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Abstract
Karst systems are a common geologic feature throughout the world and are often used
as drinking water sources for the local population. The aquifers are however, due to
their specific properties, at risk of contamination and changes through global warm-
ing. To meet these challenges a thorough understanding of karst properties and solute
transport is necessary. The new age-ranked StorAge Selection (rSAS) framework might
offer a widely applicable solution to model solute transport in a catchment, but has
not been tested in a variable flow environment such as karst. A minor hypothesis that
was discussed answered the question, if rSAS could be regarded as a grey-box model,
which offers additional information on top of solute transport, or a black box model.
To test the new framework it was applied in a well investigated karst catchment in
southern Spain. The predicted output concentration for two solutes, SO4

2– and Cl– ,
displayed high concordance with the observed concentration in the spring discharge. A
Kling-Gupta-Efficiency of 0.8 was reached for SO4

2– and 0.71 for Cl– , which surpassed
the benchmark model VarKarst. The hypothesis that rSAS is suitable to model karst
solute transport can be accepted. As further information about the aquifer can be drawn
from the rSAS results, it is concluded that rSAS is a grey box model.

Keywords: rSAS, karst, transit time, StorAge Selection function (SAS), enrichment
function, time-variant
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Zusammenfassung
Karst ist eine geologische Geländeform, die global weiterverteilt vorkommt. Aquifere in
Karstgebieten versorgen weltweit einen signifikanten Teil der Bevölkerung mit Trinkwasser,
sind jedoch anfällig für Kontamination und Veränderungen durch den Klimawandel.
Um diesen Herausforderungen zu begegenen ist ein gründliches Verständnis der Eigen-
schaften und des Stofftransportes im Aquifer unablässig. Eine neue Methode zur Vorher-
sage von Stofftransport, age-ranked StorAge Selection (rSAS), ist möglicherweise viel-
seitig einsetzbar und wäre damit auch in Karstgebieten mit einer hohen zeitlichen und
räumlichen Variabilität des Fließverhaltens eine Alternative zu bisherigen Ansätzen.
Weiterhin wird diskutiert, ob dieser Ansatz als Greybox-Modell, das mehr als nur Stof-
fkonzentrationen modellieren kann oder als Blackbox-Modell aufgefasst werden kann.
Um beide Hypthesen zu beantworten, wird rSAS in einem bereits gut untersuchtem
Gebiet in Südspanien angewendet. Die modellierten Konzentrationen für die beiden
Stoffe SO4

2– und Cl– zeigen, dass eine hohe Übereinstimmung mit den beobachteten
Konzentrationen im Abfluss erreicht werden konnte. Für SO4

2– wurde ein Kling-Gupta-
Efficiency-Wert von 0.8 erzielt und Cl– erreichte eine KGE-Wert von 0.71, sodass das
Vergleichsmodell VarKarst übertroffen wurde. Die Hypothese, dass rSAS dafür geeignent
ist Stofftransport in Karst zu modellieren, konnte bestätigt werden. Da das Modell
auch weitere Schlussfolgerungen zum Fließverhalten im Aquifer zulässt, kann es als ein
Greybox-Modell angesehen werden.

Stichworte: rSAS, Karst, Verweilzeit, StorAge Selection function (SAS), Lösungsfunk-
tion, instationär
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1 Introduction

