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Abstract

Karst groundwater resources play a key role in China. The Lingshui spring in the Southw-

est has until recently been a reliable water supply for 100,000 people but its quantity and

quality are increasingly threatened by rapid land use changes as well as climate change.

A model description of the hydrodynamics of the spring is needed to be able to make

predictions on the future availability of the resource which could then serve as a scientific

basis for groundwater management plans. The hydrological lumped parameter model

VarKarst was chosen for this purpose as it is highly flexible due to its semi-distributed

character. As VarKarst has never been tested in a tropical setting before, this study also

seeks to explore the feasibility of using VarKarst in such a context. The main focus of

this study was to test the model performance on water level data by finding an appropriate

calibration for the model parameters. The scarce data availability for the study site was

expected to introduce large uncertainties during the modelling process. These were eval-

uated with the help of a Monte Carlo sampling and a subsequent analysis of parameter

identifiability and information content of water level data for parameter range confine-

ment. It was also tested if the inclusion of a rating curve and thus further parameters in

the calibration process leads to additional uncertainties. A statistical evaluation approach

was employed to assess under which future climate scenarios the model can be expec-

ted to make reliable predictions. Generally, the VarKarst model performed well in the

Lingshui spring catchment, especially considering its simulation of water level dynamics.

Nevertheless, the low quantity of data available for calibration resulted in high parameter

non-identifiability, particularly when the rating curve was included in the calibration. In

spite of the reduced reliability of the model results, the predictive capability of the model

was satisfactory enough to make it useful for future predictions. Uncertainty bands under

current and future conditions often differed significantly, resulting in minimal overlap, so

that the predictions can be regarded as reliable. Confidence in the model results might be

significantly increased by further measurement campaigns in the catchment, e.g. by ana-

lysing hydrochemical parameters and recording groundwater levels at regular intervals. In

spite of the large uncertainties caused by the scarcity of data, the model was successfully

tested in the catchment and once further data are available, it could be a helpful and reli-

able tool for water management decisions in karst regions in the face of climate change.

Keywords: Southwest China, VarKarst, Lingshui Spring, Karst Modelling, Monte Carlo,

SCEM-UA, Model Uncertainty, Rating Curve, Equfinality, Climate Change Impacts
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Zusammenfassung

Karstgrundwasserressourcen spielen eine wichtige Rolle in China. Die Lingshui Quelle

im Südwesten Chinas bot in der Vergangenheit eine zuverlässige Trinkwasserversorgung

für 100.000 Menschen. Vor dem Hintergrund schnell fortschreitender Landnutzungsän-

derungen und dem Klimawandel wird der quantitative und qualitative Zustand dieser

Quelle zunehmend gefährdet. Um Vorhersagen über die zukünftige Verfügbarkeit der

Ressource machen zu können, ist die Beschreibung ihrer Hydrodynamik durch ein Mod-

ell unverzichtbar. Diese stellt außerdem eine wichtige wissenschaftliche Grundlage für

die Formulierung von Grundwassermanagementstrategien für den Aquifer dar. Das semi-

distribuierte VarKarst Modell wurde aufgrund seiner großen Flexibilität für diesen Zweck

ausgewählt. Des Weiteren sollte diese Studie zeigen, ob das Modell für einen tropis-

chen Standort geeignet ist. Daher lag der Fokus darauf, die Modellgüte anhand einer

Parameterkalibrierung für Wasserstandsdaten zu testen. Aufgrund der geringen Daten-

verfügbarkeit für den Standort konnten große Unsicherheiten in der Modellierung erwar-

tet werden. Daher wurde ein Monte Carlo Sampling und eine anschließende Analyse

der Bestimmbarkeit der Parameter und der Aussagekraft der verfügbaren Wasserstand-

szeitreihe durchgeführt. Außerdem wurde getestet, ob die Einbringung einer Wasserstands-

Abfluss-Beziehung in die Kalibrierung aufgrund der zusätzlichen Parameter zu weiteren

Unsicherheiten führt. Ein statistischer Ansatz wurde gewählt, um die Zuverlässigkeit der

Modellvorhersagen unter verschiedenen Klimaprognosen zu testen. Generell waren die

Modellergebnisse in Bezug auf die Wasserstandsdynamik der Lingshui Quelle zufrieden-

stellend. Trotzdem führte die geringe Datenverfügbarkeit, wie erwartet, zu einer vermind-

erten Identifizierbarkeit angemessener Parameterwerte, vor allem wenn die Wasserstands-

Abfluss-Beziehung in die Kalibrierung eingebracht wurde. Trotzdem wurde die

Vorhersagefähigkeit des Modells als ausreichend eingestuft, um es für Zukunftsprojek-

tionen zu verwenden. Die Unsicherheitsbänder der Simulationen unterschieden sich meist

signifikant. Ihre Überlappung war so gering, dass die Zukunftsprojektionen des Mod-

ells als zuverlässig betrachtet werden können. Die Glaubwürdigkeit der Modellergebn-

isse könnte durch zusätzliche Messkampagnen, z.B. für hydrochemische Parameter und

Grundwasserstände, deutlich verbessert werden. Trotz der großen Unsicherheiten durch

die geringe Datenverfügbarkeit wurde das VarKarst Modell erfolgreich für die Lingshui

Quelle eingesetzt. Sobald zusätzliche Daten vorhanden sind, könnte das Modelle eine hil-

freiche und zuverlässige Grundlage für Entscheidungen bezüglich des Wasserressourcen-

managements in der Region darstellen.

Stichworte: Südwest-China, VarKarst, Lingshui Quelle, Karst Modellierung,

Monte Carlo, SCEM-UA, Modellunsicherheit, Wasserstands-Abfluss-Beziehung,

Equifinalität, Klimawandel
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1 Introduction

All models are wrong but some are useful.

Box (1979)

1.1 Karst characteristics

Karst aquifers cover 7-12% of the Earth’s continental area (Hartmann et al., 2014a). Char-

acteristic for the hydrogeology of karst systems is their large-scale heterogeneity and

anisotropy (Figure 1). This is mainly due to the different flow systems that evolve in

carbonate rocks under the dissolution by CO2 ranging from micropores (also referred to

as primary or matrix porosity) over fissures (secondary porosity, 50 - 500 μm) to solu-

tionally enlarged conduits (tertiary porosity) with apertures above 1 cm (White, 2002;

Hartmann et al., 2014a; Ford and Williams, 2007). Ford and Williams (2007) describe

the porosities as follows: Micropores develop during the genesis of carbonate rocks while

fissure porosity is a result from rock folding and faulting. The gradual widening of these

fissures through dissolution by contact with circulating water and groundwater leads to

the formation of conduits and even caves. Terms for the description of porosities in karst

systems are not used homogeneously in scientific literature. Hartmann et al. (2014a) re-

port that the first two categories of micropores and fissures are often summarized under

the term matrix system as their hydrological behaviour differs fundamentally from that of

conduits. This is sensible, as Kiraly (1998) and Worthington (2003) report that in many

karst aquifers the duality is the predominant characteristic. It has to be kept in mind, how

diverse (hydro-)geological karst settings can be and that all three kinds of porosities can

form the prevailing hydrodynamic character of the aquifer (Worthington, 2003). Figure 1

depicts a classical conceptual model of a karst aquifer based on the idea dual porosity.

Recharge processes as well as the groundwater flow field can be divided into those driven

by the matrix system and those with fast flow characteristics in the conduit system. Even

the discharge at the outlet can be marked by duality as low permeability volumes result in

diffuse seepage while concentrated discharge rises from the channel system. Worthington

(2003) showed that the matrix system often drives the water storage of a karst aquifer,

whereas dynamics of spring flow at its outlet are mainly controlled by conduits. The

so called epikarst forms the soil-bedrock-interface and is often marked by fast dissolution

processes due to the close contact to precipitation which forms highly distinctive fractures

in this part (Ford and Williams, 2007). During intense precipitation events and flooding

conditions, the hydraulic gradient of a karst aquifer can reverse so that it then takes up

water from surrounding rivers (Ford and Williams, 2007).

The evolution of underground channel networks also leads to the phenomenon that catch-
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ments of karst aquifers can often not be identified by classic topographic analysis as done

for non-karstic groundwater basins (Goldscheider and Drew, 2007). The subsurface con-

duits develop independently from the surface topography and can carry water across topo-

graphical watersheds (Goldscheider and Drew, 2007). This often implies that catchment

divides are also spatially and temporally changing (Goldscheider and Drew, 2007). In

studies on management of karst aquifers, this can have a serious impact on the water

balance.

Conduit-fed karst springs often discharge larger amounts of water compared to springs

from non-karstic rocks, which makes them an easily exploitable resource (White, 2002).

On the other hand, the heterogeneity and anisotropy caused by the different porosities

result in large temporal discharge variability and make the aquifer particularly vulnerable

to contamination (Sauter et al., 2006). With many stakeholders requiring a reliable water

supply from karst aquifers and springs, questions like: "How much water can be used?

Where is it coming from and what are the physical parameters characterizing the sys-

tem?" (p.145, Ford and Williams (2007)) need to be answered. Thus, thorough system

Figure 1: Conceptual model of a karst aquifer. Above the surface, it is important to
differentiate between allogenic and autogenic recharge areas as well as point infiltration
(e.g. through sinkholes) and diffuse infiltration. The epikarst often forms the transition
zone between surface and subsurface and is the zone of most intense karstification. Below,
the distribution of matrix and conduit flowpaths (including caves and underground rivers)
characterizes the karst system. Green dashed line: Soil/epikarst subsystem; red dashed
line: groundwater subsystem. Retrieved from Hartmann et al. (2014a)
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understanding becomes essential to develop management and protection plans to sustain

the requirements of all stakeholders using the resource (Hartmann et al., 2014a).

1.2 Karst in China and the Lingshui spring

China’s karst areas alone make up about 40% of the worldwide terrestrial karst. 1/7 of the

country’s area - about 1.3 million km2 - is covered with openly perceivable karst (Sweet-

ing, 1995). If covered and buried karst are added to this, the whole karst area of China

adds up to 1/3 of the total Chinese territory (Sweeting, 1995). According to Guo et al.

(2013), karst development in China is mainly based on pre-Triassic, old-phase, hard and

compact carbonated rock. Covered karst develops under loose, unconsolidated sediment,

while buried karst even occurs under non-soluble bed-rocks (Guo et al., 2013). Southwest

China is probably one of the best known and scenic karst areas of the world. This is mainly

because of the special landforms that have developed in the karst of this region. Sweeting

(1995) lists several reasons for this development. First, the Chinese territory has been

marked by intense tectonic activity, particularly Cenozoic uplifts. Secondly, the region

is governed by tropical climate with high temperatures and large amounts and intensit-

ies of precipitation. This climate simulates a higher productivity of plants and therefore

a higher CO2 concentration in precipitation which is directly connected to higher car-

bonate solution rates. The main depositional period of main soluble rocks in southwest

China occurred during the Caledonian and Variscan cycles Sweeting (1995). Therefore,

rocks ages can be dated between the Devonian and Triassic. Sweeting (1995) reports that

China’s limestones usually have a porosity of less than 2% and a permeability of almost

zero.

The best known landforms in southwest China, which are described in Sweeting (1995),

can mainly be divided into two categories. Peak Forests (Fenglin ) are isolated karst

hills whose bases are at a similar level (Figure 2 (a)). They are usually divided by valleys

which are often passed through by rivers. Another characteristic is the sparsely developed

epikarst in peak forests (personal communication, Fang Guo (04.09.2017)). Guilin might

be the Chinese city best known for its unique peak forests. Peak Clusters (Fengcong

), on the other hand, form groups of several peaks (cones and towers) which share a

common basement (Figure 2 (b)). These do not necessarily have to be on the same surface

level. In contrast to peak forests, they are often characterised by a well developed epikarst

(personal communication, Fang Guo (04.09.2017)).

First records of karst spring usage for irrigation in China dates back to 453 BC in the

Shanxi province (Ford and Williams, 2007). With China’s growing economy and societal

changes as well as its large population, karst water resources are increasingly put under

stress (Western Develpoment Plan, 1999; Guo and Jiang (2011)). The Jinci spring in

North China, fell dry within few years of exploitation (Hao et al., 2009). This example
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(a) (b)
Figure 2: (a) Fenglin and (b) Fengcong landscapes of southwest China. Im-
ages downloaded from: http://www.chinaspree.com/china-travel-guide/china-guizhou-
guangxi-tours.html, retrieved 02.12.2017.

shows the importance of a thorough understanding of karst systems used for water supply

and additional resource management plans (Chalikakis et al., 2011; Li et al., 2012). As

climate change can be expected to worsen this situation even more, Gu et al. (2017) see the

question of how to deal with future climate change impacts on water resources availability

as one of the key research requirements for China.

Southwestern China represents a subtropical region where a vast amount of area (about

500,000 km2) is karstified and where around 100 million people depend on water supply

from karst aquifers and springs (Guo and Jiang, 2011; Guo et al., 2013). All three types

of karst (bare, covered and buried) occur in this region (Figure 3) (Zhang et al., 2013).

Therefore, the loss or dry-up of a spring due to pollution or over-exploitation could be

accompanied by serious supply problems for the local population.

The Lingshui spring system is situated in the Wuming basin, a county of Nanning city,

the capital of the Guangxi region (Jiang and Guo, 2010). It supplies 120,000 people with

its usually clean drinking water (Guo and Jiang, 2011). The spring pool is an important

recreational area in the region and has been the training base for the national swimming

team (Guo and Jiang, 2011; Guo et al., 2015, 2016). As the area is highly drained and

produces low surface runoff, economic and social development was restricted in the past

(Guo and Jiang, 2011). Nevertheless, over the last decades, the region has managed so-

cioeconomic progress with intensified agriculture, mining activities, infrastructure devel-

opment, a growing industrial base as well as urban expansion (Guo et al., 2010). This

was inevitably accompanied by land use changes, e.g deforestation, urbanization and in-

creasing eucalyptus cultivation as well as higher water consumption (Guo et al., 2016).

Agricultural land use has changed from paddy land cultivation to dry land in form of

economic forest planting which might also be a consequence of a reduced availability

of water resources in the region (Guo et al., 2015). These developments and the lack of

available surface water put the quantitative and qualitative status of the karst aquifer and

its springs under serious threat, especially as many of these changes, e.g. the increase

in mining activities, are highly water demanding. Guo et al. (2010) and Guo and Jiang
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(2011) recognized in their study that developments in science and technology will be es-

sential for promoting the sustainability and protection of karst environments in the region

to:

• provide information about karst aquifer systems

• supply information on geological hazards

• map subsurface hydrology and geology to identify areas where productive water

wells may be located as well as potential karst problems

• offer information for stakeholders

• supply solutions for environmental problems

Even though several policy acts have been passed to reduce threats to karst groundwater

quality and quantity since the 1980’s, due to different factors explained in Guo et al.

(2010), groundbreaking changes in management practices could not be carried out so far.

The current protection scheme in the region forbids drilling for pumping in the urban

area and incorporates weekly water sampling for ions and bacteria as well as discharge

measures on a small frequency (Jiang and Guo, 2010). Protection zones according to

river boundaries and geology, strict control of underground water usage as well as higher

discharge monitoring at monthly intervals are planned in the future (Jiang and Guo, 2010).

The spring’s karst system has been the object of several scientific studies, particularly

Figure 3: Karst regions of southwest China. Retrieved from Guo and Jiang (2011).
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after a sewage accident in a starch factory polluted a spring in the system in 2010, cut-

ting 4000 people from their water supply for over a month (Guo and Jiang, 2011). A

hydrogeological survey was conducted in 2010 and quantity and quality of the Lingshui

spring and other springs in the basin have been monitored between 2009 and 2012 in ir-

regular intervals. In a study by Guo et al. (2015), measured results of these campaigns

were compared to those of another campaign from the 1970’s. Guo et al. (2015) tried

to relate observable changes between these time periods to climate and land use change,

concluding that the Lingshui spring discharge decreased and that the water temperature

rose. Furthermore, the pollution with nitrate in the upper parts of the aquifer increased

noticeably in recent years. Nevertheless, the karst system of the Lingshui spring has not

been described by a numerical model so far. The concerning developments of the recent

years make scientists, officials and locals in the area aware of the urge to manage the

resource and formulate protection strategies (Guo and Jiang, 2011).

1.3 Exploration and management of karst groundwater resources

The exploration of karst groundwater resources often turns out to be a difficult task.

The combination of lithology, structure, geomorphological history and climate produces

highly individual karst systems (Ford and Williams, 2007). It is evident that this indi-

viduality makes generalizing approaches for system description, e.g. conceptual models,

difficult (Hartmann et al., 2014a). Much research has been conducted in the last dec-

ades on methods to describe karst systems, assess available karst groundwater resources

in these areas and assess their variability and quantity as well as quality (White, 2002).

According to Goldscheider and Drew (2007), these include surface exploration and sur-

vey techniques (e.g. remote sensing or geophysical techniques (Chalikakis et al., 2011)),

borehole analysis as well as natural or artificial tracer analysis (e.g. to delineate catch-

ments and trace flow paths). All of these approaches are very important to understand

the structure of the karst aquifer and its hydrological dynamics. Nevertheless, a descrip-

tion of the current status is not sufficient for water-resource management. To evaluate

the impact of changing environmental conditions through e.g. pumping, land use or cli-

mate change on the water availability of an aquifer, predictions of future states become

necessary (Scanlon et al., 2003). This requires the simplified translation of the functional

characteristics of karst systems into process-based, deterministic models (Ford and Wil-

liams, 2007; Hartmann et al., 2014a). Hartmann et al. (2013a) even see these models as

indispensable methods to sustainably manage present and future karst resources as they

play such an important part in the world’s drinking water supply.

