw data. To see the relationship between training and testing accuracies as well

as losses the measures were plotted against each other in a scatterplot in figure 4.4.

For each training dataset the trends were estimated using a linear regression. The

formula of the regression lines are shown on the left side of each plot. The slope rep-

resents the trend apparent in the data. In the top left plot the training loss is plotted

against the testing loss. As expected, the slope of the regression line is positive which

means that higher loss values for training yield higher loss values in testing. The

same relationship is visible in the top right plot in figure 4.4 for testing and training
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Table 4.1: Maximum accuracy, minimum loss and maximum validation accuracy
and the corresponding measures for goodness of fit. Maximum validation
accuracy was chosen to select the best model.

Highest training accuracy

training loss training accuracy testing loss testing accuracy epoch
raw 0.70 0.64 0.71 0.53 11
5% 0.65 0.79 0.69 0.65 84
10% 0.62 0.89 0.68 0.65 96
20% 0.59 0.98 0.61 0.90 55

Lowest loss value

loss training accuracy training testing loss testing accuracy epoch
raw 0.70 0.63 0.71 0.50 56
5% 0.65 0.79 0.69 0.65 84
10% 0.62 0.89 0.68 0.65 96
20% 0.58 0.97 0.61 0.90 99

Highest testing accuracy

training loss training accuracy testing loss testing accuracy epoch
raw 0.73 0.51 0.72 0.59 1
5% 0.67 0.70 0.67 0.71 79
10% 0.64 0.79 0.65 0.78 95
20% 0.60 0.93 0.60 0.93 87

accuracies. R2 values are very low throughout all regressions and the data points are

scattered a lot around the lines. Although the R2 values are very low and p-values

are above 0.05 for all regression lines, conclusions about the development of loss and

accuracy during the training can still be drawn, since the goal of this regression is

not to predict but to see if there is a trend. The bottom plot in figure 4.4 shows the

increase of testing accuracy, the criteria used to select the model, and the training

loss, the value used to optimize the model. This is the most important relationship

to be examined since if the training loss doesn’t show an increase in testing accu-

racy there is no connection between the model optimization and the modelling goal.
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Figure 4.4: This figure illustrates the relationship between the training and testing
loss, accuracy (top plots). The relation of the crossentropy loss and the
testing accuracy.

For lower training losses the testing accuracies should be lower. This assumption

excludes a situation of overfitting, which is not the case, since it is related to a very

high performance on the training data. For the augmented data of 5 %, 10 % and

20 % the slopes of the regression lines are −1.08, −0.66 and −0.96. Only for the the

raw data there is no relation between the testing accuracy and training loss (slope of

the regression line: −0.1).
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Figure 4.5: Development of loss and accuracy for dice loss function and binary
crossentropy loss.

The next part summarizes the results of using two different loss functions on a deeper

network with one extra convolutional layer. Figure 4.5 shows the development of the

dice / binary crossentropy loss and binary accuracy. The testing binary loss function

exceeded a value of 1.0 in 9 epochs, which were omitted from the data shown in figure

4.5 top right plot. The Dice loss function is converging nicely throughout the train-

ing, but the testing accuracy didn’t improve. The two loss functions were only used

to train a model with the raw data and the results didn’t improve from the first try

with a smaller model and categorical crossentropy function. An attempt to improve

model performance was to also include class weights according to the proportion of

class one with regards to class zero. In this idea the loss function would be weighted

by the proportion of each class. The addition of a weighted loss function didn’t have

a significant effect on the model performance and was abandoned for that reason.
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Figure 4.6: The relationship for loss and accuracy using a dice loss function and a
binary crossentropy function using the SRTM data.

In the following figures 4.7 and 4.8 show the predictions for two exemplary pictures

of the training batch. Figure 4.10 and figure 4.9 show the predictions on the testing

batch. The figures show five rows of images with the same layout. In the first three

rows the input channels are split up and from left to right the level of augmentation is

increasing. The augmentation caused the picture to look as if a shadow was cast over

the areas where there is no karst, which led to a better identification of such areas.