1.1 Introduction

Karstic rocks are widely distributed and can be found all across the ice-free land masses
of the globe, as portrayed by the global karst map in Figure 1.1. It is estimated that
20 - 25 % of the global population rely in parts or entirely on drinking water resources
from these regions, which make karst aquifers in addition to alluvial aquifers one of
the most crucial aquifer formations of the world (Bakalowicz, 2005; Ford and Williams,
2007). Carbonate rocks cover 35 % of the surface area of Europe and in some European
countries up to 50 % of the total drinking water demands are met by karst groundwater.
In a few areas it is the only available freshwater sources for the local population and
an invaluable part of the drinking water supply (Andreo et al., 2008; COST 65, 1995;
Zwahlen, 2004). Especially in Mediterranean regions, where the research catchment of
this study is located, freshwater supply from karst still has room for development and
could help to meet increasing demands (Andreo et al., 2008). However, a prerequisite
for the usage of karst catchments as drinking water sources is a thorough analysis of the
amount of water resources available, the quality of freshwater, sustainable management
options and potential risks (Ford and Williams, 2007). Karst aquifers are, more than
other aquifers, subject to two risks which impact freshwater supply and require careful
management: climate change and contamination. Karst systems have highly complex
flow regimes, where changes in the environmental parameters can impact groundwater
flow (Bakalowicz, 2005). The predicted impact of climate change on the Mediterranean
area are higher temperatures and less precipitation (Christensen et al., 2007). The en-
suing droughts can especially affect recharge rates and decrease available drinking water
amounts in the long term (Hartmann, Mudarra, et al., 2014; Milly et al., 2005). Karst
aquifers are furthermore at risk of possible contamination. The duality of karst systems
leads to a dual vulnerability to contaminants that are transported both very quickly and

2



Chapter 1. Introduction 3

very slowly. The quick transport through the conduit system impedes usual processes of
contaminant decrease such as adsorption, degradation and filtration. This way contami-
nated water might reach drinking water wells more quickly preventing the application of
mitigation measures. At the same time the contaminant might potentially be stored and
released slowly from the karst matrix, which means the corresponding well is lost for
drinking water production for a longer period of time (Butscher and Huggenberger, 2009;
Harman, 2015; Zwahlen, 2004). A working model of the flow system is thus an invaluable
step in the protection and conservation of aquifers against contamination. A model that
can predict travel times for solutes found naturally in the system will be able to provide
information about contaminant transport and the period of pollution (Ghasemizadeh
et al., 2012; Kirchner et al., 2000). To ensure safe current and future drinking water
supply from karst aquifers a close study of system characteristics is essential. The new
framework tested on a karst catchment in this study was developed by Harman, (2015)
and might offer an improved way to model solute transport and determine transit times.
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Figure 1.1: Map of the world displaying carbonate and evaporite deposits, which indicate
potential karst landscapes (Stevanović et al., 2016)

1.2 State of knowledge

1.2.1 Assessment of karst water resources

Karst characteristics

Karst is a type of landscape, which is formed by the dissolution of carbonated rock such
as limestone, dolostone or dolomite rock, through the contact of CO2 and precipitation.
CO2 generates in contact with water carbonic acid, which reacts with the carbonate
rocks, as Equation 1.1 illustrates. It is a continous process which forms typical karst
landscapes.

CaCO3 + CO2 + H2O Ca2+ + 2 HCO3
− (1.1)
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If water accumulates at depressions in the relief and infiltrates through fissures and
preferential flow paths, they are subject to more dissolution than the surrounding areas
and form characteristic surface pattern above ground such as dolines, swallow holes,
karren, dry valleys and poljes (Hartmann, Goldscheider, et al., 2014). The weathered
surface of the carbonate rock is called ”epikarst”. Figure 1.2 depicts, how the water
percolates through the epikarst downwards into the saturated zone, although it can
sometimes function as a storage as well (Williams, 2008). The dissolution of preferential
flow paths underground leads to the creation of fractures, karst conduits and caves. As
a result karst aquifers have a high spatial heterogeneity on the surface and subsurface
resulting in an equally varying water distribution throughout the aquifer (Goldscheider
and Drew, 2007). It additionally adds a variability to infiltration, recharge, flow and
storage, which is often described as the duality of karst aquifers in four aspects:

1. A karst aquifer is either recharged locally (autogenic) or the water flows into the
aquifer from adjoining non-karst areas (allogenic) as illustrated by Figure 1.2.

2. Infiltration either occurs quickly through sinkholes or dolines or slowly through
soil, epikarst and karst matrix.

3. Subsurface water flow is respectively quick in conduits or caves and slow through
pores and sometimes fissures.

4. Water storage is small in the conduit system, although it can transport significant
amounts of water in a short time period, and large in the karst matrix, where up
to 99 % of the water is stored.