The challenge in formulating models for complex karst systems lies in finding a model

structure detailed enough to represent all important hydrological processes while at the

same time keeping the number of parameters as low as possible to avoid overparametriz-
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ation (referred to as parsimony) (Box, 1979; Kuczera and Mroczkowski, 1998; Wagener

et al., 2001). The choices made in this context largely depend on the modelling task (Wa-

gener et al., 2001). Distributed models attempt to incorporate the spatial and temporal

dynamics of an aquifer to the highest degree possible. Reviews of these models are given

in Sauter et al. (2006), Goldscheider and Drew (2007) and Ford and Williams (2007). All

important physical processes in the catchment are modelled for every element on a 2D

or 3D cell grid. The large number of parameters included in the physical descriptions

restricts automatic calibration and thus relies heavily on data measured in the field or

obtained from literature (Scanlon et al., 2003).

Classic equivalent porous medium models (EPM), are an example for distributed mod-

elling approaches for karst systems (Hartmann et al., 2014a). They generalize the karst

characteristics by assigning a value of hydraulic conductivity to a cell that represents the

combined effects of matrix, fractures and conduits (Gondwe et al., 2011). Additionally,

they are mostly based on the assumption of laminar flow in the pores that behaves accord-

ing to Darcy’s law (Hartmann et al., 2014a). These models are particularly useful at loca-

tions where a system of matrix and fissure porosity is dominating or where the cell volume

can be chosen large enough to be representative of different conductivities (Teutsch, 1993;

Scanlon et al., 2003). They were, for example, successfully tested in karst aquifers on the

Yucatan Island (Mexico) (Gondwe et al., 2011), for the Edwards aquifer (USA) (Scanlon

et al., 2003) and the Western Mountain Aquifer (Israel, Westbank) (Abusaada and Sauter,

2012).

Nevertheless, the basic assumption of flow according to Darcy’s law is usually inappropri-

ate in conduit-dominated aquifers (Sauter et al., 2006). Furthermore, extensive measuring

campaigns, as they are needed to parametrize distributed models, are in most cases not

feasible which is why lumped models have been introduced (see Rimmer and Hartmann

(2012) for a detailed introduction). They summarize important structural units and their

physical characteristics based on a conceptual model (as shown in Figure 1). The driv-

ing physical processes within and between these units are expressed by mostly (non-)

linear functions whose parameters can be assessed by inverse calibration from output

variables by using objective functions (e.g. Root Mean Square Error (RMSE), Nash-

Sutcliffe-Efficiency (NSE), Kling Gupta Efficiency (KGE)) (Wagener et al., 2001; Gupta

et al., 2009; Bennett et al., 2013).

Manual trial-and-error calibration of these model parameters is often work-intensive and

reaches its limits for more complex models with parameter-interaction (Vrugt et al.,

2003). Therefore, automatic calibration procedures have been developed that explore

the space of parameter ranges similarly to manual calibration but with computational ef-

ficiency and objectivity (Boyle et al., 2000; Vrugt et al., 2003). These developed from al-

gorithms with a focus on local optima to global search algorithms which explore the com-

plex parameter space for a global optimum (Yapo et al., 1996). One of the most helpful
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algorithms for highly complex calibration tasks available at this point is the Shuffled Com-

plex Evolution Metropolis Algorithm developed at the University of Arizona (SCEM-UA)

introduced by Vrugt et al. (2003), an improvement of the Shuffled Complex Evolution Al-

gorithm (SCE-UA) (Duan et al., 1993). As many objective functions have a specialized

focus, e.g. on high or low flows, multi-objective calibration procedures have lately found

increasing attention (Efstratiadis and Koutsoyiannis, 2010). By weighting several object-

ive functions in the calibration procedure, it becomes possible to take multiple aspects of

the observed system response into account. In this context a use of additional multire-

sponse data (Kuczera and Mroczkowski, 1998), e.g. hydrochemical information, and so

called soft-data has become increasingly popular (Seibert and McDonnell, 2002). Soft-

data are usually based on the experimentalists qualitative knowledge of a catchment and

include discontinuous proxies that can help to achieve higher realism in the modelling

procedure and the model structure (Seibert and McDonnell, 2002; Choi and Beven, 2007;

Winsemius et al., 2009).

In spite of this progress, even the best automated calibration procedure cannot detect

an erroneous model structure or uncertainties in input/output data (Beven, 1993, 2016).

Furthermore, the higher the number of parameters in a model, the more they are prone to

loose identifiability as their interactions increase and they tend to compensate for physical

processes not represented in the model (Kirchner, 2006). This often leads to the problem

that differing parameter sets produce model outputs of similar quality according to the ob-

jective function(s) (Wilby, 2005). The often cited study of Beven (2006) was one of the

first to introduce this effect as the concept of equifinality. Many studies have dealt with the

problem of finding the appropriate degree of sophistication of lumped parameter models

to represent all necessary processes and retain parsimony at the same time (Perrin et al.,

2001, 2003; Hartmann et al., 2012b, 2013b; Chang et al., 2017). For example, Hartmann

et al. (2013b) based their model selection procedure on discharge and hydrochemical time

series as well as different discharge conditions to include as much information as possible

in the identification process. Chang et al. (2017) established a multi-model framework for

finding a parsimonious model with good performance by stepwise reduction of complex-

ity to describe a karst system in southwest China.

A a first step to check the plausibility of parameter sets is to test the model’s predictive

capability outside the conditions used for calibration. This is often done by split-sample

tests, where parts of the available input/output time series is set aside for validation (Ben-

nett et al., 2013). In the best case, both time series inherit a large degree of the systems’

variability in order to see whether the model is capable of representing different system

states (Hartmann et al., 2014a). New approaches, like the ones introduced by Boyle et al.

(2000) and Choi and Beven (2007), have further developed this split sampling by in-

cluding a multi-period and multi-criteria approach and therefore considering the fact that

hydrological systems are highly variable through time and that different states might need
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an individual evaluation.

In the face of equifinality, claiming one set of parameter values as ‘the best’ for a model

appears unrealistic (Beven, 2006). For this reason, the analysis and presentation of mod-

elling uncertainties has become increasingly popular in the recent years. Wagener and

Kollat (2007) stress that the communication of these uncertainties becomes more import-

ant when models are used as a basis for water resources management to give decision-

makers the possibility to take them into account for the development of risk-based ap-

proaches. Renard et al. (2010) name the following uncertainties as essential in hydrolo-

gical modelling:

• Input data

• Output data

• Structural uncertainty

• Parameter uncertainty

In order to assess parameter uncertainty, commonly used approaches today are often based

on Baysian statistics (e.g. Generalised Likelihood Uncertainty Estimation (GLUE) or the

Monte Carlo Analysis Toolbox (MCAT) (Beven and Binley, 1992; Wagener and Kollat,

2007)). Representation of uncertainty is given by Monte Carlo (MC) procedures that

sample a large number of parameter sets from a uniform prior distribution and evaluate

them according to the chosen objective function (Beven and Freer, 2001). By applying

a threshold on the objective function, acceptable parameter sets can then be determined

and a regional sensitivity analysis can be conducted in order to check the identifiability of

parameters (see Section 4.4.2) (Hornberger and Spear, 1981). Hartmann et al. (2017) used

this idea to assess the information content of different additional data, e.g. flow states and

observation types, by considering in how far the usage of such data would be helpful in

the confinement of parameter ranges.

A major disadvantage of lumped parameter models surely is the missing spatial variab-

ility in the physical processes, particularly when used in karstic environments. Thus,

Hartmann et al. (2013a) introduced the semi-distributed VarKarst model. Instead of tak-

ing account of spatial variability by using a cell grid (like distributed models) the model

reverts to pareto functions which attribute parameter values to a set number of compart-

ments (Figure 4) (Moore, 2007).

Consequently, it is capable of accounting for variability of soil and epikarst depths as

well as fractions of concentrated and diffuse recharge to groundwater and epikarst and

groundwater hydrodynamics (Hartmann et al., 2013a). The VarKarst model has been suc-

cessfully parametrized to be used in different catchments in Europe (e.g. Spain, Austria,

Switzerland, England) as well as the Middle East (Israel, Palastine) (Hartmann et al.,

2013c; Brenner et al., 2016). Most of the study sites were located in catchments with a

clearly identifiable duality in porosity. Brenner et al. (2016) lately used VarKarst to study
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Figure 4: Conceptual depiction of the VarKarst model. ´Retrieved from Hartmann et al.
(2013a).

the risk of groundwater flooding in a Chalk aquifer in England. They showed that the

model structure is flexible enough to represent aquifers with a relatively high proportion

of diffuse recharge through matrix and fissure porosity. VarKarst has also been adapted

to incorporate local characteristics, e.g. by introducing a snow routine (Hartmann et al.,

2012a) or hydrochemical information (Hartmann et al., 2013c) and by taking the variab-

ility of recharge areas into account (Hartmann et al., 2013a). Nevertheless, it has never

been assessed before how well the VarKarst model works in (sub-)tropical karst systems

and conditions as they are for example found in southwest China.

1.4 Climate change impact studies and uncertainty

Due to anthropogenic climate change, a global warming of air temperatures between

1.5°C and 2°C and changing precipitation patterns can be expected within this century

(Stocker et al., 2013). Ren et al. (2012) report temperature increases of 0.08±0.03°C

during the period of 1906-2005 for the whole of China. Increases of temperature up to

2.5°C and precipitation declines of up to 20% until the end of the century can be expected

in the country (Chen et al., 2011). In southwest China, a general tendency to increasing

minimum daily temperatures has been reported by Lian et al. (2015). Furthermore, the

region has generally become drier and is facing more extreme precipitation events result-

ing in increasing flood and drought frequencies, particularly during the summer monsoon

period (Liu et al., 2014; Lian et al., 2015). This will significantly alter the water cycle

in many regions and is a particular threat in karst dominated areas where surface water is
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already scarce and many people depend on the water supply from groundwater aquifers

(Lian et al., 2015; Huang et al., 2017). In 2010 the worst drought in 50 years caused large

shortages of drinking water and losses in agricultural production (Zhang et al., 2012; Lian

et al., 2015).

As mentioned before, future changes can only be anticipated with the help of models.

Yet, these predictions inevitably come along with large uncertainties introduced by mul-

tiple steps of the modelling process. Kay et al. (2009) conducted a study which tried to

differentiate the uncertainty sources in climate impact studies (‘cascade of uncertainty’,

(p. 206, Henderson-Sellers (1993))) for flood frequencies in England. They considered

the following error sources:

• Future greenhouse gas emissions

• Global climate model (GCM)

• Downscaling of the GCM

• Internal variability of the climate system

• Hydrological model structure

• Hydrological parameters

The first four aspects can be summarized as uncertainties from climate modelling, whereas

the last two have to be assigned to the hydrological modelling procedure. It is evident that

these uncertainties have to be communicated in order to make appropriate management

decisions (Steinschneider et al., 2012). For instance, from a number of ensembles, scen-

arios with different probabilities can be provided to show the whole range of possible

impacts but also give an assessment on how likely and under which conditions they can

happen (Chen et al., 2011; Tian et al., 2015). Many studies show that awareness in the

scientific community is rising towards the need of communication of modelling uncer-

tainties in impact studies (Wilby, 2005; Wilby and Harris, 2006; Dobler et al., 2012;

Steinschneider et al., 2012).

Different studies have focused on the attempt to assign uncertainties to the possible sources

mentioned before. Poulin et al. (2011) compared parameter uncertainty to uncertainty

resulting from model structure for future scenarios. Wilby and Harris (2006) even tried

to implement a framework that can account for all uncertainties along the chain by us-

ing a weighting scheme for each step within a Monte Carlo set-up and Steinschneider

et al. (2012) further improved this approach. Nevertheless, no study has tried to compare

model uncertainties under current and future conditions driven by different climate scen-

arios before. This is important to find out under which climate scenarios uncertainties of

hydrological model output differ largely enough from uncertainties under current condi-

tions that predictions can be expected to be reliable. If uncertainties under a future climate

scenario significantly overlap those under current climate, they cannot be trusted to for-

mulate management plans on. Furthermore, none of the previous studies were conducted
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in a karst setting with low data availability.

If a climate change impact study is to be conducted, several options for inferring future

climate conditions for model input are available (Kay et al., 2009). The most commonly

used method to obtain time series under future conditions is the delta approach (Kay et al.,

2009; Chen et al., 2017). Anticipated absolute or percentage changes of temperature and

precipitation, respectively, are simply applied to a measured time series and then used as

a model input to obtain predictions under future conditions.
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2 Research questions and objectives

In the face of expected climatic and land use changes in the Lingshui karst spring catch-

ment, a thorough understanding of the karst system becomes increasingly necessary (Guo

et al., 2015). To be able to make predictions on future states, the application of an appro-

priate modelling approach is reasonable (Hartmann et al., 2014a). The VarKarst model,

developed by Hartmann et al. (2013a), has been tested in many different karst settings

across Europe and the Middle East. However, no study has been conducted on its per-

formance in subtropical karst settings before. Therefore, the aim of this study is to para-

metrize the VarKarst model for the Lingshui spring karst system. A thorough analysis of

model performance, parameter identifiability, predictive capability and uncertainty will

be carried out in order to evaluate whether the VarKarst model can appropriately reflect

local conditions. This process will also be useful in order to identify driving processes of

the Lingshui spring system. The adapted and parametrized model will then be used as a

tool to predict future changes of water level under varying climate scenarios. Its reliability

in a climate impact context will be tested by comparing model uncertainties under current

conditions to those under future predictions. It is expected that model uncertainties of

future predictions will only differ sufficiently from those under current conditions when

extreme climate scenarios are applied.

The study of Guo et al. (2015) tried to rise awareness to threats of these highly important

karst systems with regards to quantity and quality changes. The present work represents

a first trial to catch up with these urgently needed scientific descriptions and starts a first

formulation of the Linghsui spring system in terms of a model. Insights from this study

will enhance the understanding of the Lingshui karst system and current knowledge about

karst spring dynamics in the southwest China karst region. Furthermore, it will be a first

step for advising local decision makers on management plans and point out necessary

further data collection (Guo and Jiang, 2011).

The following research questions are going to be answered throughout this thesis:

• Does the hydrological VarKarst model work in the special hydrogeological karst

setting of the Lingshui spring catchment in southwest China?

• How good is the parameter identifiability and how large is the model uncertainty

when only a short time series is available for parameter calibration?

• Is it sensible to include the rating curve - needed to transfer modelled discharge

output to water level - in the calibration procedure? Which impact will the inclusion

have on parameter identifiability and model uncertainty?

• Which climatic changes would lead to uncertainties in future predictions that differ

enough from those under current climate to be rated as meaningful or reliable?
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3 Study Site

The Linghsui karst system and the Wuming basin in which it is embedded, have been

subject to several field campaigns over the last decades during which basic information

about the area (e.g. (hydro-)geological setting and land use) as well as the spring pool

dynamics and quality were collected. The following descriptions are mainly based on

studies published by Guo et al. (2015) and Guo et al. (2016).

3.1 Climate

To describe the general regional climate, daily data for precipitation as well as minimum

and maximum temperatures for the whole available time series (1951-2016) were down-

loaded from the Global Historical Climatological Network (GHCN-D) dataset for Nan-

ning airport weather station (59431, 22°37’48” N 108°13’1” E), which is located about

60 km away from the Lingshui spring pool (Figure 6) (NOAA, 2017). A climate dia-

gram for the normal climate period (1981-2010) according to Walter and Lieth (1967) is

displayed in Figure 5. Climate in the region is governed by the Southern tropical mon-

soon with an annual average precipitation of 1290 mm. In almost all summer months
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Figure 5: Climate diagram for Nanning weather station (59431) over the normal weather
period of 1981-2010. Monthly precipitation over 100 mm is scaled 15:1. Blue bars below
the x-axis indicate months where frost can occur (absolute daily minimum temperatures
below 0°C). The figure was created using the "iki-dataclim” package from the R software.
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between April and September, monthly precipitation sums exceed 100 mm. The max-

imum is reached between May and August where 63% of the yearly precipitation falls.

Comparatively, low amounts of precipitation fall in the winter months between November

and March (only 16.5% of the annual rainfall). In the climate diagram, December is even

marked as a particularly dry month with arid conditions. The annual average temperature

is 22.6°C. The highest temperatures occur over the summer months, particularly in July

and August where the monthly mean lies above 25°C and daily maxima over 35°C can be

reached. In January, on the contrary, the monthly mean temperature drops significantly

below 15°C and daily minima can fall below 0°C. The combination of high temperatures

and large amounts of precipitation lead to an average yearly potential evapotranspiration

(PET) of 1287.4 mm (1957-2005) and a mean humidity of 78% (Guo et al., 2015).

3.2 (Hydro-)Geology

The Wuming basin, in which the Lingshui spring lies, includes all of Wuming County as

well as parts of two other counties of Nanning city. Figure 6 shows details of the location

of the study site1. Water from the basin feeds the largest river in the region, the Wuming

river which is about 198 km long. Major contributaries are the Xijiang and Xiangshan

rivers, emerging from surrounding non-karstic mountain ranges in the North and East.