The three input channels, especially the first channel (elevation), show some vertical

lines. These lines occurred due to histogram equalization, which is used frequently

in CNN preprocessing and was a necessary step for this project due to exploding

gradients problem discussed in chapter 3. The fourth row of figure 4.7, 4.8, 4.10

and 4.9 shows the expected occurrence of karst with a black pixel (1) indicating a

karstified area. In the last row the predictions made by the model with the highest

testing accuracy is visualized. The pixels identified as karst are randomly scattered
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around the predicted mask throughout for the raw data. With only an increase of

5 % the network is able to identify patches of karstified pixels. There are examples

in which the network managed to identify karstified areas precisely even with the 10

% increase in input signal (figure 4.7, 4.9 and there are pictures in which even an

increase of 20% of the input signal didn’t lead to a proper classification of the image

(figure 4.8, 4.10). The predictions are extracted from the maximum probability of

the two output channels of the one-hot encoded data.

The output for a testing tile of the models trained with different loss functions are

visible in figure 4.11. In the second row the expected output is aligned with the

probability output of the models chosen by the best validation accuracy. The values

mapped represent a probability that the pixel is karstified, the closer the probability

is to 1 the more likely it is to find karst in this area. It is visible that the loss functions

don’t have an impact on the quality of the predictions nor did the increased depth

of the network make a difference in predicting the occurrence of karst. The only

difference is that the dice loss function is able to predict patches of karstified pixels

even with the raw data for some images, although they don’t relate to the expected

output (see appendix A.3).

To get a better understanding of the predictions achieved by the models the first

ten images of the first training batch along with the augmented data are plotted in

appendix A.1. The respective testing images can be viewed in the second appendix

(A.2). For more information about the application of the different loss functions on

the SRTM data, five images of the testing dataset are pictured in appendix A.3.



0

50

100

Raw data + 5% + 10% + 20%

0

50

100

0

50

100

0

50

100

0 50 100

0

50

100

0 50 100 0 50 100 0 50 100

0.0 0.2 0.4 0.6 0.8 1.0

Input data split in 3 channels, expected output and predictions

Figure 4.7: Input and Output of the third picture in the first batch of images for
training.
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Figure 4.8: Input and Output of picture number 15 in the first batch of images for
training.
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Figure 4.9: Performance on the eigth picture of the testing batch.
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Figure 4.10: Performance on the 20th picture of the testing batch.
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Figure 4.11: Prediction of the first picture of the testing batch.

CNN with Lidar data

The CNN was trained using 172 images with 1000 x 1000 pixels. Due to limited mem-

ory the batch size had to be lowered to two. Figure 4.13 shows the fifth picture of the

training data along with the karstified regions covering the same picture. The class

imbalance for the high resolution data was opposite of the imbalance for the SRTM

data, since Lidar data from Slovenia was used and most of its surface consists of karst.

First the model was trained using a binary crossentropy function and accuracy for

data without one-hot encoding (Figure 4.12, green line). When looking only at the

loss and accuracy values the performance of the model is much higher than the mod-

els trained and tested on the SRTM data. The CNN yielded a maximum training

accuracy of 0.817 with coresponding training accuracy of 0.96 in the last epoch (no.
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Figure 4.12: Training process for the high resolution data. The green line shows 100
epochs of training the CNN using a binary crossentropy loss and the
blue line shows 50 epochs of training using a dice loss function. The
CNN trained with the dice loss function also had two extra
convolutional blocks and a higher number of filters.

100). After visualizing the predictions for the CNN trained using binary crossentropy

loss it became clear that the loss function is too vulnerable towards class imbalances

and another training was performed using dice loss. Dice loss function has already

shown to be the most stable choice for the SRTM data ( compare 4.5). The model

trained with dice loss function was able to predict the occurrence of karst much more

reliable at visual inspection of the pictures. Accuracies and losses cannot be directly

compared in this case since the one-hot encoding therefore was chosen as the primary

model to be discussed in this section. Both performances are converging towards

an optimum unlike the development of the training for the SRTM data (Figure 4.2).

The model trained with the dice loss function found a minimum loss of 0.2 during the

training, which corresponds to a testing loss of 0.13 and accuracies of 0.81 and 0.92



Figure 4.13: Performance of the CNN on the fifth picture of the testing data. The
CNN was trained using dice loss function

for testing and training. The lowest loss for this model corresponds to the highest

training accuracy and both of them were achieved after 50 epochs.

When comparing Figure 4.7 to 4.11 to the output given in Figure 4.13 the predictions

are comparable with the augmented data rather than the random scatter in the raw

SRTM data. Patches of karstified areas can be identified although they don’t cover

the whole extent of karst areas. The model is underestimating the occurrence of karst

systematically, because of class imbalance.