These dualities lead to a high temporal variability of the discharge with a fast response
to precipitation events, which can increase flow several orders of magnitude (Ford and
Williams, 2007; Ghasemizadeh et al., 2012; Goldscheider and Drew, 2007; Maloszewski
et al., 2002; Sauter et al., 2006).

Assessment of Karst water resources

The duality of karst aquifers makes the assessment of karst water resources a challeng-
ing task. The common way is to combine several methods to analyse the flow system as
accurately as possible in regard to discharge reaction, storage and contaminant flow. A
first step in water resource exploration are speleological investigations, where the cave
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Figure 1.2: Diagram of a conceptual karst aquifer, which includes processes and land-
scape features distinctive in karst areas. The green dashed line marks the
epikarst, the red dashed line the groundwater processes (Hartmann, Gold-
scheider, et al., 2014)

system is examined, which is exclusive for karst catchments and can give an overview
over the conduit network and potential starting points for further inquiries. However,
as the conduit system makes up only a small part of the catchment, it does not provide
conclusive information for a thorough analysis. These kind of investigations are further-
more only possible in karst systems with accessible caves (Ford and Williams, 2007;
Goldscheider and Drew, 2007). Bakalowicz, (2005) suggests to approach the assessment
of a karst catchment by first determining the internal structure of the aquifer through
geophysical methods. Seismic measurements can supply information about the geolog-
ical structure such as rock strata, possible fractures or layer density. Measuring minor
changes in the earth’s gravity are then used to locate potential sinkholes, inaccessible
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caves or conduits as well as estimate porosity. Electromagnetic methods can also be used
to locate conduits, though scope of application and results vary with different methods
(Debeglia et al., 2006; Goldscheider and Drew, 2007). The obtained knowledge supports
the next step which is to outline the catchment (Bakalowicz, 2005; Ford and Williams,
2007; Goldscheider and Drew, 2007). For a non-carbonate area the borders of the catch-
ment are assumed to correspond with the surface topography in form of mountains or
ridge which define a clear watershed. In karstic areas the subsurface structure can lead
to a catchment much smaller or larger than the surface suggests. Suitable methods to
determine the catchment area are therefore geomorphological mapping or tracer applica-
tion (Bakalowicz, 2005). Geomorphological mapping utilises the distinct landscapes that
are typcial for karst regions to find points of recharge such as swallow holes or dolines
as well as points of discharge such as springs. Dolines and surface forms like karren are
an indicator for the spatial orientation of possible fracturing and can hint the direction
of the conduit system (Goldscheider and Drew, 2007).