The basin contains 18 identified karst systems, which are divided by rivers and drained

Figure 6: Location of the Lingshui spring and its catchment.

1DEM from USGS (2017); Data for Chinese administrative areas from GADM (2017); China Basemap

from OpenStreetMap (2017); Polygons of Lingshui catchment and Niaja syncline digitized from maps in

Guo et al. (2015) and Guo et al. (2016); River network from (Geofabrik, 2017)
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by around 148 springs (personal communication, Fang Guo (22.11.2017)). The Lingshui

spring system is the only one crossing a river by flowing underneath the river bed (Guo

et al., 2015).

Along with the regional climate, the Wuming basin’s (hydro-)geological setting is the

main driving factor of the Lingshui karst system’s hydrological dynamics (Guo et al.,

2016). 70% of the area here are of karstic geology (Guo et al., 2015). Groundwater

storage recharge is mainly autogenic by rainfall as only few obvious surface karst features

like sinkholes can be found in the study area (Jiang and Guo, 2010). Therefore, it is

assumed that the Lingshui spring has to come from a deep lying aquifer as a regional

groundwater resource (Figure 7). Additionally, water is transferred to local karst aquifers

by fractures in the bedrock and lateral recharge from rivers (Guo et al., 2015). During

heavy rainfall events, the aquifer can become an estavelle which takes up water from the

surrounding rivers (Guo et al., 2015). Figure 8 (adapted from Guo et al. (2016)) shows

a geological map of the study region. The Lingshui spring lies in the downtown area

of Wuming and forms the outlet of the Niaja syncline at an altitude of 96 m a.s.l.. The

syncline is about 20 km long and exhibits the younger Middle Triassic geology of muddy

limestones, which provide a mainly fissured karst aquifer (T2). The Triassic to Upper

Devonian carbonate depositions form peak forest at the edges of the syncline, the only

bare karst that is found in the area (T1b and T1m). Siliceous and tuff aquitards, formed

within Lower Triassic, Permian and Carboniferous strata, are present in the wings of the

syncline (P2). Otherwise, the hydrologically important covered karst occurs everywhere

in the region where Quartenary (loam) clays overlay limestone (Q3
al, Q4

al). Covered

karst aquifers are usually not as widely developed as bare karst aquifers and dominantly

contain matrix flowpaths. According to Fischer et al. (2008), the dominating soil type in

the region are acrisols, red soils typically found in the (sub-)tropics. In combination with

overlaying soils of about 5 to 15 m (and in some parts up to 30 m), covered karst areas

(and fissured aquifers of the Niaja syncline) build the groundwater aquifer feeding the

Lingshui spring (Guo et al., 2015). Another proof for the dominance of matrix and fissure

flowpaths in the system is the Xijiang river flowing through the Niaja syncline. In many

highly fractured karst systems, precipitation is transported underground by sinkholes so

Figure 7: Sketch of karst systems and springs in the Wuming basin. Retrieved from Guo
et al. (2015).
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Figure 8: (Hydro-)geological map of the study site. Adpated from Guo et al. (2016).

fast, that surface runoff only occurs when all conduits are saturated with water. According

to tracer tests, the covered karst in the area leads to comparatively long transit times of

groundwater of about 17-23 m·d-1 (Guo et al., 2015). This could potentially result in

mean residence times of up to 800 days over the whole Lingshui catchment. According

to GIS-based2 surface investigations as well as geophysical exploration, hydrochemistry,

environmental isotope analysis and tracer tests, the catchment area of the Lingshui spring

has been estimated to be 697 km2 (Guo et al., 2015). The mean discharge of the Lingshui

spring is 4300 l·s-1 (Guo et al., 2015). In their study on resilience of the Lingshui spring

system to climate and land use changes, Guo et al. (2015) already found out that a general

decline of discharge during the dry season of 50% took place between the 1970s and

2010s. Guo et al. (2016) have also investigated the qualitative changes of the Lingshui

spring pool. Eight other springs from the karst system contribute to the pool’s recharge

so that it covers an area of 29300 m2 (Figure 9). The water temperature of the spring pool

of 24°C remains fairly stable over the year whereas the water level in the pool can range

between 0.5 and 3 m, with peaks exceeding 3 m in the rainy season from May to August

(Guo et al., 2016). Maxima of up to 7 m have been recorded after particularly strong

rainfall events (personal communication, Fang Guo (04.09.2017)). An overflow dam was

built near the outflow of the pool, 500 m before it drains to the Wuming river, to retain

the scenic public area (Guo et al., 2016). In case of flooding, the river recharges the gorge

2Geographic Information Systems



(Hydro-)Geology 19

with its polluted waters and changes the pools water quality in comparison to the springs

(Guo et al., 2016).

Figure 9: Map of the Lingshui spring pool. Names of geologies are according to the
nomenclature in Figure 8. Adapted from Guo and Jiang (2011).
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4 Methods

4.1 Data and quality assessment

The data on which this study is based have been kindly supplied by Fang Guo from the

Institute of Karst Geology (CAGS) in Guilin. Only water level data were used in this

study, as hydrochemical (Cl– , SO4
2 – ,HCO3 – , NO3

– ) and -physical parameters (elec-

tric conductivity and water temperature) were measured irregularly and were not available

for both time series. Table 1 summarizes the available data. Regular measurements of the

water level in the Lingshui spring pool were available for time periods of 01.01.2010 -

31.12.2011 (hourly, 2318 NAs (not availables)) and 18.04.2016 - 31.05.2017 (quarter-

hourly, 151 NAs) measured by a Solinst water level meter. Figure 10 shows that the three

years have very distinctive water level dynamics over the period 16.04 - 31.12. of a year.

Where the duration curve of 2011 is marked by extensive lows (only about 5% of the data

show values over 1 m), 2016 was much more variable with 50% over 0.75 m but also had

much more variance in the low water level sector with the lowest values very close to 0.

In 2010, the duration curve shows characteristics from both 2011 and 2016: It is more

similar to 2016 for high water levels exceeding 1 m but is almost equal to 2011 for high

exceedance probabilities. The maximum measured water level of all three time series

reached 5.31 m on 22.04.2016 and the minimum occurred on the 05.12.2016 at 0.12 m.

Yearly mean water levels were around 0.75 m.

Table 1: Available data for the modelling study supplied by Fang Guo (Institute for Karst
Geology, Guilin) and downloaded from GHCN-D. PET: Potential evapotranspiration.

Parameter Unit Source Time span Res.

Water level m Fang Guo 01.01.2010 - 31.12.2011 hourly

18.04.2016 - 31.05.2017 15 min

Precipitation mm·d-1 GHCN-D 01.01.2010 - 31.12.2011 daily

GHCN-D 26.08.2016 - 31.08.2016 daily

GHCN-D 01.10.2016 - 16.10.2016 daily

Fang Guo 18.04.2016 - 25.08.2016 30 min

17.10.2016 - 31.05.2016 30 min

Fang Guo 01.09.2016 - 30.09.2016 daily

PET mm·d-1 Fang Guo 01.01.2010 - 31.12.2011 daily

Air temperature °C GHCN-D 01.01.2011 - 31.12.2011 daily

GHCN-D 26.08.2016 - 31.08.2016 daily

GHCN-D 01.10.2016 - 16.10.2016 daily

Fang Guo 18.04.2016 - 25.08.2016 30 min

17.10.2016 - 31.05.2016 30 min

Fang Guo 01.09.2016 - 30.09.2016 daily
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Figure 10: Water level duration curve of
2010, 2011 and 2016/2017. The dotted grey
lines differentiate very high ( <20%) and low
water levels ( >70%)

Discharge data for the Lingshui spring

pool were obtained by a flow meter on a

irregular basis (see appendix, Table A.1).

Most data were measured in 2011 in an al-

most monthly interval. In 2010, 2016 and

2017 discharge was measured only occa-

sionally. All measurements were conduc-

ted in average flow conditions so that ex-

treme conditions (low/high flows) are not

covered. Furthermore, information about

the impact of backwater flow from the

Wuming river during periods with very

high flows is missing.

For the time period of 2010/2011 climate

data from the GHCN-D weather station

in Nanning, about 60 km away from the

spring pool were the closest ones available. The data included daily means of temperature

[°C] and daily sums of precipitation [mm]. Data for potential evapotranspiration [mm] for

this time period have been provided by Fang Guo and were downloaded from the web-

site of the China Meteorological Data Service Center (CMDC, 2017). For 2016/2017,

climate data came from a HOBO weather station installed directly besides the Lingshui

spring pool. Here, sums of precipitation and mean air temperature were measured in a

half-hourly interval. For the HOBO time series, 2828 values are missing, mainly from

25.08.2016 to 17.10.2016. Data quality was ensured by checking for highly implausible

values well out of expectable ranges. This occurred 6 times in the evapotranspiration

data for 2010/2011 (values > 3000 mm·d−1) and 151 times for the water level data of

2016/2017 (values < 0 m). A thorough quality assessment of the rainfall and water level

data turned out to be difficult due to the lack of further data from the region that could

have served for plausibility checks.

As the Varkarst model conducts its calculations on daily time steps, both water level time

series (2010/2011 and 2016/2017) and the HOBO climate data from 2016/2017 had to be

aggregated. For water level, daily means were calculated from the (quarter-)hourly data,

for precipitation daily sums and for temperature daily means. Before a day was declared to

be NA, thresholds of a maximum allowed number of NAs per day were set. A maximum

of 10% of the data missing was declared to be acceptable for a given time step. A thorough

identification of NA-days like it has been conducted here is particularly important as

input data for the model (precipitation and potential evapotranspiration) are expected to

be continuous. Time gaps have to be filled by data from another station or interpolation

methods. These additional inaccuracies should be avoided wherever possible, hence the
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NA-threshold approach. After aggregation, a total of 112 days were missing of the water

level data for 2010/2011 (about 15% of the whole time series) as well as 6 days of the

evapotranspiration data. In 2016/2017 only 3 days were missing for water level and 63

days in the climate data (around 15%).

The short gaps in the 2010/2011 evapotranspiration time series were filled using the R

na.spline-function. Gaps of precipitation and temperature in 2016 were filled by data

provided by Fang Guo from a weather station in Nanning, 30 km away from the study site

(personal communication, Fang Guo (25.09.2017)) and from the GHCN-D (see Table 1

and Figure 11). To keep this step simple, it was decided not to use a linear regression

approach between the Lingshui weather station and the interpolation data provided from

the aforementioned sources. Figure 11 shows the (a) temperature and (b) precipitation

time series with gaps mainly occuring in the period of 25.08.2016 - 17.10.2016 and the

data used for filling these gaps. As there were still NAs from the GHCN-D dataset for

precipitation, they were simply set to zero. Data to fill the September gap were provided

by Fang Guo from another weather station (light blue) whereas all other missing days

were filled with data from GHCN-D.

In Figure 12 (a) monthly means of temperatures and (b) monthly sums of precipita-

tion are depicted to compare the three years of climatic measurements (2010, 2011, and

2016/2017) and show whether any apparent differences did occur that could potentially

have influenced water levels. In terms of their monthly temperatures, all three years were

similar, even though 2011 had the coldest winter of all with a mean monthly temperature

of under 10°C in January. On the mean, 2011 was also the driest year with 1252.9 mm

of precipitation in spite of October being a particularly wet month with over 300 mm.

This could be an explanation for the low water levels in 2011 shown in Figure 10. As

can be identified in Figure 12 (b), the spring of 2010 was marked by a severe drought

that occurred in the whole of southwest China which already started in September 2009

but was most severe between February and April 2010 (Zhang et al., 2012). The drought

had negative effects on water availability in the area with impacts on agriculture and wa-

ter supply (Zhang et al., 2012). August and October 2011 were marked by several high

precipitation events that added up to a very high monthly sum. The most extreme precip-

itation event was also measured on 30.09.2011 with >100 mm of rain in one day. In spite

of these variations, which are very characteristic for precipitation, the three time series

can be regarded as fairly similar.

As the VarKarst model structure requires potential evapotranspiration data as an input, air

temperature data from 2016/2017 had to be transformed using the Thornthwaite Equation

(see Appendix B, Thornthwaite (1948)). To check for the reliability of evapotranspiration

values calculated from air temperature by Thornthwaite, for 2010/2011 evapotranspiration

data from Fang Guo were compared to those calculated by the Thornthwaite approach

(Figure 13). It can be seen that lower evapotranspiration rates are highly underestimated



24 Methods

as the line of linear interpolation does significantly differ from the 1:1 line here. Higher

evapotranspiration rates tend to be overestimated. This information has to be kept in mind

for the interpretation of model results.

4.2 Rating curve calibration

To capture hydrodynamics of the Lingshui karst system, it is reasonable to use Lingshui

spring pool for measurements, as it integrates the behaviour of all nine springs emerging

2016/2017
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Figure 11: Plot of values inserted into the gap of climate data (16.08.2016-17.10.2016)
for (a) daily temperature and (b) precipitation sums. Interpolation values have been
either provided by Fang Guo or were derived from GHCN-D (Station 59431) wherever
still missing.
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from the system. Intensive discharge measurement campaigns, particularly in a large

natural water body such as the Lingshui spring pool, are often difficult to realize. Water

level, on the other hand, can be much easier recorded automatically, which is why a

permanent monitoring station has been installed at the spring pool (Figure 9). As the

VarKarst model simulates spring discharge dynamics, it is necessary to find a rating curve

that transforms water level to discharge (or vice versa) to be able to compare simulations

with measured data. The most commonly applied form of the rating curve is the power law

in Equation 1 (Braca, 2008). It is particularly suitable in natural cross-sections without

weirs where section and channel controls are unknown (Braca, 2008).

Q = c(h+a)b (1)

where: Q = Discharge [l·s−1]

h = Water level [m]

a,b,c = Calibration coefficients [-]

The reverse can be accordingly calculated by converting Equation 1 into Equation 2.

h = (
Q
c
)

1
b −a (2)

21 discharge measurements were available for 2010, 2011 and 2016/2017 (11 measure-

ments from 2011 alone) (Table A.1). Even though according to Braca (2008) this is a

sufficiently large sample to formulate a rating curve, stationarity of the rating curve over

time has to be assumed as conditions could have changed over the years, e.g. through
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Figure 12: Plots of monthly (a) mean temperature (b) sum of precipitation for 2010,
2011, 2016/2017 calculated after filling interpolation of NAs.
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Figure 13: Monthly sums of PET data provided by Fang Guo compared to monthly sums
calculated with Thornthwaite. Solid blue line: least square linear fit of the data, dashed
line: 1:1 line. Pearson’s correlation coefficient = pc.

sedimentation in the spring pool. The sample is not large enough to find rating curve

formulations for both time periods separately.

Two approaches to include the discharge-water level transformation were considered in

this study. One followed the classical approach of finding the rating curve formulation by

fitting a linear model on log-scale with a least square approach (Braca, 2008). Based on

the assumption that water level roughly follows discharge dynamics, the model calibration

was conducted on water level dynamics and variability only, not taking water volume into

account (see Section 4.4.1). Modelled discharge was then transformed into water level by

using the fitted rating curve. This procedure will be referred to as RNI in the following

(Rating curve Not Included) .

In a second approach it was tried to include the definition of appropriate rating curve

parameters into the model calibration process. This approach will be called RI (Rating

curve Included) hereafter. As this added another three parameters to be calibrated, it was

particularly interesting to see whether uncertainties would increase with this approach due

to equifinality (Beven, 2006).

4.3 The VarKarst model

In the following, the concepts behind the VarKarst model, as first introduced by Hart-

mann et al. (2013a), are going to be described. The VarKarst model was chosen for two

reasons. First, for its low data input requirements in comparison to, for example, distrib-

uted models. Secondly, its semi-distributed character aims at taking the spatial variability

of parameters driving the physical processes in a catchment into account. Even though

the Lingshui spring catchment does not show the clear division between matrix and con-

duit porosity, VarKarst is expected to still be able to adapt to these conditions, as shown

in Brenner et al. (2016). VarKarst incorporates variability of soil and epikarst depths,
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fractions of concentrated and diffuse recharge to groundwater as well as epikarst and

groundwater hydrodynamics. This flexibility is achieved by using one-parameter pareto

functions as proposed and successfully tested in hydrological modelling by Moore (2007)

and other applications of the VarKarst model. The pareto functions represent the hetero-

geneity of a karst catchment through model compartments without the data requirements

of a distributed model, as their parameters can be identified by automated calibration.

Due to the scarce availability of data for the Lingshui karst spring, a parsimonious model

setup was chosen, which includes only basic characteristics of the karst system and does

not incorporate chemical variables. By experience from former studies, the number N of

model compartments was set to 15, e.g. Hartmann et al. (2013a), Hartmann et al. (2016)

and Brenner et al. (2016).

Hereafter, the mathematical formulation of the VarKarst model is going to be presented,

basically following the flow of water from precipitation over soil to epikarst, groundwater

and discharge of the spring. This description is based on a previous one provided in

Hartmann et al. (2013a).

The soil storage capacity of the compartments is determined by VS,i [mm] with Equa-

tion 3.

VS,i =Vmax,S

(
i
N

)aSE

(3)

where: VS,i = Soil storage capacity [mm]

Vmax,S = Maximum soil storage capacity [mm]

N = Number of compartments

aSE = Soil/epikarst variability constant [mm]

Vmax,S [mm] is approached by derivations in equation block 4 under the assumption that

Vmean,S [mm] represents the soil depth at compartment i1/2 where the volumes on the left

equal the volumes on the right.