QRF with SRTM Data

In figure 4.14 the resampled and rescaled values of elevation, slope and flow direction

for Europe are visualized in the top row of the plot. The expected model output

according to WOKAM is shown in the bottom left map. Table 4.2 summarized the

dataset properties and accuracies for the QRF with SRTM data as well as the model

for the Lidar data in comparison to a random number generator that accounts for

the class propability. The SRTM training dataset consists of 2869 pixels, of which

31 % belong to class 1 and 69 % belong to class 0. The testing data contained 1913
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pixels with a similar proportion between the classes (28 % and 72 %). Figure 4.14

shows the testing and training pixels, which were combined and remapped to the

resampled raster extent. The accuracies reported for testing and training data is 0.73

and 0.72, which means that the QRF predicts the right class in 73/72 % of cases

(figure 4.14, bottom middle). This would also be the case if it was predicting that

there is no karst occurring all over Europe, but if we take a closer look at the pixels

identified as karst in figure 4.14 the prediction is correct mostly for alpine regions, the

Balkans and Spain. These are regions in which karst topography is highly developed.

The random generator predicted the occurrence of karst in 60% of cases (figure 4.14,

bottom right), performing worse than the QRF.
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Figure 4.14: Visualization of the Input SRTM data for the QRF (top row) and the
expected and predicted output as well as the output of a random
generator. To split into testing and training random pixels were chosen
from the data and the maps show training and testing data combined.
For distinction of training and testing performance refer to table 4.2.



Table 4.2: Performance of the QRF on the SRTM and Lidar data in comparison to
benchmark random generators.

proportion
class 1

proportion
class 0 number of pixels accuracy

QRF SRTM training 0.31 0.69 2869 0.73
QRF SRTM testing 0.28 0.72 1913 0.72
SRTM random 0.60
QRF lidar training 0.68 0.32 21536 0.81
QRF lidar testing 0.92 0.08 9700 0.92
Lidar random 0.91

QRF with Lidar Data

After resampling 39 tiles and removing missing values the training data contained

21536 values. Figure 4.15 shows the testing image for the QRF resampled to 10

000 pixels. Surface features such as streets are still visible at this resampling rate

and especially slope values (figure 4.13, middle top) are outlining the features. The

second row of rasters in figure 4.13 shows the ground-truth karst ocurrence and the

simulation with random numbers. For this testing picture the QRF has classified a

small number of pixels as not karstified, but they don’t cover the same regions as

the WOKAM. The simulated karst areas seem to follow lines across roads or fields

along the DTM. The QRF reported very high accuracies for the Lidar data on the

testing image (table 4.2), the training data was more difficult to simulate yielding an

accuracy of 0.81. The very high training accuracy occurs only because 92% of the

testing pixels are karstified.
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Figure 4.15: Maps of the resampled lidar tile used for testing the QRF trained on
the Lidar data. The top row shows the Input data, the second row the
predicted, expected and randomly generated values for this tile.



5. Discussion

5.1 Interpretation of the results

Due to the fact that the CNN was unable to reach a higher accuracy using the

SRTM data and with a 5 % increase of differences the simulation accuracy improved

significantly, it must be concluded that the SRTM data is not sufficient to predict

karst areas. Especially the relationship between the loss function and testing accuracy

is supporting the hypothesis that there is no way to model the occurrence of karst on

the basis of SRTM data using a CNN, since the relationship in the training dataset

doesn’t correspond to the relationship between elevation and karst occurrence in the

testing dataset. This may be a product of per sample rescaling, which couldn’t be

solved because a CNN cannot operate with the actual values and global rescaling

led to the exploding gradients problem (which will be discussed in the next section).

In any case the SRTM data has to be interpreted as insufficient for predicting karst

areas.

The results considering the lidar data were promising. The CNN was able to extract

features from the data and relate them to the karstified areas. The main concern

considering this analysis is the batch size. Kingma and Ba (2014) who proposed the

chosen optimizer suggest to use a batch size of 128 and other papers also report that

the batch size influences the convergence towards the loss function minimum Keskar

et al. (2016). By raising the batch size a better model performance could be assumed.

Although the model achieved very high accuracy values, those have to be handled

with care because of the class imbalances. Despite these concerns it can be concluded

that the resolution is a main influencing factor for the network to be able to identify

karstified areas.

The performance of the QRF on the SRTM data was only slightly better than the

simulation generating random numbers. Nevertheless the regions identified by the

QRF are plausible. A relation between the topography and the occurrence of karst
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was found especially for high altitude regions. For the QRF slope and flow direction

had to be included in modelling the high resolution because the parameters used split

the leaves of the trees had to be defined.