Application of natural and artificial tracer

Another method to analyse karst water resources, catchment limits and recharge area is
the application of natural and artificial tracers. Artificial tracers are easily detectable,
highly soluble substances that are added into the system. Ideally a tracer is conservative,
which means it does not react with the surrounding material of the aquifer and behaves
the same as water. However, most artificial tracer are not conservative and their specific
performance has to be taken into account. Information about catchment flow dynamics
can be derived from the concentration dynamics of the tracer measured at the input
versus the output location. (Goldscheider et al., 2008). The limiting factor of artificial
tracers is the temporal and spatial extend that can be covered. Even if several tracers
are applied only a few locations and a few flow states (such as storm events) can be cov-
ered. It limits the information gain to selected catchment state system dynamics (Beven,
2012). In karst systems artificial tracers are usually applied during high flow conditions,
which provides information about short-term system reactions but insufficient informa-
tion about the flow processes during dry periods (Mudarra, Andreo, Marin, et al., 2014).
The alternative to artificial tracers are so called environmental or natural tracers that
cover the whole catchment and the temporal dynamics of the system. These substances
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or solutes are continuously added throughout the catchment either through precipita-
tion or through reactions in the aquifer. They can be either environmental isotopes,
hydrochemical substances or anthropogenic pollutants with a continuous diffuse source
(Leibundgut et al., 2009). For all environmental tracers it is important to have a long
period of time with measured data at the system output (e.g. spring discharge concen-
trations) and sometimes input (e.g. precipitation concentrations) as well. Ideally spring
concentrations are measured continuously to cover the quick reactions of a karst system.
If a continuous measurement is not possible, additional samples should be taken during
relevant flow events (Hartmann, Goldscheider, et al., 2014; Mudarra and Andreo, 2011).
The most common environmental tracers are isotope tracers such as 18O/16O, 2H/H and
carbon isotopes. Especially for the application of transit time modelling isotope data is
widely utilized (e.g. refer to McGuire and McDonnell, 2006). However, sometimes isotope
data is not available, which is why hydrochemical tracers can be applied. An advantage
of hydrochemical tracers is that they can deliver additional information about selected
system processes like infiltration (Mudarra and Andreo, 2011), tributary mixing (Perrin
et al., 2007), separation between different flow components (Lee and Krothe, 2003) and
other. Dissolved ions in water can be used to estimate transit times, based on the con-
cept of increased solute concentrations with continued contact time. Water with higher
concentrations would imply a longer contact time and can therefore be associated with
pre-event water versus water with low concentrations is more likely to be recent event
water. A drop in mineralisation can be measured during high flow conditions, thus sug-
gesting that more event water contributes to the discharge composition (Batiot, Liñán,
et al., 2003; Goldscheider and Drew, 2007; Shuster and White, 1971). When dissolved
ions are used as natural tracers it is recommended to use more than one solute, as dif-
ferent tracers can describe different aspects of the system, depending for example on the
location of the source within the aquifer (Hartmann, Weiler, et al., 2013).
This is the reason why this study applies the new modelling framework to two differ-
ent solutes, sulfate (SO4

2– ) and chloride (Cl– ). Both are common solutes in karst but
originate from different sources within the system. They have been described to be con-
servative under karst conditions and are most common in systems with evaporite layers
(Goldscheider and Drew, 2007). While SO4

2– can enter the system through anthro-
pogenic sources or in small amounts through precipitation its main source are gypsum
or anhydrite. As equation 1.2 illustrates, if gypsum comes in contact with water, it exists
in a state of chemical equilibrium with SO4

2– . It has a maximum solubility of 2400 mg/l
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at 25 °C and 1 bar (105 Pa) pressure (Ford and Williams, 2007). SO4
2– has been used as

tracer in different studies (e.g. Klimchouk and Aksem, (2005);Lee and Krothe, (2003)).
It can only be applied in catchments without sulfate input through thermal activity
(Worthington and Ford, 1995).

CaSO4 ·H2O Ca2+ + SO4
2− + 2 H2O (1.2)

Chloride (Cl– ) is a widely used tracer mineral as well (e.g. Harman, (2015), Hrachowitz
et al., (2010), Kirchner et al., (2001), and Oda et al., (2009)). It enters the system
through precipitation, anthropogenic sources or it can occur through geogenic dissolution
of evaporites such as halite. Depending on the location a diffuse input through sea mist is
also possible. Chloride concentrations in the uppermost storage layer, the soil-water zone,
increase during the summer due to evaporation losses, the so called evapoconcentration
effect (Ford and Williams, 2007). The geogenic source halite has a high solubility of
360 000 mg/l at 25 °C and 1 bar (105 Pa) pressure and dissolves into Cl– and Na+ as
displayed in equation 1.3 (Ford and Williams, 2007).

NaCl + H2O Na+ + Cl− + H+ + OH− (1.3)

Calcium (Ca2+) is the most abundant solute in a karst catchment yet is not recom-
mended as a tracer to estimate transit times. Its dissolution depends on the partial
pressure of CO2, which changes throughout the aquifer thus making a correlation be-
tween concentration and contact time infeasible. As karst systems are mainly made out
of carbonate rock, even young water already has a high mineralisation regardless of con-
tact time (Goldscheider and Drew, 2007). Batiot, Emblanch, et al., (2003) suggest to
use magnesium (Mg2+) as an indicator of transit time due to a slower dissolution rate,
but Batiot, Liñán, et al., (2003) object that the correlation between Mg2+ and transit
time can be dependent on the specific catchment and geology and might thus not be
easily transferable.