∫ i1/2

0
Vmax,S

( x
N

)aSE
dx =

∫ N
0 Vmax,S

( x
N

)aSE dx
2

Vmean,S =Vmax,S

(
i1/2

N

)aSE

Vmax,S =Vmean,S ·2
(

aSE
aSE+1

)
(4)

where: Vmean,S = Mean soil storage capacity [mm]

The epikarst storage capacity VE,i [mm] is found in the same manner with Equation 5 and
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the derivations in Equation block 6.

VE,i =Vmax,E

(
i
N

)aSE

(5)

where: VE,i = Epikarst storage capacity [mm]

Vmax,E = Maximum epikarst storage capacity [mm]

∫ i1/2

0
Vmax,E

( x
N

)aSE
dx =

∫ N
0 Vmax,E

( x
N

)aSE dx
2

Vmean,E =Vmax,E

(
i1/2

N

)aSE

Vmax,E =Vmean,E ·2
(

aSE
aSE+1

)
(6)

where: Vmean,E = Mean epikarst storage capacity [mm]

The actual evapotranspiration Eact,i [mm] from each compartment i in a time step t is

determined by saturation of the soil and potential evapotranspiration Epot [mm] (Equa-

tion 7). In comparison to all prior applications of the VarKarst model, a new runoff

routine, introduced by Sarrazin et al. (2016) and soon to be published, was used in this

study. It will be explained further below.

Eact,i(t) = Epot(t)
min[VSoil,i(t)+P(t)+ InSur f Soii(t −1),VS,i]

VS,i
(7)

where: Eact,i(t) = Actual evapotranspiration [mm]

Epot(t) = Potential evapotranspiration [mm]

VSoil,i(t) = Actual amount of water in soil [mm]

P(t) = Precipitation [mm]

InSur f Soii(t −1) = Redistributed excess water from epikarst to soil [mm]

Wherever the input to a soil compartment exceeds its storage capacity VS,i, recharge to the

epikarst RE pi,i(t) [mm] is generated (Equation 8).

RE pi,i(t) = max[VSoil,i(t)+P(t)+ InSur f Soii(t −1)−Eact,i(t)−VS,i,0] (8)

where: RE pi,i(t) = Recharge to the epikarst [mm]

As in many karst areas, the epikarst can act as an important storage, outflow from the epi-

karst is controlled by variable storage coefficients for each compartment KE,i [d] defined
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by Equation 9.

KE,i = Kmax,E

(
N − i+1

N

)aSE

(9)

where: KE,i = Variable epikarst storage coefficient [d]

Kmax,E = Maximum epikarst storage coefficient [d]

It is assumed, that a multiplication of the mean epikarst storage coefficient Kmean,E [d]

by the number of compartments N represents the area below the Pareto function whose

variability is given by the distribution coefficient aSE . Kmax,E can then be derived from

Kmean,E according to Equation block 10.

N ·Kmean,E =
∫ N

0
Kmax,E

( x
N

)aSE
dx

Kmax,E = Kmean,E
(aSE+1)

(10)

where: Kmean,E = Mean epikarst storage coefficient [d]

Flow from epikarst to groundwater can then be described by Equation 11 and for a time

step t depends on the current volume of the epikarst storage, the recharge coming from

the soil storage and the storage coefficient.

QE pi,i(t) =
min[VE pi,i(t)+RE pi,i(t)+ InSur f E pii(t −1),VE,i]

KE,i
·Δt (11)

where: QE pi,i(t) = Flow from epikarst to groundwater [mm]

VE pi,i(t) = Actual amount of water in epikarst [mm]

InSur f E pii(t −1) = Redistributed excess water from epikarst to epikarst [mm]

The VarKarst model separates the slow diffuse recharge of groundwater (which varies

between compartments i=1 to i=N-1) from concentrated recharge in conduits (compart-

ment i=N). This variability is calculated by the separation factor fc,i [-] determined by a

distribution coefficient a f sep [-] (Equation 12).

fC,i =

(
i
N

)a f sep

(12)

where: fC,i = Variable separation factor [-]

a f sep = Recharge separation variability constant [-]

Concentrated recharge Rconc,i [mm] and diffuse recharge Rdi f f ,i [mm] are then calculated

determined by Equation 13 and Equation 14.

Rconc,i(t) = fC,i ·QE pi,i(t) (13)
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Rdi f f ,i(t) = (1− fC,i) ·QE pi,i(t) (14)

where: Rconc,i(t) = Concentrated recharge [mm]

Rdi f f ,i(t) = Diffuse recharge [mm]

Groundwater contributions of the matrix system QGW,i [mm] (compartments i=1...N-1)

are controlled by variable groundwater storage coefficients KGW,i [d] (Equation 15).

KGW,i = KC

(
N − i+1

N

)−aGW

(15)

where: KGW,i = Variable groundwater storage coefficient [d]

KC = Conduit storage coefficient [d]

aGW = Groundwater variability constant [-]

and result in the discharge volume generated by each compartment (i=1...N-1) as de-

scribed with Equation 16.

QGW,i(t) =
VGW,i(t)+Rdi f f ,i(t)

KGW,i
(16)

where: QGW,i(t) = Groundwater contributions of the matrix [mm]

VGW,i(t) = Actual amount of water in matrix storage [mm]

The contribution of the conduit flow QGW,N [mm] is calculated by Equation 17.

QGW,N(t) =
min[VGW,N +∑N

i=1 Rconc,i(t),Vcrit,OF ]

KC
(17)

where: QGW,N(t) = Groundwater contributions of the conduit system [mm]

VGW,N(t) = Actual amount of water in conduit storage [mm]

A transformation of QGW,i [mm] to spring discharge Qspring [l·s−1] is then achieved by

taking the mean of QGW,i over all compartments at each time step t and rescaling it by the

recharge area A [km2] (Equation 18).

Qspring(t) =
A
N

N

∑
i=1

QGW,i(t) (18)

where: Qspring(t) = Spring discharge [l·s−1]

A = Recharge area [km2]

As mentioned before, the runoff routine has been adapted by (Sarrazin et al., 2016). In
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former versions of the model, water masses exceeding the storage capacity of the epikarst

were only redistributed to the following compartment without taking its saturation into

account and therefore causing errors in the mass balance. The new runoff routine incor-

porates the soil and epikarst storage capacity by redistributing saturation excess according

to the saturation deficit of soil and epikarst of the following compartment. In practice, this

means that all excess water from saturated compartments is summed up and redistributed

to the next unsaturated compartment (InSur f Soii, InSur f E pii in Equations 7, 8 and 11).

If there is still excess water left once this compartment reaches saturation, again the next

unsaturated compartment is filled up. This procedure is being continued until no excess

water is left or the last compartment is reached. All water leftover after the saturation of

the last compartment becomes surface runoff.

Based on this introduction to the VarKarst model, the next subsections will present the

workflow used to parametrize the model. It largely follows steps based on Wagener et al.

(2001). A mind map on the process is depicted in Figure 14.

SCEM-UA MCAT Split sampling

Model 
calibration

Threshold
approach

Model
validation

Model 
performance

Predictive
capability

Uncertainty

Parameter 
identifiability

Method

Output

Objective

Discharge dynamics
RNI: KGErvar

Discharge dynamics and
mass balance

RI: KGE

Sensitivity
analysis

Figure 14: Overview of the methodology used in this study.
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4.4 Model calibration and evaluation

4.4.1 Model performance

The general model performance was assessed by identification of an optimal parameter

set with the SCEM-UA as introduced by Vrugt et al. (2003). This automated calibration

procedure combines the strengths of the Metropolis algorithm (a Monte Carlo Markov

Chain sampler), controlled random search, competitive evolution, and complex shuffling.

It includes Monte Carlo Markov Chains (MCMC) (Metropolis-Hastings algorithm) to ac-

count for uncertainties in parameter calibration. In combination with the MCMC search,

the SCEM-UA is used to constantly tune the prior distribution (usually chosen as a uni-

form distribution between the minimum and maximum expected range of a parameter)

after each iteration. This gives the approach all the flexibility, efficiency and precision

needed to ensure the exploration of the whole feasible parameter space and to find a real-

istic approximation of the stationary posterior distribution. Vrugt et al. (2003) see the

algorithm as particularly useful in modelling studies with a high number of model para-

meters and therefore with high dimensional optimisation problems as is the case for the

VarKarst model. Basic SCEM-UA settings were used in this study. The number of com-

plexes was set to five and the number of samples to 1000. A maximum number of 3000

iterations was chosen to avoid an endless search for an optimal parameter set. Minimiza-

tion of the objective function was chosen as the optimization method.

As this study uses a reverse modelling approach by fitting the model parameters to input

and output variables, the choice of objective function on which the parameter calibration

is evaluated is an important factor to obtain optimal modelling results. Gupta et al. (2009)

have elaborated that the commonly used NSE consists of three elements with different

contents of information which are often prone to interactions. Thus, they developed a

decomposition of the NSE - the KGE - which separately accounts for components of the

NSE in an orthogonal set up (Equation 19). This also gives the opportunity to exclude

parts of the KGE if, depending on the research question, a focus on certain components

is useful in model calibration.

KGE = 1−
√

(r−1)2 +(α −1)2 +(β −1)2) with α =
σS

σO
and β =

μS

μO
(19)

where: r = Linear correlation coefficient (simulated and observed)

α = Measure of relative variability

β = Measure of volume bias (KGE)

μS,μO = Mean (simulated and observed)

σS,σO = Standard deviation (simulated and observed)

As the rating curve in the RNI approach would only be included after calibration, it was

necessary to exclude the volume bias (β ) from KGE and just calibrate modelled dis-
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charge on water level dynamics and variability. This was done under the assumption that

discharge dynamics of the spring pool could roughly be expected to linearly follow water

level dynamics. Hartmann et al. (2013a) used the same approach in order to calibrate

the VarKarst model separately on discharge dynamics and variability as well as variation

of recharge area (KGErvar, Equation 20). Furthermore, the standard deviation α had to

be normalized by the mean of the observed and modelled values in order to completely

exclude the volume bias from the calculation of the KGE.

KGErvar = 1−
√

(r−1)2 +(α ′ −1)2) with α ′ =
σS/μS

σO/μO
(20)

A basic version of the model was used to check model performance. The number of

parameters was kept at its minimum of eight for RNI and eleven for RI, respectively, to

reduce overparametrization and potential interactions between parameters. In a first run,

the parametrization was conducted with parameter values and ranges by experience from

another study using the VarKarst model in an English Chalk aquifer region (see appendix,

Table C.1) (Brenner et al., 2016). They applied the VarKarst model in a wet climate and

in a geological setting were diffuse recharge is dominant. The description of the study site

of the Lingshui spring catchment allowed to conclude that a similar parametrization could

be useful for the Lingshui spring system. Only parameter values of Vmean,S and Vmean,E

were adapted to match information on local conditions with soil depths between 5 and

15 m and a poorly developed epikarst.

According to Mazzilli et al. (2012), the inclusion of a warm-up period is often highly

recommended in order to allow storage compartments in a model to reach steady state

Table 2: Description of parameters and parameter ranges used for final calibration trial
(parameter ranges adapted from first calibration).

Parameter Description Unit Ranges

Lower Upper

A Recharge area km2 650 750

Vmean,S Mean soil storage capacity mm 5000 15000

Vmean,E Mean epikarst storage capacity mm 0 5000

aSE Soil/epikarst depth variability constant - 0.1 100

Kmean,E Epikarst mean storage coefficient d 0.1 2.5

a f sep Recharge separation variability constant - 0.1 100

KC Conduit storage coefficient d 1 100

aGW Groundwater variability constant - 1 100

a Rating curve parameter - 0 5

b Rating curve parameter - 0 5

c Rating curve parameter - 0 10000
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and to reflect starting conditions at the beginning of the calibration period. They also

mention that the warm-up period should ideally be extracted from a data set that was

actually measured in the field. Due to the sparse availability of data, no information

could be spared, so that a pseudo warm-up period had to be generated (referred to as pre-

warm-up in Mazzilli et al. (2012)). For the warm-up period of the calibration time series

(2010/2011), the 2010 part of the data were repeated three times. The calibration was

then conducted on the 2010/2011 time series itself. For the validation period, the period

between 18.04.2016 - 18.04.2017 was repeated three times for warm-up.

Several calibration trials were conducted in order to test whether the model was capable of

producing realistic results at all. Any obvious erroneous behaviour, e.g. emptying of stor-

age compartments against the assumption of stationarity (Nützmann and Moser, 2016) or

large discrepancies between the model results and measured values, were analysed after

this first step. Potential sources for unexpected behaviour (e.g. starting conditions, model

structure, parameter ranges) were adapted. An appropriate parameter range confinement

is highly important to ensure optimal sampling space for the MCAT (see Section 4.4.2)

and to acquire a realistic impression of uncertainty. An insufficient confinement of the

parameter space is inevitably linked to higher non-uniqueness of parameters and there-

fore equifinality (Beven, 2006). As some discharge measurements were available for the

calibration period, different weighting schemes for measured discharge and water level

with different combinations of KGE and KGErvar were tested, too.

Most former applications of the VarKarst model were conducted in the Mediterranean

with a distinctive dry season with high evapotranspiration rates over the summer months.

Therefore, it was concluded that the soil and epikarst would be completely dried out at the

end of the dry season, so that their initial volume was set to zero (Hartmann et al., 2013a).

In the tropics, on the other hand, with large amounts of rain falling during the monsoon

season coinciding with the highest evapotranspiration rates, it can be expected that during

the winter months upper parts of the aquifer retain their storage capacity. This has been

proven by Hu et al. (2015) for a dolomite region in southwest China. Mean residence time

in the well developed epikarst was over one year in this region. This is due to the missing

duality of the system as is common in limestone aquifers. Guo et al. (2015) report, that the

karst system of the Lingshui spring can be expected to be dominated by a fissure aquifer

with few conduits and fractures. It therefore resembles the dolomite aquifer described by

Hu et al. (2015) in its hydrogeological behaviour. The initial storage of the groundwater

storage compartments was calculated by the linear relation between discharge and the

storage of the groundwater reservoir (Equation 16). The first discharge value as obtained

from the calculated rating curve was used as initial discharge. For the calibration period

this was 3000 l·s−1 and for the validation period 1543 l·s−1.

Two plausible scenarios were tested for the starting conditions of the soil and epikarst

storage in order to find out which would perform better in the calibration process. Con-
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ducting such an additional sensitivity analysis was justified as a large impact of initial

conditions on the model output could be expected due to the shortness of the available

time series (Mazzilli et al., 2012).

The first scenario is mainly based on the study of Hu et al. (2015) which allows the

assumption that by mid-winter (the time where the calibration time series starts), the soil

compartment could have dried out completely. The epikarst on the other hand acts as an

additional storage compartment and is still filled to its maximum. It will be called EpiMax

(Epikarst Maximum) in the following.

The second scenario rather relies on actual hydrogeological conditions in the Lingshui

catchment, where epikarst is only sparsely developed and soils with thicknesses of up to

30 m occur. Here, epikarst can be expected to only play a minor role, whereas soil might

act as an additional storage compartment. Zhang et al. (2013) stress the importance of

red soils as water storage in covered karst areas of south China. Both, soil and epikarst,

were therefore set to maximum storage capacity for the start of the calibration period.

This scenario will be called SoiMaxEpiMax (Soil Maximum, Epikarst Maximum) in the

following. Of course, the soil could have dried out considerably by mid-winter but such

nuances were not considered in the scope of this study.

In summary, the aim of the whole first calibration procedure by SCEM-UA was to identify

final parameter ranges to be used in the model and to make a decision on the initial condi-

tions to be used. The plausibility of parameter values and ranges was evaluated by taking

existing publications and knowledge of the study site into account.

4.4.2 Uncertainty analysis and parameter identifiability

The short time series cannot contain the large temporal variability usually observed in the

spring pool. Therefore, it will presumably introduce large uncertainties to the parameters

and model output. Fundamental to the model evaluation approach that was used in this

study was a Monte Carlo sampling of parameter sets to quantify uncertainty. This was

done using MCAT, a sampling routine developed by Wagener and Kollat (2007), writ-

ten in the programming language MATLAB®, which combines functionalities for Monte

Carlo sampling and uncertainty analysis. As no assumptions about an error function could

be made beforehand, the prior distribution was set uniform without updating, so that all

parameter values got the same chance to be drawn in every run. It was decided that one

million Monte Carlo runs were needed to evaluate parameter identifiability with more

confidence and to have a higher chance to find parameter sets with satisfactory results.

The output of the MCAT allowed an interpretation from several perspectives. All of

the further analyses were based on selected, ‘acceptable’ MC parameter sets which were

identified by choosing only those which remained under a set threshold of the objective
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function performance. For interpretation of parameter identifiability, a method similar to

the regional sensitivity analysis of Hornberger, Spear and Young (HSY) (Hornberger and

Spear, 1981) was used, which had been adapted for several similar studies before (Yapo

et al., 1996; Choi and Beven, 2007; Moussu et al., 2011; Hartmann et al., 2013a; Brenner

et al., 2016). In identifiability plots where the cumulative parameter distributions of the

accepted parameter sets are plotted against the 1:1 line of a uniform distribution, para-

meters with a high identifiability should show an increase within certain value ranges.

The narrowness of the cumulative density distribution can therefore be used to diagnose

identifiability (Moussu et al., 2011).