5.2 Uncertainty of the Approach

One of the biggest challenges in this project has been the preprocessing of the SRTM

data. A dataset spanning the elevation range of Europe has a huge variation and the

ReLU activation functions expect an input between 0 and 1. Now, if the elevation is

normalized over the whole dataset, there is a large number of pictures that include

only very low values, which causes the weights of the convolutional layers to converge

towards infinity trying to compensate for that. In that case the loss function was not

identifiable and the network cannot be trained. Even after addressing this problem by

normalizing every image separately the weights were converging towards infinity. In

this case the images associated with elevations close to sea level were indistinguishable

from the ones in the alps considering the absolute elevation, which is not the case

for a global normalization. To transform the data globally in a more suitable way,

a stretch transformation (spreading the normalized values more evenly) was applied

but it had no effect other than a minimum maximum scaling on the global data

and had to be discarded. Another way to face the exploding gradients problem

is to implement batch normalization layers after the activation function. In this

case these additional layers didn’t solve the issue. Every image had to be scaled

individually and only after applying histogram equalization the network started to

be numerically stable. Histogram equalization can be viewed as a way of increasing

a pictures contrast. It is common practice to prepare images for a CNN in this

way, but the ordinary application of CNNs is also limited to photos such as Satellite

images or simple photographs of everyday objects or street scenes, in which case the

increase in contrast is not interfering with measurements of a certain value such as

elevation.



5.3 Transferability of the Approach

A possible reason for the failure of the application of the CNN for all of Europe and

another factor influencing the successful application of the CNN on the Lidar data

is the effect of spatial transfer Only images of the karst area in Slovenia, which show

similar features throughout are compared. The relationship of testing and training

accuracy for the Lidar data shows a higher positive correlation indicating that the

patterns which occur in the training data are also present in the testing data. This

shows that the approach is more promising if there is no spatial transfer included in

the training and testing process. All successful applications of CNNs mentioned in

the literature survey consider only small scales ranging from a geographical region

(Marmanis et al., 2015) or cities such as Mumbai (Wurm et al., 2019).
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6. Conclusion

In computer science the performance of deep learning algorithms is measured by their

ability to segment pictures of clearly defined objects, which is a task the majority of

humans are able to perform (Krizhevsky et al., 2012). The identification of objects

or landforms in remote sensing images is a difficult task even for an expert in this

field and deep learning algorithms may not be as skilled for more difficult computer

vision tasks (Latifovic et al., 2018).

The results achieved with the networks trained in this study suggest that the applica-

tion of a CNN to improve the state of mapping karstified regions is not possible yet.

This conclusion is made under the current circumstances and availability of data.

There is a relation between the topography and karstification which could be shown

with the statistical analysis performed on the data and is also found since the CNN

was able to yield slightly higher accuracy than a random classifier and the accuracy

achieved by the quantile regression forest showed to be even higher. Still, with a 60

% probability of an area being classified correctly the predictions are not eligible to

be an improvement of the current state of mapping and an approach based on expert

knowledge should be preferred over a data driven approach.

It has been shown that the propability of specific, very distinct karst features such

as dolines can be related to the topography (Latifovic et al., 2018; Artugyan and Ur-

dea, 2016; Marjan Temovski and Ivica Milevski, 2015) but the identification of vast

karstified areas via topographic parameters has not been shown before. It is question-

able if the information of karst presence is present in a DEM. Since karstified areas

show specific features apart from higher slope gradients and plateaus, such as the

absence of surface waters and also very specific types of vegetation (Bonacci, 1987).

These could be exploited using other data sources for which the CNN is more suitable

and which show a bigger difference when comparing regions with and without karst.
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Satellite images could be used to exploit the difference in landuse and vegetation

and also the absence of surface waters could be extracted from satellite data. These

further examinations are interesting approaches but due to the scarce availability of

data even in countries that are mapped reliably in the WOKAM data. Similarly the

Lidar data holds a promising approach to predict karst areas, but not to map them

globally since Lidar data are rare and more rarely accessible. Furthermore not the

whole potential of Lidar data has been exploited in this study. Maybe by including

a vegetation model, which can be extracted from Lidar data, alongside the DTM

predictions could be improved.

In any case the null hypothesis of this study has to be rejected. Given the current

availability of earth surface data and the available computing power in this study,

a CNN cannot be used to improve the state of mapping. It becomes clear that

the application of ML algorithms is bound to the availability of large datasets and

unfortunately freely available geodata and access to computers that can process such

large datasets is not given at the moment.
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