Hydraulic and hydrological methods

Further methods to analyse karst systems include hydraulic and hydrologic approaches.
A hydraulic examination of an aquifer can provide information about a number of pa-
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rameters, which Goldscheider and Drew, (2007) cite as porosity, hydraulic head, trans-
missivity and hydraulic conductivity, groundwater velocity and groundwater flow rate.
Methods applied to reach these informations are pumping tests, monitoring wells or
borehole packer tests. The execution in karst areas is a challenge since test wells might
miss water bearing layers or might be immersed into an underground reservoir, thus
delivering distorted results. The spatial heterogeneity of a karst aquifer often leads to
high conductivity rates, which reflect the high conductivity of the conduit system and
not the conductivity of the whole aquifer including matrix and epikarst (Goldscheider
and Drew, 2007; Kiraly, 1975). Hydrologic approaches to catchment characteristics of
karst aquifers are a basic water balance concept and the analysis of spring hydrographs.
A simple water balance of the form

∆S = P − (Q+ ET ) (1.4)

with the precipitation P, discharge Q, evapotranspiration ET and the change in storage
∆S takes into account the gains and losses of the system and might indicate storage
magnitude. While the calculation of the water balance might be simple, it is a challenge
to accurately determine the input and output variables, as they can vary with flow con-
ditions (Ford and Williams, 2007). The spatial heterogeneity of the system has the effect
that depending on water table height additional overflow springs might be actived, which
in turn changes the recharge area (Goldscheider and Drew, 2007; Hartmann, Barberá,
et al., 2013). Boundary conditions need to be taken into account when calculating the
water balance.
The spring hydrograph is the reaction of a catchment to precipitation events. Due to a
quick flow component the reaction commonly occurs within a few hours to a few days
depending on the system. Physical equations fit to the form of the discharge peak or
recession curve offer estimates about storage, permeability, solute transport or transit
times (Ghasemizadeh et al., 2012; Szilagyi et al., 1998; Tallaksen, 1995). Much like tracer
information, discharge measurements are ideally available continuously to cover the tem-
poral variability experienced in karst aquifers. High resolution discharge data is used as
input for hydrological models as well.
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Modelling of karst aquifers

While modelling groundwater flow and solute transport it is a common concept to de-
termine catchment characteristics, most of the prevailing modelling techniques cannot
be employed in karstic areas as Darcy’s law does not apply in open flow conduits (Field,
1997; Ford and Williams, 2007). The duality in karst systems is a further challenge
in modelling aquifer conditions due to the different velocities of flow, infiltration and
storage components. Flow and storage conditions are similarly heterogeneous regarding
water velocity and storage depletion (Ford and Williams, 2007; Ghasemizadeh et al.,
2012; Sauter et al., 2006).

For that reason various models are currently applied which use different approaches
for modelling groundwater flow and catchment behaviour in karstic areas. Most mod-
els can usually belong to one of two categories, either lumped parameter models (also
called global models) and distributed models. Spatially distributed models divide the
modelled area into grid cells covering either a two- or three-dimensional space, where
each grid cell has their own characteristic parameter set and boundary conditions. For
distributed models a number of different approaches have been developed to cover the
spatial heterogeneity. From all distributive models the equivalent porous medium ap-
proach implements spatial variations the least, as it assumes averaged system properties
for each modelled sub-unit. Therefore, it does not have the ability to represent the char-
acteristics of the conduit system. The double continuum approach is able to cover both
the conduits system and the matrix by simulating both as continua that interact (ex-
change of water and solute) with each other based on the difference in hydraulic head
(Goldscheider and Drew, 2007; Hartmann, Goldscheider, et al., 2014; Teutsch, 1988).
The combined discrete-continuum approach incorporates the advantages of both previ-
ous methods by merging discrete elements that represent conduit or fracture behaviour
with a continuum that represents the matrix. Although data intensive, it is well suited to
test theoretical karst models (Goldscheider and Drew, 2007; Kiraly, 1998). One example
of a distributed model is the APLIS method to calculate recharge in karstic areas. It uses
spatially distributed precipitation as input data and combines it with parameter values
describing altitude, slope, lithology, infiltration landforms, and soil types for each grid
cell (Andreo et al., 2008). The challenge for this data intensive method is to assemble
the required information for the heterogeneous surface and subsurface conditions of a
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karst aquifer (Ghasemizadeh et al., 2012). Nevertheless, it has the advantage of spatially
distributed information about the recharge rate in the area of interest.