Additionally, explanatory power of the water level based calibration was evaluated using

an idea introduced by Hartmann et al. (2017). They calibrated the VarKarst model us-

ing different hydro-chemical data and information on flow states available for a spring

in a study site in the southwest of Spain. Alternative simulation runs with the MCAT

that produce large samples of parameter sets were then evaluated by different ‘soft rules’

(i.e. performance in calibration on discharge and the hydro-chemical parameters SO4
2 –

and NO3
– ). They then adopted the idea that when parameter ranges are normalized to

values between 0 and 1, the confinement of distance between the 25th and 75th percent-

ile due to the application of a threshold can give an indication on the informativeness of

different flow states and hydro-chemical data for the specified karst system. As there was

not as much additional information for the Lingshui spring available yet, the confinement

of parameter ranges was simply evaluated by reducing the parameter set using the same

threshold for KGE/KGErvar on water level.

In the last step, general uncertainty resulting from the modelling procedure was evaluated

by using the restricted parameter sets, identified by the threshold procedure, for simula-

tion. During the calibration time period, the distribution of model simulations could give

a first impression on model performance under consideration of uncertainties. Ultimately,

these should be diagnostic tools that help to learn about the underlying perceptual model

in the case of the Lingshui karst spring - or at least show us where gaps in our knowledge

are most severe and are most strongly affecting prediction uncertainty - and therefore help

to guide field measurement campaigns (Wagener and Kollat, 2007).

4.4.3 Predictive capability

For validation of the parametrization of the model, it was decided to use a cross-validation

approach, also called split sampling, where available data time series are divided in a

calibration and validation period (Bennett et al., 2013). This was particularly important as

the model is supposed to be used for further predictive analyses at the Lingshui study site

in the future, e.g. climate change impact analyses, for which a high predictive capability
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is required. For this purpose, it has to be determined whether the parametrized model is

capable of making realistic predictions outside of the conditions of the calibration time

series. 2010/2011 was chosen as calibration period and 2016/2017 for validation. One

argument for this choice is that 2010/2011 were dry and normal years whereas 2016/2017,

with 1455.3 mm of precipitation, were relatively wet in comparison. The model was

therefore calibrated for a dry/normal period and tested in wet conditions.

4.5 Uncertainty under future climate scenarios

As the Lingshui spring system supplies about 100,000 people with drinking water, it is vi-

tal to estimate the impact of climate change on the quantity and seasonal dynamics of the

spring. The question is, in how far a model calibration for which large uncertainties have

to be expected due to the availability of only a short time series, is capable of making reli-

able predictions for future conditions. This becomes an even bigger issue considering the

fact that most climate predictions are connected to significant uncertainties themselves.

To evaluate in how far uncertainties from the model under current conditions differ from

those under future conditions using different possible scenarios, an approach following

Chen et al. (2017) was used. They modified a baseline of observations under current con-

ditions through climate change scenarios obtained from a perturbation of values extracted

from probabilistic climate change modelling. By using this method, they accounted for

the high uncertainty connected to climate change modelling that often even produces

opposing results (Semadeni-Davies et al., 2008). The present study is based on results

obtained by Chen et al. (2011). They calculated probabilistic projections for temperat-

ure and precipitation changes for China under the Special Report on Emissions Scenarios

A1B (SRES A1B) using 28 coupled atmosphere–ocean general circulation models (AO-

GCMs) for the time periods 2011-2040 and 2070-2099. Expected temperature changes

were presented as absolute changes whereas precipitation changes were reported as per-

centages of decrease/increase from the current scenario. The reference period for the

changes was 1961-1990. Among the many climate projection studies for China and its

Southwest, this study was particularly interesting for the purpose of the present one as it

provides figures of probability distributions (Figure 15). Even though 2011-2040 repres-

ents the near-time period critical for policy and decision makers (Chen et al., 2011), ac-

cording to Poulin et al. (2011) and Brenner et al. (2016), for 2070-2099, climatic changes

from global warming are generally expected to exceed natural climate variability. There-

fore, the latter time period was used for the climate projections of the present study.

The median as well as the confidence intervals (2.5% and 97.5%) were extracted from

figures published in Chen et al. (2011), using the online digitizing tool WebPlotDigitizer

(Rohatgi, 2017). Extracted values are listed in Table 3. A perturbation of three tem-

perature scenarios with three precipitation scenarios led to nine possible climate change
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(a) (b)
Figure 15: Probabilistic winter (DJF, December, January, February), summer (JJA,
June, July, August) and annual climate scenarios of (a) temperature and (b) precipita-
tion change for the period of 2070-2099 under the A1B scenario for China. Adapted from
Chen et al. (2011).

scenarios that were applied to the validation time series by using the delta change ap-

proach (Kay et al., 2009; Chen et al., 2017). Depending on the climate scenario, the

baseline of daily values of temperature and precipitation from the 2016/2017 time series

were modified by the values in Table 3.

The method introduced in the following complies with the example of Kay et al. (2009)

who compared the difference of uncertainties caused by natural variability under cur-

rent and future conditions. For this study, it was adapted similar to the idea of Wilby

(2005), who was interested in the impact of model uncertainties on future predictions.

The concept behind this idea is best explained by the visualisation in Figure 16. Boxes

1) and 2) show duration curves of n model simulations under current (black) and future

(coral pink) conditions. Note that the duration curves are only shown as lines for visual

clarity. As an example, the sampling distribution (d) of the n model simulations is depic-

ted as a small inset diagram for a random exceedance probability (dashed line). Such a

sampling distribution can be calculated for each of the 409 exceedance probabilities from

the validation time series. The shape of the sampling distribution represents the accumu-

lation of modelled values at certain water levels for an exceedance probability (small inset

Table 3: Median and confidence intervals (97.5% and 2.5%) for climate change scen-
arios of temperature change [°C] and precipitation change [%].Winter: DJF (December,
January, February); summer: JJA (June, July, August). Digitized from Chen et al. (2011).

Percentile Temperature Precipitation Scenario

Annual DJF JJA Annual DJF JJA

0.975 2.7 2.7 2.6 0.4 3.3 -8.2 H

0.5 3.7 4 3.5 8.6 18.3 4.6 M

0.025 5.2 5.8 4.9 26.9 58.7 21.9 L
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diagram within boxes 1 and 2). It is basically a representation of uncertainty. Boxes 3)

and 4) show the polygon which envelops all model simulations and therefore gives a more

concise image of the overall model uncertainty. In box 5), the uncertainties are brought

together to allow a comparison between current and future conditions. The aim of this

analysis is to see in how far model uncertainties differ from another. If the difference is

large enough, results from a climate prediction scenario can be perceived as significant.

The novelty of this study is that it was decided to quantify this difference by a statistical

approach, instead of making only qualitative statements. Welch’s t-test appeared to be

most appropriate for this purpose, as it is fairly indifferent to unequal variances of the

samples and robust to non-normality in case of sufficiently large samples according to

the central limit theorem (Welch, 1947). The number of accepted parameter sets from

MCAT was thus set at 50, which, according to Ghasemi and Zahediasl (2012), is a suffi-

ciently large sample to neglect normality tests. Welch’s t-test evaluates the difference of

two sample distributions by their means. In case of a significant difference, its p-value can

give an impression on how strong the difference actually is. The overlap of the uncertainty

bands gives an additional visualisation of the difference between uncertainties.
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Figure 16: Conceptualization of the evaluation method established for comparing the
model uncertainties under current conditions (black) to those from scenarios under future
conditions (coral pink). 1) and 2) represent the duration curve of n model simulations
from which sampling distributions can be extracted. The small inset diagrams show the
sampling distributions at an exemplary exceedance probability. 3) and 4) show the poly-
gons which envelop the simulations runs. 5) shows the overlap of the uncertainty bands
as well as the overlap of the sampling distributions. Welch’s t-test was used to test the
statistical difference between the sampling distributions.
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5 Results

5.1 Rating curve calibration

Parameters of the rating curve were obtained in two different ways: First, by a classical

least square fitting and secondly by including the rating curve into the calibration pro-

cedure (RI). The results of these two methods are displayed in Figure 17. Black dots

show the predicted discharge values calculated from measured water levels by the least

square fitted rating curve formula. The predicted values lie well within the measured ones

and the rating curve shows a satisfactory fit. In comparison, the rating curve with para-

meters identified by the SCEM-UA calibration procedure (Q modelled in Figure 17) lies

noticeably under the measured values. A correction of the input water level by 0.5 m (see

equation in Figure 17) moves the modelled curve upwards so that it fits with the measured

data (Q modelled adjusted).
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Figure 17: Comparison of rating curves obtained from classical least square fitting on
log-scale (Q calculated, Qcalc) and from including the rating curve into the model calib-
ration procedure (Q modelled, Qmod). Measured water level - discharge data are marked
by triangles. Calculated discharge data from measured water levels are marked by points
and squares. The red line and points mark the transformation of Q modelled by raising
the water level by a factor of 0.5 m (Qmad).
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5.2 Model calibration and evaluation

5.2.1 Model performance

In the following section, the results of the SCEM-UA calibration procedure are presented.

As expected, the choice of parameter ranges had a large impact on the outcomes. Results

of the first calibration trial with parameter ranges as described in Section 4.4.1 as well as

those from the final calibration trial are demonstrated. The influence of the two chosen

initial condition scenarios (EpiMax and SoiMaxEpiMax) was not as pronounced but still

had a clear impact on the calibration results.

The most critical point in all calibration trials was the stationarity of groundwater com-

partments. Figures showing the development of groundwater storage in each compart-

ment over the whole modelling time (warm-up + calibration) for all settings (RNI, RI,

first and final parameter ranges as well as EpiMax and SoiMaxEpiMax) are presented in

appendices D and E. Groundwater stationarity was mostly driven by the parameter ranges

whereas a change of initial conditions evoked only small effect, if any at all. Nevertheless,

it was decided to use SoiMaxEpiMax in the following analyses for mainly three reasons:

Under the final calibration, compartment 14 of RNI still ran completely empty with Epi-

Max initial conditions (Figure D.3). Furthermore, it could also be observed that some soil

compartments showed a tendency to fill up. Additionally, RNI and RI obtained a better

KGErvar and KGE in the final calibration with the initial conditions of SoiMaxEpiMax

compared to EpiMax. Thus, hereafter, only results of calibration runs with initial condi-

tions set to SoiMaxEpiMax will be considered. Results from EpiMax calibration runs can

be found in Appendices F and G.

Generally, it can be stated that no matter which setting was used, KGErvar and KGE for

RNI and RI respectively had fairly high values (Table 4). All were above 0.7 except

for the RNI run under the first trial parameter ranges, which only reached a KGErvar

of 0.47. Nevertheless, other relevant aspects of model performance evaluation such as

groundwater stationarity and parameter values differed largely among the calibrations

and were therefore the basis on which a final decision on appropriate parameter ranges

was based.

For the first calibration run, with parameter ranges mostly chosen according to Brenner

et al. (2016), some parameter values identified by SCEM-UA did reach limits of the para-

meter ranges, indicating that wider ranges might be necessary in order to find optimal

values (Table 4). This was particularly the case for aSE , aGW and a f sep in the RNI mod-

elling setup. Furthermore, a look at the dynamic part of the groundwater compartments

showed non-stationarity (Figure D.2 and E.2). Generally, the following dynamics could

be observed: The first compartments steadily ran empty over time whereas the middle

ones constantly filled up. Only the last compartments (≈ 10-15) showed recurring dy-

namics.
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Table 4: Results for parameters and objective functions for different calibration steps and
rating curve approaches for SoiMaxEpiMax

RNI RI

Parameter Unit Calibration step

1st Final 1st Final

A km2 652.06 668.3 731.63 687.81

Vmean,S mm 5011.7 5266.82 5317.97 12393.3

Vmean,E mm 2044.84 4935.64 19.55 4665.66

Kmean,E d 2.5 1.91 0.98 2.16

KC d 5.91 4.41 2.3 3.79

aSE - 5.98 40.13 5.22 52.61

a f sep - 4.87 25.49 0.89 29.64

aGW - 8.45 61.74 8.07 73.92

a - - - 7599.13 2288.76

b - - - 3.01 2.43

c - - - 0.03 1.43

KGErvar - 0.47 0.77 - -

KGE - - - 0.77 0.79

Based on these observations, parameter ranges of aSE , aGW and a f sep were constantly

widened in further calibration steps. This had to be done for both RNI and RI in order

to keep up comparability. Only the final calibration step - presented in Table 4 - resulted

in the intended stationarity for RNI and RI, particularly in the first compartments. Under

the final calibration setting they remain completely stationary over time (Figure D.4 and

E.4). All other compartments (except for 14 and 15) still show a clear tendency to filling

up over time. Even so, referring to the explanations given in Section 6, this calibration

was considered the best compromise possible.

The variable parameters clarify the difference in calibration results from the first to the

final calibration of SoiMaxEpiMax (Figure 18 (a) and (b), respectively). The most ap-

parent dissimilarity between the two calibrations is the extreme difference between the

compartments. This effect can be noticed for all parameters, particularly for KGW , the

groundwater storage coefficient representing the mean residence time of the water in each

compartment. The representation on log-scale was chosen to enable a visual differen-

tiation between the first and the other compartments. Values for the first compartment

reached up to 1.8 · 1073 days for RNI and 3.3 · 1087 days for RI. The number of days in

groundwater then decreases rapidly, even though this decrease levels off towards the last

compartments. In compartment 15, the mean residence time is at only 4.4 days (RNI) and

3.8 days (RI). These mean residence times result in a mean thickness of groundwater com-

partments over the calibration period between 7 · 1066 km and 24.1 mm (RNI) (between

1.3 · 1081 km and 21.2 mm for RI respectively). Even if the stark contrast between the

compartments becomes most obvious in KGW , the same behaviour can be noticed for the
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(a) (b)
Figure 18: Distribution of variable parameters resulting from RNI and RI for (a) the first
calibration run and (b) the final calibration run.

other parameters, too. For example, compartments 1-14 show minimal mean residence

times of under a day in the epikarst (parameter KE) in comparison to compartment 15

(about 5 days). The extremely low values of fc in compartments 1-14, suggest a signific-

ant reduction of groundwater recharge through conduits in the model. Another noticeable

outcome from the final calibration is that there is only little difference left between the

distribution of variable parameters of RNI and RI. Knowing that such unrealistic values

as observed for the first compartments of KGW can occur in lumped parameter models

(Gallagher and Doherty, 2007), modelling was still continued, particularly as an uncer-

tainty analysis was included as part of the modelling process. Possible reasons for such

missing realism of parameters will be given in Section 6.

Figure 19 shows the comparison of results for (a) modelled discharge of RNI and (b) mod-

elled water level of RI versus observed water level over time. By visual evaluation, the

discharge dynamics modelled by RNI with KGErvar follow the water level measurements

well. All major peaks in water level are traced by the discharge dynamics, even though

the discharge peaks are often not as pronounced as the measured water level peaks. Be-

fore the largest water level peak in autumn 2011, two small discharge peaks are modelled

where no water level peaks were actually measured. Generally, the modelled discharge

values (mean of 16599.4 l·s−1) highly exceed the mean of measured discharge during the
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calibration period (3319.5 l·s−1).

RI is equally capable of reproducing the water level dynamics of the calibration period

even though the modelled water level values almost always miss the complete height of

the measured water level (Figure 19). Nevertheless, water levels modelled by RI were

much more pronounced than those of RNI and could therefore capture the dynamics

slightly better. The same periods in early summer 2010 and 2011 that caused trouble for

RNI are missed by RI, too. This model setup also produces small peaks in late summer

2011 where none were actually measured. Recession periods are captured well, though.

5.2.2 Uncertainty analysis and parameter identifiability

In this section, the output of the MCAT with RNI and RI and the final parameter ranges are

going to be presented. Initial conditions were set to SoiMaxEpiMax. The analysis of iden-

tifiability showed that with the high number of samples (1 Mio.) a clear threshold under

which parameters sets could be considered ‘acceptable’ as in other studies (e.g. Hartmann

et al. (2017)) was hard to choose. Therefore, a number of 50 acceptable parameter sets

0

2

4

6

0

3.5

7

10.5

14
104

Observed water level
Modelled discharge

01/01/10 01/01/11 01/01/12
0

2

4

6

W
at

er
 le

ve
l [

m
]

Observed water level
Modelled water level

(a)

(b)

Figure 19: Comparison of modelled and observed values over the calibration time period
for the final SCEM calibration of (a) RNI and (b) RI.
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was selected instead (equalling 0.005% of the whole sample) under the assumption that

they would adequately represent the modelling uncertainty and that the subsample would

be sufficiently large for the Welch’s test used in Section 5.3. For RNI, the threshold of 50

behaviourals was a KGErvar of 0.71 and for RI a KGE of 0.66 (Table 5, minima of calibra-

tion).

Table 5: Statistics of uncertainty analysis by model
efficiencies KGErvar (RNI) and KGE (RI) for accepted
parameter sets under the chosen threshold (0.005% =
50 accepted parameter sets). Cal: calibration, val:
validation, min: minimum, std: standard deviation
and max: maximum.

RNI (KGErvar) RI (KGE)

cal val cal val

min 0.71 0.31 0.66 0.35

mean 0.72 0.4 0.67 0.45

std 0.01 0.05 0.01 0.05

max 0.74 0.58 0.72 0.61

The identifiability plots for RNI

in Figure 20 show that about

half of the parameters are at

least moderately identifiable (aSE ,

Vmean,E , a f sep, aGW and KC). For

aSE , aGW and KC, the cumulative

distribution is particularly nar-

row, which shows that the values

for these parameters are very sim-

ilar among the acceptable para-

meter sets. Even though Vmean,E

and a f sep also appear to clearly

differ from the uniform distribu-

tion (black reference line), their cumulative distributions are more widespread. The re-

duction between the 25th and 75th percentile (boxplots in Figure 21 (a)), which is caused

by the application of a threshold to water-level-based calibration results, confirms these

observations. For aSE , the reduction is most efficient with 81%. Clear decreases in dis-

tance between the percentiles are also noticeable for Vmean,E and aGW , leading to a reduc-

tion to 22.6% and 32% respectively. Contrary to the high identifiability indicated for KC

in Figure 20, the reduction between the percentiles is almost not noticeable. The compar-

atively high reduction for Vmean,S of 25%, on the contrary, was not indicated as clearly by

the identifiability plots. KGErvar excludes the volume bias and therefore the catchment

area A from the objective function which is the reason for the missing identifiability of A.

The results for identifiability from the RI modelling strongly differ from those described

for RNI. The blue lines in Figure 20 show that most parameters are not clearly identi-

fiable. Only the cumulative distribution of KC is as narrow as in RNI. Deviating from

uniformity, aSE lies at around 40, even though the tendency is by far not as clear as for

RNI. Furthermore, the rating curve parameters a and b have clear tendencies towards cer-

tain parameter values. Again, the boxplots in Figure 21 (b) can serve to confirm these

observations. The reduction here is highest with 56% for the rating curve parameter a.

aSE , KC and b are reduced by 24%, 32% and 28%, respectively. The distance between the

percentiles for c, on the contrary, was increased by 30% to 0.65. All in all it can be said

that identifiability is clearly higher for parameters with RNI compared to RI, particularly

for the original model parameters.
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Figure 20: Identifiability plots for RNI (red line) and RI (blue line) showing likelihood
for parameter values for acceptable parameter sets compared to uniformity (black line).

After identifying acceptable parameter sets from MCAT, these were now used for pro-

ducing water level time series. For RNI, a transformation of the discharge model results

in water levels using the least square fitted rating curve from Section 5.1 was necessary

to allow a direct comparison to measured water level results. This did at first lead to

modelled water levels shifted upwards (see appendix, Figure H.1), compared to observed

water levels,which was overcome by a correction of 1.1 m to level the mean of modelled

water levels (1.85 m) to the observed ones (0.75 m). Figure 22 shows the final modelling

results for the 50 selected parameter sets over the calibration time period for (a) RNI and

(b) RI in comparison to measured water level.

For RNI, the measured water level almost always lies within the uncertainty bounds of the

simulations. Only in early summer 2011 do measured water levels exceed the modelled

ones. In late summer 2011, a small peak was modelled as a result from a relatively

large precipitation event which was not represented in measured water level data. A very

efficient way to evaluate uncertainty and how well it captures measured values is the look

at the duration curve of water levels (Figure 23). The generated output displays a slightly
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(a)

(b)
Figure 21: Distribution of model parameters (normalised by their ranges) for acceptable
parameter sets of (a) RNI and (b) RI. The black dot in the boxplots marks the mean. The
two black lines identify the 25th and 75th percentiles.

transparent black line for each simulation curve, so that areas with higher accumulation

of curves appear to be black while single curves appear grey. For RNI, the measured

duration curve overlaps with the dark areas of high density of the simulations. Only single

parameter sets seem to be the cause for the width of the uncertainty band (Figure 23 (a)).

Between an exceedance probability of 5% and 40% the uncertainty is largest and between

5% and 10% the modelled values tend to mostly overestimate measured data by almost

2 m (higher density of curves). Nevertheless, some simulations are still able to depict the

actual dynamics, as the measured data still lie within the grey uncertainty band. As there

is a gap in water level measurements during the highest precipitation event in October

2011 (Figure 22 (a)), modelled water levels in the very high flows do not have equivalent

measured water levels and reach values of over 7 m.

For RI, the picture is quite different. As indicated by the low identifiability of parameters

for the accepted parameter sets, the progression of the simulated time series is much

more variable between different model runs (Figure 22 (b)). In the base flow period

in winter 2010/2011 some model runs produce peaks whereas others clearly follow the
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recession of the measured water levels. Modelled water level peaks without measured

equivalent also occur in the recession of later summer 2011 and are more pronounced

than for RNI. In comparison to RNI, RI simulations are noticeably less dispersed which

indicates a generally reduced uncertainty. Furthermore, water level peaks in 2011 are

simulated more adequately by RI, particularly for the events in 2011. The highest water
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Figure 22: Simulated water level from 50 selected parameter sets compared to observed
water level over the calibration period (2010/2011) produced by (a) RNI and (b) RI.
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(a) (b)
Figure 23: Duration curve of water levels over the calibration time period 2010/2011 for
measured and modelled water levels derived from (a) RNI and (b) RI. The percentages
on the x-axes indicate the probability of exceedance. A value of 5% therefore means that
only 5% of the water level data are equal or higher than this value (high water levels,
dotted black line). Low water levels > 70%.

level peak modelled by RI is considerably lower than that of RNI. All these observations

are confirmed by the water level duration curve of RI (Figure 23 (b)). The uncertainty

band is much narrower and measured water levels overlap with the high density areas of

the modelled curves. Only at frequencies between 5% and 30%, water levels tend to be

overestimated slightly. The highest water level values are almost equal for simulations

and measured values.

5.2.3 Predictive capability

To evaluate the predictive capability of the VarKarst model with the chosen initial condi-

tions and 50 behaviourals, it was applied to a validation period for RNI and RI. Again,

discharge values modelled by RNI had to be transformed by the rating curve calculated

in Section 5.1 and corrected to the mean of measured values. Figure 24 (a) depicts the

progression of the 50 corrected simulations from RNI over time with the measured water

levels. Generally, the water level dynamics during the validation time period are captured

fairly well by the simulations. Especially minor peaks are successfully reproduced. High

peaks, on the contrary, are missed consistently by all simulations, particularly in (late)

summer 2016. Furthermore, some model runs periodically fall under a water level of 0,

which would mean a drying out of the Lingshui spring pool.

The duration curve of RNI in Figure 25 (a) summarizes these results. The black line marks

the point where water levels fall under 0 m. The uncertainty band is remarkably large,
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spanning almost 1.5 m at around 20%. Even so, the line of measured water levels is still

close to the highest density areas of the simulations for most of the time. Contrary to the

calibration time period, water levels are now mostly underestimated between exceedance

probabilities of 5% and 30%. It has to be said that measured water levels always lie

within the general uncertainty band except for some isolated events in the high water

0

1

2

3

4

5

6

7

8 0

50

100

150

200

250

18/04/16 01/07/16 01/10/16 01/01/17 01/04/17 01/06/17

0

1

2

3

4

5

6

7

8 0

50

100

150

200

250

Modelled water level
Observed water level
Precipitation

(a) RNI

(b) RI

Figure 24: Simulated water level from 50 selected parameter sets compared to measured
water level over the validation period (2016/2017) produced by (a) RNI and (b) RI.
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(a) (b)
Figure 25: Duration curve of water levels over the validation time period 2016/2017 for
measured and modelled water levels derived from (a) RNI and (b) RI. The percentages on
the x-axis indicate the probability of exceedance. A value of 20% therefore means that
only 20% of the water level data are equal or higher than this value (high water levels,
dotted black line). Low water levels > 70%.

level sections over 2 m.

The predictive capability of the model can be evaluated by comparing the mean of the

objective function values of the 50 selected parameter sets of the calibration period to

that of the validation period. The results are presented in Table 5. For RNI, the mean

KGErvar is reduced by 44%. While the best model run for RNI during the calibration

period reached a KGErvar of 0.74, it was only 0.58 for validation.

For RI the picture is slightly different. As model runs spread less widely over the val-

idation period (Figure 24 (b)), they miss the actual dynamics of water level more often.

This happens during the peaks in summer 2016 as well as during the winter recession

of 2016/2017, where all of the model runs overestimate the extremely low water levels.

Furthermore, RI simulations produce pronounced peaks between January and May 2017

that do not appear so noticeably in the water level data. The duration curve of water

levels confirms these observations (Figure 25 (b)). The uncertainty band is considerably

narrower than for RNI, so that measured water level is not always captured by it. This is

especially the case during very low flow conditions (exceeded by 80% and 100% of the

values) and high flow conditions exceeded by only 10% to <1% of the values. Between

the 10% and 70% exceedance probability, measured water levels are well contained within

the uncertainty band.

A 33% reduction of mean KGE can be noticed between the calibration and validation

period for RI (Table 5). RI simulations therefore perform better during the validation
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period compared to RNI simulations. The performance of the best RNI run reduces the

KGE from 0.72 to 0.61. This is a clear argument for using the selected parameter sets of

RI for the prediction of future states, whose results are presented in the next subsection.

5.3 Uncertainty under future climate scenarios

To see how far actual trends for the main climatic variables could already be identified

in the region, yearly means and sums for temperature and precipitation, respectively,

were calculated for the time series 1951-2016 obtained for Nanning weather station from

GHCN-D (Figure 26). A simple linear regression was used to give a general idea on tend-

encies. Overall, the temperature increases by 0.45°C over the whole time period at a rate

of 0.007°C·yr−1. For precipitation, the identified yearly decline is barely recognizable at

0.81 mm·yr−1. Furthermore, there is a large variability of yearly precipitation sums. The

driest year of the time series occurred in 1989 with a minimum of 827.0 mm whereas 2001

was the wettest year with 1987.5 mm of precipitation. The standard deviation around the

mean of 1291.1 mm is 231.2 mm.

The PET results determined with the Thornthwaite equation from temperature values ob-

tained from the delta change scenarios differed largely. The highly probable (97.5% prob-

ability) temperature rise of 2.7°C, results in a yearly PET of 2101.2 mm, an increase in

PET of 41% compared to the validation time period. The median and low probability

(2.5%) scenarios result in much higher PETs of 2452.7 mm and 3188.8 mm, which pre-

dict increases of 64.6% (114%, respectively) compared to the validation period.
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Figure 26: Yearly means of temperature (a) and sums of precipitation (b) over the period
of 1951-2016, calculated from the GHCN-D dataset. The red line is the linear regression
through the yearly data for an impression of general tendencies.
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Figure 27 shows duration curves of model simulations for the validation times series

under current conditions combined with nine different future conditions based on the

nine climate scenarios described in Section 4.5. It was decided not to display the res-

ults of every single model run as the aim of this analysis was to compare general uncer-

tainty instead of evaluating individual model run performance. The displayed uncertainty

bands are the envelopes around all 50 simulations. The plots under each climate scen-

ario show the p-value results of Welch’s t-test. Notice that p-values often fell under the

0.01 significance level (as marked by a dashed line). Table 6 summarises the percentage

of exceedance probability points where Welch’s t-test identified a significant difference

between current and future conditions. For many exceedance probability points, the dif-

ferences between uncertainties of current and future conditions were highly significant.

A layout was chosen in Figure 27 which allows to evaluate not only if a point was signi-

ficant but also how strong the significance was. The highest degree of difference between

current and future conditions was found for scenarios ETLPH, ETLPM and ETHPL.

Table 6: Percentage of counts at
which model runs for current and
future conditions were significantly
different (significance level 0.01)
according to Welch’s t-test. Total
number of exceedance probability
points is 409 (length of the valida-
tion time series).

Scenario Count [%]

ETHPH 38.39

ETHPM 0.00

ETHPL 97.07

ETMPH 92.42

ETMPM 5.62

ETMPL 37.65

ETLPH 100.00

ETLPM 95.35

ETLPL 0.00

p-values for these scenarios get close to or fall be-

low 10-10 at exceedance probabilities under 20%.

For ETLPH (high evapotranspiration, low precip-

itation) and ETLPM (high evapotranspiration, me-

dian precipitation), the uncertainty band of future

conditions is clearly shifted towards lower water

level values whereas for ETHPL (low evapotran-

spiration, high precipitation) a general shift towards

higher water values was observed. The least signi-

ficant differences between current and future con-

ditions could be identified for ETHPM, ETLPL and

ETMPM, where the significance level was never or

only partially undershot and uncertainty bands are

largely identical. A clear trend that can be identi-

fied for all scenarios except for ETHPM and ETLPL

is that the difference between simulations is not

or only slightly significant during low water levels

with high exceedance probabilities and then strongly increases towards water levels with

exceedance probabilities < 50%. The significance levels level of again under exceedance

probabilities of 5% for most scenarios. Another trend common to all scenarios is a general

tendency (even if sometimes only minor) towards lower water levels. Only ETHLPL and

ETMPL contrast this trend and show slight shifts towards higher water levels for future

conditions.
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Figure 27: Uncertainty bands of duration curves from acceptable parameter sets for cur-
rent conditions and predictions for nine future climatic scenarios from Chen et al. (2011).
Underneath each climate scenario plot, the distribution of p-values from Welch’s t-test
is mapped on the exceedance probabilities. The dashed line marks the 0.01 significance
level. Notice that the x-axis is plotted on log-scale for better representation of small
p-values.
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6 Discussion

6.1 Uncertainties from input/output data

Renard et al. (2010) stress the importance of quality and representativeness of input data

for modelling to ensure reliability of model output. In his study on facets of uncertainty,

Beven (2016) stresses how important it is to know about input and output data uncertainty.

According to him, this can avoid Type II errors of rejecting a model with partly insuffi-

cient performance due to errors in the data source. Therefore, uncertainties in input data

should be carefully considered when interpreting model results, particularly in a low data

environment as it was given in the present study.

The climate data for 2010/2011 were retrieved from a weather station in Nanning, about

60 km away from the study site and for gap filling in 2016 from a weather station about

30 km away. These stations were used for precipitation assuming its representativity for

the study site. However, precipitation patterns often occur with a high spatial variability

(Chaubey et al., 1999; Kirchner, 2006) and the assumption could be highly erroneous as

precipitation values could have significantly differed between the Lingshui spring basin

and the weather station in Nanning. This is particularly the case as the subtropical cli-

mate leads to extreme precipitation events whose intensities can vary largely in space.

An interpolation of multiple precipitation stations among the Wuming basin would have

been necessary to take spatial variability into account and reduce the use of inaccurate

precipitation data for modelling (Tabios and Salas, 1985).

The quality of the evapotranspiration data also has to be treated with caution. Data for

2010/2011 have been downloaded online and there was no reference data to how they

were measured/calculated and no additional data set available to check their integrity.

As shown in Figure 13, the comparison between the downloaded data and data cal-

culated from air temperatures by Thronthwaite, the transformation of temperature data

for 2016/2017 brings additional uncertainties. Low values are highly underestimated

whereas higher values have a slight tendency of overestimation. Chen et al. (2005)

compared the Thornthwaite approach to the more physically-based Penman-Monteith

method and evapotranspiration pan measurements throughout China. They found out that

Thornthwaite has a high tendency of underestimating PET in southwest China, particu-

larly over the dry season in winter. This should be kept in mind as the climate scenarios

show how highly sensitive VarKarst reacts to the PET input.

As the VarKarst model follows an inverse modelling approach, the quality of water level

data used for calibration is just as important as that of input climate variables. As Guo

et al. (2016) reported, water level in the Wuming spring pool is sometimes impacted by

backwater flows from the Wuming river with accompanying sedimentation. This im-
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pact cannot be corrected or described, as there are no records about when such events

happened and which effect they could have had on the water level data. Hartmann et al.

(2017) showed how important it can be to exclude disinformative time periods from the

modelling to reduce uncertainty and improve parameter identifiability. They claim that as

the model has to compensate for structural errors during such periods, a wider range of

parameter combinations is needed which favours equifinality. To get a better impression

on the influence of backwater flows on water level, it would be helpful to have a docu-

mentation of such events for future studies. Another aspect with regards to output data is

the length of the water level time series of only about 3 years, which is a relatively short

time period. Kay et al. (2009) claim that a time series needs to be sufficiently long in

order to cover a wide range of flows (or water levels) and to be effective for calibration.

Yapo et al. (1996) performed a sensitivity analysis on the optimal length of calibration

data for a lumped rainfall-runoff model and found out that an 8-year period of data would

be optimal. They also report that uncertainties can be decreased when rather wet years

are included.

An additional downside to the data for the modelling purpose of this study are the gaps

in the already relatively short time series. For climatic data, these had to be filled by

information from other stations, which adds further uncertainty. Measuring devices for

water level often failed during periods with extremely high peaks which resulted in miss-

ing values. These high water level values would be particularly important for recording

the variability of the system (Hartmann et al., 2014a).

It is also problematic that no supplementary information was available on withdraw-

als from wells in the region. According to personal communication with Fang Guo

(04.09.2017), usage of private wells has increased in the region in recent years without

continuous documentation. This information would not only be useful to be included in

the modelling process to get a correct record of the water balance but also for manage-

ment purposes of the groundwater resources. In the worst case, overexploitation of an

aquifer could lead to drying up of the spring, as has happened with the Jinci spring in

North China (Hao et al., 2009). Another aspect which is not well documented yet for

the Lingshui spring system, that could have an impact on the groundwater storage, is that

according to Guo et al. (2015), the Lingshui spring system acts as an estavelle during

backwater flow conditions following heavy rainfalls.