Another way to model catchment behaviour are lumped parameter models, which in
some instances predict tracer output as good as as distributed model (Maloszewski and
Seiler, 2000 cited in Ozyurt and Bayari, 2005, p.3269). In addition to flow rate calcu-
lation, lumped parameter models can be used to calculate recharge or simulate spring
discharge as well as water levels (Ghasemizadeh et al., 2012). They are separated into
two different types of model: black-box and grey-box models. Black-box models anal-
yse a time series of input (usually precipitation) and output (discharge) data and try
to find a transfer function between the two (Denić-Jukić and Jukić, 2003; Jukić and
Denić-Jukić, 2006). No information about the catchment is assumed and the model only
provides limited information about the physical properties of the study area (Gold-
scheider and Drew, 2007). The other type of model is the grey-box model, where some
catchment characteristics are known and some are unknown (Deng, 1982). Hao et al.,
(2006), Ford and Williams, (2007) and others state that for karst aquifers the general
flow processes like infiltration and flow through conduits or matrix are known and con-
trolled by the meteorology, topography or the physical and geological structure of the
catchment as well as influenced by vegetation and human activities. However, it is dif-
ficult to exactly quantify them by using mathematical models. Grey-box models are
therefore appropriate for karst as they can use known parameters to explore unknown
processes. Depending on the intended results lumped parameter models rely on the rela-
tionship between discharge and storage, based on the interpretation of discharge curves
or chemical or hydraulic reaction of a spring to a precipitation event (Ghasemizadeh
et al., 2012; Hartmann, Goldscheider, et al., 2014; Sauter et al., 2006). Since there is
no need for extensive spatial data, which are often difficult to acquire, these kinds of
models are generally preferred for karst catchments (Jukić and Denić-Jukić, 2009).

One example of a model which combines both distributed and global approaches is
the semi-distributed VarKarst model developed by Hartmann, Barberá, et al., 2013 for
a karst spring in southern Spain. The structure of the VarKarst model is displayed
in Figure 1.3. It consists of N compartments where each compartment represents the
properties of a piece of a cross section of the aquifer with varying thickness of soil,
epikarst, diffuse groundwater, and concentrated groundwater systems. The combination
of a cross section with a conceptual structure of the different layers allows to partially
cover heterogeneity as well as anisotropy in the aquifer. Due to the varying input from
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soil and epikarst, the recharge area that actually contributes to discharge varies and
thus approaches reality in karst aquifers. After proving that it successfully models karst
recharge, it was, inter alia, applied in combination with the distributed APLIS method
(Andreo et al., 2008) to the Villanueva del Rosario catchment that is analysed in this
study (Hartmann, Mudarra, et al., 2014).

Figure 1.3: Diagram of the VarKarst model structure (Hartmann, Weiler, et al., (2013)
modified by Hartmann, Mudarra, et al., (2014))