6.2 Model performance

In order to evaluate model performance, the main focus lies on the following aspects:

Could all prerequisites basic for model performance (e.g. groundwater stationarity) be

met? How do "optimal" parameter ranges and values obtained for the Lingshui catchment

compare to other VarKarst studies? Do parameter values reflect the local conditions? How
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did the model simulation perform? Which factors could have impacted the quality of the

calibration results?

The most difficult prerequisite to meet in the SCEM-UA calibration was finding settings

that would allow stationarity in the groundwater compartments. Even though the choice

on initial conditions (EpiMax versus SoiEpiMax) was influenced by groundwater station-

arity in one particular setting, these conditions were not the governing factor. Stationarity

could be achieved in the first compartments whereas the middle ones still showed a clear

tendency towards filling up. This was considered an unavoidable artefact caused by the

short time series available for calibration that could not be overcome in all trials of dif-

ferent parameter ranges (personal communication, Andreas Hartmann (30.10.2017)). A

significant filling effect of the groundwater compartments would also have led to under-

estimation of water levels at the beginning and overestimation at the end of the calibration

time series. This was not observed.

Much more than on initial conditions did the choice of parameter ranges show a clear im-

pact on groundwater storage behaviour. Parameter ranges for aSE , a f sep and agw had to be

significantly increased in comparison to Brenner et al. (2016) in order to achieve station-

arity. The need to change these parameters can be explained by the local hydrogeological

conditions. An increase of aSE results in a more extreme distribution of soil and epikarst

storage size, meaning that they remain comparatively small in all compartments except

for the last two. This also leads to a much smaller epikarst storage coefficient Kmean,E and

thus increased recharge rates. This is in accordance with the variable soil thickness found

in the catchment (ranging from bare karst to up to 30 m of soil) that Guo et al. (2015)

reported along with the sparsely developed epikarst as is typical for peak forest. The

low distribution of recharge to the conduit compartment, as caused by a high a f sep, lets

all recharge water drain diffusively to the underlying groundwater storage compartments.

Guo et al. (2015) and Guo et al. (2016) concurrently report of the dominance of matrix

porosity in the covered karst and fissure porosity in the Niaja syncline, which favour dif-

fuse transport of groundwater. Finally, the unusual values of agw result in extremely long

mean residence times of groundwater in connection with extraordinary volumes of the

storage compartments. Without a doubt, mean residence times in the range of 1073 and

1087 days cannot and do not realistically reflect real-world physical conditions. In spite of

the missing realism of some of the values for KGW and the extreme groundwater storage

sizes, especially for the first few compartments, from a qualitative view, these findings

are in high accordance with descriptions of the study site by Guo et al. (2015). They

found relatively slow transport times of groundwater for the Lingshui catchment of 17 -

23 m·d−1 in a tracer experiment.

The large increase of parameter ranges needed for aSE , aGW and a f sep and their high



60 Discussion

parameter values are noteworthy. They much exceed the values found by Hartmann et al.

(2013a,c, 2014b). This might be explained by the fact that all the other studies were con-

ducted at study sites which showed a clear duality of porosity. However, it is remarkable

that the values found in the present study also exceed parameter ranges found by Brenner

et al. (2016) by such a large degree, as their study site of the English Chalk was compar-

able to the Lingshui catchment with regards to the dominance of fissures in groundwater

recharge. In the present study, the best values obtained for aGW cause highly unrealistic

mean groundwater residence times and storage volumes. Similarly, the calibrated val-

ues of aSE evoke very unrealistic distributions for the variable parameters KE , Vmax,S and

Vmax,E (Figure 18) with extremely low values over most of the compartments to very high

values in the last two compartments. Gallagher and Doherty (2007) deal with realism of

parameters in lumped parameter models and doubt whether their realism is even assess-

able. In the simplest setting, parameters are only a mean representation of real physical

settings. In most lumped models, as is the case for VarKarst, the situation is even more

complex and parameters might represent several processes at the same time. Therefore,

the high values of aGW and a f sep in particular allow two possible conclusions: The model

represents local hydrogeological conditions and recharge processes adequately. Large

groundwater storages account for the baseflow component in the water level data which

retains constant discharge in dry periods over winter. The second conclusion could be that

the values actually reflect structural errors in the model and interactions between paramet-

ers (Gallagher and Doherty, 2007). Another indicator for this could be the low values of

KC of about 4 days in comparison to (Brenner et al., 2016) (about 40 days), which con-

tradict the a f sep and aGW values. Water that gets to the conduits drains out of them really

fast. This rather seems like a way of the model to counteract the large groundwater com-

partments in order to evoke fast-responding peaks in the water level dynamics. Not much

information was available about the actual existence and importance of conduits in the

Lingshui catchment. A fast component could also result from fractures in the bedrock as

reported in Guo et al. (2016).

To give a final explanation for these results, additional data would be needed in order

to conduct a multi-objective calibration approach (Gupta et al., 1998; Efstratiadis and

Koutsoyiannis, 2010; Hartmann et al., 2014b; Brenner et al., 2016). This concept is going

to be further elaborated in Section 6.4.

Considering the work of (Gallagher and Doherty, 2007), setting realistic parameter ranges

to VS,mean and VE,mean might have prevented an effective search for more realistic para-

meter values. The catchment area A of 688 km2 identified for RI almost completely

coincides with the value reported by Guo et al. (2015).

Altogether, it can be said that the model results produced by optimal SCEM parameter sets

can adequately represent the hydrodynamic behaviour of the Lingshui karst system, even
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though quantitative realism of some parameters might be lacking. This is reflected by the

high values of KGErvar and KGE as well as the performance of simulations compared to

measured water levels. In spite of the obvious deficiencies, the VarKarst model was the

best choice in this study, as it can take account of all different kinds of geological settings

due to its semi-distributed character. This was important, to obtain a first understanding

of the functioning of the aquifer and its predominant flow characteristics. It can serve as

a basis for future measurement campaigns.

Nevertheless, as several studies showed (Hartmann et al., 2013b; Velázquez et al., 2013;

Chang et al., 2017), it might as well be advisable to explore other possible model set-ups

and approaches (e.g. equivalent porous medium) in order to ensure that an appropriate

model structure is chosen for management purposes.

Some additional sources of uncertainty caused by the calibration procedure should be

mentioned briefly at this point. First, Wilby (2005) report on how important the calibra-

tion time series can be for model identification as they compared interannual variability

of the NSE for the same parameter set. Due to the scarce availability of measurements

in the Lingshui spring catchment, there was only a very limited leeway possible on the

calibration period. Secondly, according to Mazzilli et al. (2012) the choice of data for the

warm-up period could have had a large impact on the initialisation bias and therefore un-

certainty, too. Particularly, as both the calibration and validation time series were so short

that no data could be spared for a warm-up period from real data. The chosen approach of

repeating the first year of the time series three times can barely represent the actual initial

conditions at the beginning of the calibration of the time series. Yet, as this is a commonly

used method (e.g. Perrin et al. (2001); Mazzilli et al. (2012); Hartmann et al. (2017)), it

was reasonable to be used here, too.

For interpretation of the SCEM results, it has to be considered that they only represent one

parameter realisation of many possible ones and can only give a general orientation about

the performance of the VarKarst model in the Linghsui spring system. It requires the

uncertainty analysis to demonstrate, how identifiable parameters are and therefore how

reliable predictions of the model can be.

6.3 Uncertainties related to the rating curve

Rating curve parameters found by least square fitting produce a good agreement with the

measured data. The rating curve resulting from parameters from the calibration proced-

ure, on the other hand, lies well beneath the least square fitted one. A simple adjustment

can be obtained by rising the water level data by 0.5 m. Nevertheless, the question arises,

where this difference comes from. Discharge values from the RI model run mostly lie well
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above 10 000 l·s−1 and about 5 times higher than measured ones. This potentially requires

quite different rating curve parameters to obtain the same values for the water level. Sim-

ilarly, RNI water level results that were calculated by the least square fitted rating curve

had to be corrected by a further 1.1 m downwards to be in accordance with actually meas-

ured water levels. Even though this is necessary and acceptable for the further modelling

procedure, it adds another uncertainty source. All of this allows the following conclusion:

Modelled discharge values are much higher than those actually observed in the Lingshui

spring pool. The inclusion of the rating curve into model calibration allows to account for

this fact and therefore incorporates all preceding uncertainties. A least square fitted rating

curve on the other hand is bound to actually measured discharge data and therefore lacks

the flexibility to account for model uncertainties. Of course it would have been useful to

include discharge values in the calibration procedure, using a multi-objective calibration

approach, with discharge values as well as water levels, to ensure that measured and mod-

elled discharge values match. This was tested, even with different weighting schemes,

and led to very unsatisfactory results with regards to water level dynamics (see appendix,

Figure I.1). The results showed that the resolution of the available discharge data was not

high enough for a multi-objective calibration approach. More frequent discharge meas-

urements, particularly in extreme discharge conditions, can be expected to lead to a better

reflection of discharge dynamics in simulations.

The translation of water level measurements into discharge (and vice versa) is a task that

according to Braca (2008) requires a wide theoretical background. In this study, it has

to be considered that this translation potentially adds another dimension to the uncertain-

ties already implied in the data. Even though a rating curve could be identified that fits

measured data well, its flaws have to be contemplated carefully. Of course, the aforemen-

tioned deficiencies of water level measurements have a direct impact on the rating curve.

Additionally, as backwater flows happen in the spring pool, the assumption of stationary

flow conditions that the formulation of the rating curve was based on may not be justified.

According to Braca (2008), this non-stationarity would need to be incorporated in the

rating curve by using individual formulas for different flow conditions. However, more

discharge measurements would be necessary to clearly identify these conditions. Dis-

charge measurements were mainly available for mean flow conditions. This is a problem

often occurring in natural rivers and lakes that comes with the difficulty to conduct flow

measurements during high flow conditions (Braca, 2008). If references are missing for

high flows, extrapolated values become highly unreliable (Clarke, 1999).

6.4 Reliability of simulations

In this section, the reliability of simulations by the VarKarst model in the Lingshui catch-

ment is going to be evaluated on the following questions: Which parameters show high
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identifiability? How large was the informational value of the water level time series for

parameter confinement? How did acceptable parameter sets act in prediction mode and

during the validation period with regards to uncertainty? All of these questions are going

to be answered by comparing results from RNI and RI in order to give an evaluation on

whether the inclusion of a rating curve into the calibration procedure is sensible.

It has to be kept in mind that the choice of threshold for acceptable parameter sets could

not be based on the basis of former studies. Even though similar ones have been con-

ducted (e.g. Hartmann et al. (2017)), their background was different to this study. It was

sensible to declare the 50 best MCAT runs as acceptable looking at the high number of

MCAT runs necessary to capture model uncertainty adequately. Nevertheless, the impact

of the choice of this threshold should not be neglected, as all further analyses of this study

are going to be based on it.

With regards to parameter identifiability, large differences between RNI and RI could be

observed. For RNI, mainly parameters which required widening of their ranges showed

high identifiability. This proves that the widening of parameter ranges was necessary to

find adequate values for those parameters. Whereas at least half of the parameters of

RNI were identifiable, only the cumulative distribution of KC was similarly narrow for

RI. Instead, the rating curve parameters a and b became highly identifiable. This could be

a confirmation for the aforementioned compensation of additional model parameters to

ensure representation of hydrological dynamics. Furthermore, the increase of parameter

ranges for selected parameter sets might be a hint that the model structure cannot ap-

propriately represent the additional processes and thus compensates them through other

model parameters (Hartmann et al., 2012a). Generally, it has to be acknowledged that

parameter identifiability was very low in this study, even for RNI. This becomes obvious

when compared to, for example, Hartmann et al. (2013a) and Brenner et al. (2016) where

almost all parameters were highly identifiable. Yapo et al. (1996) list several possible

reasons for missing parameter identifiability, of which the following could be interesting

for evaluating the results of this study: Parameter interdependence, parameter stationarity,

data noninformativeness and insensitivity. These are hard to differentiate but some factors

of the model set-up and data used in this study might have favoured them, mainly, the high

number of parameters used in the VarKarst model and the shortness of the calibration and

validation time series. This could particularly be the case for RI. Hartmann et al. (2017)

make a similar observation regarding the number of parameters in the VarKarst setup of

their study. According to Kirchner (2006) every new parameter added to a model adds

another dimension that could lead to over-parametrization and therefore parameter inter-

action, insensitivity and equifiniality (Beven, 2006). Kirchner (2006) states that these

parameters potentially create much more flexibility than a calibration data set is capable
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to resolve. Furthermore, he claims that a high number of parameters also prevents clear

identification of structural model errors: ‘By making it easier for models to get the right

answer, overparameterization makes it harder to tell whether they are getting the right

answer for the right reason’ (p. 3, Kirchner (2006)). Jakeman and Hornberger (1993),

Ye et al. (1997) and (Kuczera and Mroczkowski, 1998) claim that a model should consist

of a maximum of 5-6 parameters if calibrated on discharge only (or on water level, as is

the case here). In order to increase parameter identifiability, other proxies representing

the system should be used in a multi-objective calibration. The missing model identifi-

ability could potentially be overcome by including high-resolution chemical and isotopic

data in the calibration process (Kirchner, 2006). Studies from Kuczera and Mroczkowski

(1998); Hartmann et al. (2016, 2013c) and Rimmer and Hartmann (2014) proved that the

inclusion of hydrochemical data, e.g. SO3
– or SO4

2, is highly important to ensure higher

identifiability of parameters. Hartmann et al. (2013a) even claim that hydrochemical in-

formation was crucial to find a reasonable parameter set in their study. Brenner et al.

(2016) showed how groundwater level data and a corresponding weighting scheme can

be incorporated in VarKarst. Worthington (2003) also demonstrated that both discharge

and groundwater level measurements are important for identifying differences of flow in

the matrix and fissures compared to conduits.

The value of additional data becomes even more obvious when the confinement of para-

meter ranges is considered. The reduction between the 25th and 75th percentiles in this

study was quite low for most of the parameters which indicates that the informational

content of water level data alone was not sufficient to clearly identify parameter values.

Furthermore, a distinct reduction of parameter ranges was only achieved for parameters

which were also highly identifiable. Hartmann et al. (2017) demonstrated that by includ-

ing additional hydrochemical data (NO3
– and SO4

2 – ) in the calibration process, inform-

ational value can be added and a significant confinement of parameter ranges achieved.

Furthermore, they compared how the inclusion of information on saturated and unsat-

urated zone processes and the exclusion of disinformative periods in the discharge time

series can help to confine parameter ranges. From their results it becomes clear that in

comparison to the low confinement attained from a calibration on discharge (or water

level in the present study) only, the inclusion of additional data highly increases the in-

formational content for parameter range confinement. In the present study it could have

been highly instructive to exclude disinformative periods caused by backwater flows from

the Wuming river in the same manner as in Hartmann et al. (2017). They showed that the

exclusion of disinformative flow states can result in a significant increase of confinement

between the percentiles and a reduction of uncertainty in predictions. Another study by

Hartmann et al. (2015) demonstrated that the confinement method can also be very use-

ful when other soft rules can be used, e.g. bias between measured and simulated actual

evapotranspiration or plausibility of parameters like Vmean,S or Vmean,E . A verification of
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aSE by comparing the distribution of maximum soil depth VS,i with a map of soil depths in

the Lingshui catchment could have been a soft rule to confine the parameter sample. As

parameters show different responses to the additional information used, the confinement

approach can also be used to identify which processes might drive certain parameters

(Hartmann et al., 2015).

Despite of the restricted parameter identifiability, RI model runs generally lined up with

measured values with smaller uncertainty. Particularly in the low exceedance probabil-

ities, RNI model runs resulted in much higher uncertainties. This is an additional hint

for equifinality in the RI model setup coming from the increased number of parameters

introduced by the rating curve fitting with KGE. As more degrees of freedom are assigned

to the model, it can compensate for structural model errors, so that parameter sets unex-

pectedly produce similarly good simulations with completely different parameter values

(Wilby, 2005; Beven, 2006). This theory is supported by the fact that model runs from RI

do show much more variable dynamics during the calibration time series. For RNI, on the

contrary, model runs mainly follow the same patterns. In this context, the aforementioned

methods to potentially increase identifiability and therefore confidence in the model and

its parameters become essential in order to make sure that the modelled results are ‘right

for the right reasons’ (Kirchner, 2006) and to avoid ‘monsters’ that make hydrological

models right for the wrong reasons (Goswami and O’Connor, 2010). An investigation of

the water balance showed no signs of ‘misbehaviour’ of the model. But the difficulties

in finding stationarity in the groundwater compartments could hint at deficiencies of the

model structure.

The validation proves the obvious drawbacks of the scarcity of data in the calibration.

For both modelling approaches, the reduction of the mean of the objective function of all

50 selected parameter sets is noteworthy between the calibration and validation period.

The large uncertainty band of RNI model runs completely captures measured water levels

during the validation period. RI model runs, on the other hand, miss the measured water

levels in the high and low flows exceedance probabilities. Nevertheless, RI based simula-

tions lose less of their predictive capability in the validation period than RNI based ones.

In the face of the high equifinality mentioned before, this result was unexpected. It could

be a sign that the variability of the validation time period does not sufficiently differ from

that of the calibration period and therefore the predictive capability of the model setups

cannot be fully evaluated (Kirchner, 2006).

Surely, both modelling approaches have their flaws. RNI leads to much higher uncer-

tainties compared to RI and its predictive capability is lower. In contrast, RI has a lower

parameter identifiability and misses measured water levels during the validation period.
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Therefore, no approach can clearly be rated as better. RI was mainly picked for climate

predictions in the following because of its higher predictive capability. As the focus of

this study was on describing the general behaviour of the Lingshui spring system, the

fact that RI simulations missed some extremes of the validation time period was not a

disqualifying factor for their usage in climate predictions. A final decision about the use-

fulness of the set-ups can only be made once sufficient data for parameter calibration

and uncertainty analysis are available. It was justified to use the calibrated model for cli-

mate projections in spite of its comparatively poor predictive capability compared to other

studies, as model uncertainties were communicated, which gives an honest picture on the

model’s performance (Blöschl and Montanari, 2009). Further arguments for the usage of

the model in climate projections were the good results of the objective function (KGE) as

well as the generally good representation of the water level dynamics.

6.5 Uncertainty under future climate scenarios

In the following, the newly implemented evaluation approach (see Section 4.5) for trust-

worthiness of climate impact studies based on models with high uncertainties is going to

be considered thoroughly. In particular, potential limitations of the approach are going to

be pointed out.

The identified tendencies in the climate time series from Nanning weather station go along

well with observations of past climate change in the region. Ren et al. (2012) report tem-

perature increases of 0.08±0.03°C during the period of 1906-2005 for the whole of China

but relatively weaker changes in the Southwest. This was confirmed by a study of Lian

et al. (2015) who identified a yearly temperature increase of only 0.011°C in Guilin. The

analysis of the current study showed, that in Nanning, about half of the years after 1980

show noticeably higher temperatures compared to the years before but the general trend

of the time series was very low. No clear tendency was recognizable for precipitation over

the period and natural variability appears to be very large. Accordingly, Ren et al. (2012)

report of no significant precipitation changes between 1906 and 2005 for the whole of

China. Guo et al. (2015) describe regular circulations of wet and dry periods every 13 to

16 years for the Wuming basin, which is in line with the high natural variability observed

at Nanning weather station. This, of course, is a severe restriction on the simple delta

approach used for the climate scenarios, as it does not account for any climatic variabil-

ity, which could, according to Arnell (2003), lead to severe differences in model outputs.

A general increase of interannual variability of temperatures and precipitation can also

be identified in Figure 26. According to Praskievicz and Chang (2009), this could be

another effect of climate change that potentially needs to be considered in management

plans. It should be noted, that no proper statistical trend analysis was conducted for the
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available data. The presentation of tendencies was rather intended to provide a general

picture about climate variability and obvious tendencies. Nevertheless, the tendency to-

wards rising temperatures shown in the dataset and the general climatic trends observed

in (southwest) China published in other studies give good reason to conduct an analysis

on reliability of predictions on future climate developments.

The enormous impact of increasing temperatures over China on hydrological systems, as

predicted by Chen et al. (2011), becomes particularly obvious for PET. As the results of

the calculations based on the Thornthwaite equation show, higher temperatures usually

cause higher evapotranspiration, which can seriously affect the water balance in a region.

For the time series of 2016/2017, the low probabilistic temperature scenario (+5.2°C) led

to a PET increase of 114%. Guo et al. (2015) claim that groundwater depths of 7 to

50 m and the dominance of covered karst could potentially protect groundwater of the

Lingshui system from evapotranspiration. Goldscheider and Drew (2007), on the other

hand, declare that the presence of a soil cover, as is the case in most of the Lingshui

spring catchment, significantly increases evapotranspiration and results in a much lower

proportion of recharge. No study has been conducted on this specific topic at Lingshui

yet, but would surely be interesting in order to formulate management plans in the face of

climate change. Furthermore, it is questionable, whether in this specific climatic region

temperature will actually be the driving force of PET as decreasing trends of PET in

China were identified by Thomas (2000). They also found out that sunshine duration and

relative humidity might have a much larger influence on PET in southwest China than

temperature.

If we trust Welch’s t-test and the chosen significance level to be reliable indicators, this

study shows that predictions made by the VarKarst model for future scenarios can be

declared trustworthy. The uncertainties of predictions under current and future climate

differ significantly and over the whole range of exceedance probabilities for most of the

examined climate scenarios. Particularly for high water levels of frequencies observed

less than 10-20% of the time, Welch’s t-test often indicated a very high significance well

below the threshold of 0.01.

The impact of potential evapotranspiration becomes obvious in the climate prediction res-

ults. Only the 26.9% of precipitation increases of the low probability predictions (PL) out-

weigh the evapotranspiration losses caused by higher temperatures and do lead to higher

water levels compared to current conditions. As mentioned before, the question remains,

in how far PET will actually increase with rising temperatures. Nevertheless, the tend-

ency towards a reduction of the water level also matches the results of Guo et al. (2015)

who found a general decrease of discharge in the Lingshui spring over time. The res-

ults of the climate predictions are also interesting under the management aspect as they

show that the highly different climate scenarios can lead to completely opposing trends
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(generally lower water levels versus generally higher water levels) which would require

different policy actions. In all these interpretations it has to be considered, though, that

the RI model setup did already underestimate observed water levels under low exceedance

probabilities during the validation time period (Figure 25). Therefore, under the assump-

tion of stationarity, future predicted water levels can be expected to be underestimated

for high water levels, too. Nevertheless, the goal to test an approach for evaluating the

reliability of future predictions by considering the model uncertainties was successfully

accomplished. If uncertainties of input and output data could be reduced and more ex-

tensive methodological approaches could be used to cut additional uncertainties along the

way, this approach represents an interesting way for future climate impact studies to eval-

uate the effects of model uncertainty in future predictions.

Some additional uncertainty sources have to be mentioned. First of all, it was decided

to use averaged climate projections for the whole of China instead of regionalized ones.

Chen et al. (2011) also present probabilities for different warming levels and precipita-

tion changes in a spatially differentiated manner. However, these were not helpful for the

concept of our study, as they did not supply probabilistic distributions for different loca-

tions. In future work, spatial variability of climate change should be considered as results

from Chen et al. (2011) show that e.g. the probabilities for an anticipated 4°C temperature

change largely differ across the country with probabilities exceeding 60% in the northeast

whereas in the south probabilities are much lower. Studies following this thesis could e.g.

formulate more regionalized probabilistic climate scenarios for the area of the study site

to overcome this issue. This could be achieved by using regional climate models (RCMs)

to downscale the results obtained by AOGCMs as they are known to incorporate more

realistic topographic forcings (Xuejie et al., 2001).

Another aspect neglected in this study that could be object to further research is the differ-

ence in projections between seasons. For instance, probabilities for precipitation increase

equal to or over 10% for the 2070-2099 period were projected at 0.9 for winter and 0.34

for summer by Chen et al. (2011). The seasonal patterns also coincide with spatial pat-

terns. For example, winter precipitation is projected to increase by over 20% with a high

probability of >50% in northeast, north and northwest China. In summer, on the contrary,

precipitation is likely to rise by 10% in the Southwest. As particularly scenarios contain-

ing at least one extreme (ETL or PL) caused most differences between uncertainties in

current and future conditions in the present study, it can be expected that a differentiation

between seasons would have supported an even clearer distinction between uncertainties.

Another assumption made in this study is the stationarity of parameter values over time

under changing environmental conditions. Merz et al. (2011) clearly demonstrated in

their study that this assumption is often quite unrealistic. They recalibrated parameters of

a precipitation-runoff model with six consecutive five-year time periods of runoff. Clear
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trends related to change of climatic conditions were distinguished for many parameters

which clearly shows that the assumption of parameter stationarity is questionable, partic-

ularly in the face of climate change. Therefore, to carry out climate trend analyses, large

time series are needed. If such data are not available, these deficiencies in climate impact

modelling caused by the assumption of parameter stationarity have to be critically kept in

mind when interpreting results.

The results of this study are in agreement with Poulin et al. (2011). In their study, which

was conducted for a watershed in Canada, they showed that model uncertainty is usually

more dominating in climate impact studies than model parameter uncertainty. They con-

clude that therefore models of different complexity should be used within such climate

impact studies to be able to communicate uncertainties of future predictions related to

model structure and potentially choose the model causing least uncertainties for manage-

ment purposes.
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7 Conclusion and Outlook

The aim of this study was to apply the VarKarst model for the Lingshui spring catchment

in order to test its performance in the specific regional hydrogeological setting and its

predictive capability under local conditions. Generally, it can be said that the model per-

formance was satisfactory with regards to the objective functions and the representation

of water level (dynamics) in the spring pool. Furthermore, the dominating hydrodynam-

ical processes simulated by the model matched the general understanding of the aquifer.

Nevertheless, some deficiencies were detected along the course of the study. Some of

the optimal parameter values identified during the calibration procedure differed signi-

ficantly from those of other studies conducted with VarKarst before (Hartmann et al.,

2013a; Brenner et al., 2016). Even though this might be attributed to the predominating

local conditions, it could be also be a hint for equifinality (Beven and Freer, 2001). The

low identifiability of most parameters and low information content of the water level time

series in terms of parameter range confinement further support this assumption (Hartmann

et al., 2017). Furthermore, the calibrated models had a restricted predictive capability.

The most obvious reason for these deficiencies was the low quantity of data available

for the catchment at the point of this study. In order to overcome the problems men-

tioned above, large additional measuring campaigns and longer time series are recom-

mended. These should, for example, include regular hydrochemical measurements in

the spring pool, documentation of backwater flow conditions, regular discharge measure-

ments (ideally also during very high flow conditions) and observations of groundwater

level throughout the catchment. These additional sets of information would be helpful

in order to verify the appropriate functioning of the model and to increase identifiability

of parameters (Kuczera and Mroczkowski, 1998; Efstratiadis and Koutsoyiannis, 2010;

Renard et al., 2010; Hartmann et al., 2017). Innovative approaches of model evaluation,

e.g. the use of soft rules in the calibration process, could further enhance the modelling

process and give a clear record of parameter and model uncertainty (Seibert and McDon-

nell, 2002).

Additionally, alternative model structures, preferably with higher parsimony, should be

investigated with the purpose of excluding possible structural model errors (Kirchner,

2006). As the epikarst does only play a minor role in the karst of the region, an exclusion

of the epikarst routine from the VarKarst model could be a first step in order to reduce the

number of parameters. Once more data are available, the testing of an EPM or a triple

porosity approach, as has been used in other karst studies before (Scanlon et al., 2003;

Cheng and Chen, 2005), could also be interesting alternatives to the VarKarst model for

the Lingshui spring catchment with regards to the predominant local hydrogeology.

Presumably, the inclusion of a rating curve and therefore additional parameters into the

modelling procedure did reduce parameter identifiability and possibly caused the model
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to compensate for structural errors (Kirchner, 2006). Nevertheless, these assumptions

could not be tested thoroughly due to the lack of additional information for the model

calibration. To include a rating curve into the VarKarst model, additional discharge meas-

urements as well as information on backwater flows would be especially needed to, for

example, apply a multi-objective calibration approach.

In the projections based on future climate change scenarios, not only the extreme scen-

arios resulted in a signifiant difference between current and future uncertainties. Accord-

ing to the statistical test chosen for this study, almost all scenarios led to (more or less) sig-

nificant differences and thus reliable predictions. As this was the first time this evaluation

methodology for model uncertainties in climate impact studies was used, further stud-

ies are needed to investigate whether the high detection rate for significance is plausible.

Other significance levels or even statistical tests could, for example, be evaluated with a

simulated dataset. The application of the Thornthwaite equation seems inappropriate for

the local climatic conditions, particularly when used for the prediction of PET changes

(Thomas, 2000; Chen et al., 2005). In order to overcome this issue, other approaches to

calculate PET should be used (Chen et al., 2005). Furthermore, more regionalised climate

change predictions should be implemented in order to ensure that the predictions used for

climate change studies are in accordance with actually observed trends.

Land use conditions in the Lingshui spring catchment have been changing rapidly over

the last decades with large impacts on the aquifer and should therefore find consideration

in future studies (Guo et al., 2015). It is advisable to investigate in how far these land use

changes affect the local water cycle to allow more accurate predictions on future develop-

ments of water resources. The large increase in eucalyptus plantations, for example, can

be expected to have a major effect on recharge patterns (Engel et al., 2005). Guo et al.

(2015) even report of dried up springs in the region in correspondence with eucalyptus

cultivation. In addition to this, the consideration of qualitative aspects would surely be

equally important for local water resource management and should thus be included in

the model.

In summary, the general aim of investigating the functioning of the VarKarst model in a

data scarce tropical karst environment was accomplished. Even though some deficien-

cies, mostly related to data scarcity, became apparent, they were effectively communic-

ated through an uncertainty analysis. A first impression of the driving processes of the

Lingshui spring system could be collected and necessary steps for further measurement

campaigns were identified that would eventually allow for a VarKarst centered model

setup in the future that is reliable enough to serve as a basis for water management de-

cisions in the Lingshui spring catchment, or more generally, in tropical karst environ-

ments.
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Appendix

A Discharge data

Table A.1: Discharge data measured in the Lingshui spring pool
.

Date Q [l·s−1] Water level [m]

29.03.10 1860.00 0.52

01.02.11 2500.73 0.58

01.03.11 3469.78 0.56

01.04.11 3123.58 0.61

02.05.11 3046.71 0.65

02.06.11 3937.73 NA

03.07.11 4247.08 NA

03.08.11 3428.92 0.65

03.09.11 2381.66 0.61

04.10.11 5143.70 NA

04.11.11 3968.97 0.74

05.12.11 2724.94 0.64

25.06.15 3547.30 NA

25.08.15 3384.70 NA

14.09.15 4283.80 NA

19.04.16 2758.90 0.52

29.06.16 5625.30 0.86

12.10.16 3791.30 0.58

16.01.17 2389.50 0.55

09.05.17 2900.00 0.60

28.08.17 4590.00 NA
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B Thornthwaite equation

ET pT HORN =

(
0.533 ·L

12

)
·
(

10 · T
I

)α
(21)

where: ET pT HORN = Potential Evapotranspiration after Thornthwaite [mm]

L = Mean day length [h]

T = Daily mean of temperature [°C]

γ = Equation parameter [-]

γ is being calculated through equation 22.

gamma = (6.75 ·10−7)I3 − (7.71 ·10−5)I2 +(1.792 ·10−2)I +0.49239 (22)

where: I = Warmth index [-]

I [-] is the warmth index of monthly temperature means (equation 23).

I =
12

∑
i=1

(
Tmon

5

)1.514

(23)

where: Tmon = Monthly mean of temperature [°C]
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C Parameter ranges of first calibration trial

Table C.1: Description of parameters and parameter ranges used for first calibration
trial (parameter ranges adapted from (Brenner et al., 2016)).

Parameter Description Unit Ranges

Lower Upper

A Recharge area km2 650 750

Vmean,S Mean soil storage capacity mm 5000 15000

Vmean,E Mean epikarst storage capacity mm 0 5000

aSE Soil/epikarst depth variability constant - 0.1 6

Kmean,E Epikarst mean storage coefficient d 0.1 2.5

a f sep Recharge separation variability constant - 0.1 5

KC Conduit storage coefficient d 1 100

aGW Groundwater variability constant - 1 10

a Rating curve parameter - 0 5

b Rating curve parameter - 0 5

c Rating curve parameter - 0 10000
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D Groundwater stationarity - RNI
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Figure D.1: Groundwater compartments (RNI-EpiMax-First calibration).
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Figure D.2: Groundwater compartments (RNI - SoiMaxEpiMax - First calibration).
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Figure D.3: Groundwater compartments (RNI - EpiMax - Final calibration).
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E Groundwater stationarity - RI
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Figure E.1: Groundwater compartments (RI - EpiMax - First calibration)
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Figure E.2: Groundwater compartments (RI - SoiMaxEpiMax - First calibration).
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Figure E.3: Groundwater compartments (RI - EpiMax - Final calibration).
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Figure E.4: Groundwater compartments (RI - SoiMaxEpiMax - Final calibration).
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F Calibration results of EpiMax

Table F.1: Results for parameters and objective functions for different calibration steps
and rating curve approaches for EpiMax

RNI RI

Parameter Unit Calibration step

1st Final 1st Final

A km2 666.45 692.57 707.77 721.91

Vmean,S mm 10117.74 14773.04 14290.63 5134.87

Vmean,E mm 2342.52 2357.77 82.1 539.09

Kmean,E d 0.11 0.73 0.23 0.15

KC d 3.17 4.02 2.41 3.42

aSE - 6 12.21 5.21 20.56

a f sep - 3.19 10.42 0.65 18.54

aGW - 9.97 44.1 6.51 61.23

a - - - 0.49 0.79

b - - - 3.95 3

c - - - 1412.55 2711.94

KGErvar - 0.72 0.76 - -

KGE - - - 0.77 0.78
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G Parameter distributions of calibration trials (EpiMax)

(a) (b)
Figure G.1: Distribution of variable parameters resulting from RNI and RI for (a) the
first calibration run and (b) the final calibration run (EpiMax).
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H Uncorrected simulations of RNI
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Figure H.1: Modelled water level from 50 selected parameter sets compared to meas-
ured water level over the calibration period (2010 - 2011) produced by RNI and before
correction.
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I Multi-objective calibration (Discharge - Water level)
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Figure I.1: Comparison of modelled and observed values of water level and discharge
over the calibration time period for a multi-objective calibration trial with RI (KGE
weighting 0.5/0.5).
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