1.2.2 Transit times and StorAge Selection functions

Transit time

Tracer concentrations in the chemograph which are predicted by lumped parameter mod-
els rely on mixing between old and young water in the catchment which can be inferred
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from transit time distributions (Amin and Campana, 1996; McGuire and McDonnell,
2006; Rinaldo et al., 2011; Sklash and Farvolden, 1979). The time water needs to travel
through a catchment is called travel time (Botter et al., 2011) or more commonly transit
time. It is not only a measure for a number of different catchment characteristics such as
catchment storage, flow paths and water origin (Harman, 2015; McDonnell et al., 2010;
McGuire and McDonnell, 2006), but is also a valuable source of information in case
of contamination. It describes when the contaminant might reach a possible drinking
water well and how long it will take until the catchment is cleared (Botter et al., 2011;
Harman, 2015). Contrary to the concept of residence time, which describes the time a
water particle spends inside a system until the time of observation, transit time is the
time that has passed when the particle exits the system at the catchment outlet and thus
includes overland and channel flow (Bolin and Rodhe, 1973; Etcheverry and Perrochet,
2000; Lindgren et al., 2004). Water travels from catchment input to catchment outlet
at different velocities and through different flow paths. A sample of water that exits
the system at a certain time has a probability density function of an ”age” distribution
which is called the transit time distribution (TTD).

Steady state versus time variable transit time distributions

The prevalent way lumped parameter models have been applied to determine tracer
transport was to assume a steady state of the system with a time-invariant transit time
distribution (Amin and Campana, 1996; Einsiedl, 2005; Maloszewski et al., 1992). The
advantage of a time-invariant approach is the straightforward way to calculate the output
from a linear process, if the input is known (Niemi, 1977). Time-variant functions on the
other hand add a complexity to the calculation and interpretation of the results, which
is the reason why it has not been a widely applied concept (McGuire and McDonnell,
2006). However, the temporal variation of input, output and storage volume leads to
changes in catchment wetness and thus discharge variability, which influence the transit
time in a way that cannot be neglected, as it has a significant effect on modelling results
(Hrachowitz et al., 2013). The time it takes for a contaminant to leave the system depends
substantially on the chosen function. It can vary between a few years in a steady-state
case and a few decades for a time-variant model. The differences are particularly notable
in a system with short mean residence times, such as karst (Harman, 2015; Ozyurt and
Bayari, 2005). The reason for this is that a lower antecedent wetness might lead to longer
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transit times, as the hydraulic conductivity decreases (McGuire and McDonnell, 2006).
The high variability of flowpaths controlled by catchment form and storage volume is
especially relevant for karst catchments. During heavy precipitation events faster flow
paths are not only added by overland storm flow but also through additional usually
dry flow paths in the form of sinkholes which become active and add a much quicker,
concentrated flow component. Changes in the groundwater level can further add overflow
springs or change the recharge area (Hartmann et al., 2012; White, 2002). McDonnell
et al., (2010) additionally pointed out that non steady-state conditions mainly occur in
small catchments with a highly variable storage volume. This applies especially for karst
which has a dynamic storage (Jacob et al., 2008; Jacob et al., 2010; Maloszewski et al.,
2002). Although Niemi, (1977) was one of the first authors to recognise that a change
in storage size can influence catchment reactions, time-variant transit time distributions
have only recently been applied (Benettin, Kirchner, et al., 2015; Botter et al., 2010;
Botter et al., 2011; Harman, 2015; Hrachowitz et al., 2010; Rinaldo et al., 2011; van
der Velde et al., 2012). Before that there were different approaches to apprehend tracer
response in the output signal that could not be explained with a single steady-state
TTD, by assigning separate assumed steady-state distribution for different flow states
or flow components (Lee and Krothe, 2001; Stumpp et al., 2009; Weiler et al., 2003).

StorAge Selection functions

It has been established that water travels through the system at different velocities
and flow paths which are influenced by time variable catchment conditions such as an-
tecedent wetness. However, this implies that discharge at catchment outlet consists of
a mix of older and younger water. In karst catchments water mobilised after a storm
event originates from different parts of the storage and mixes in the spring, thus pro-
ducing a varying tracer signal (Bakalowicz and Mangin, 1980; Lakey and Krothe, 1996;
Sauter, 1997). For different catchments this reaction varies. In some catchments the dis-
charge after a storm is mainly event water, due to increased overland flow for example
(Heidbüchel et al., 2013; Morgenstern et al., 2010; Segura et al., 2012), but in others
discharge is in parts or completely older water, which has been stored in the system for
a longer time. This effect is called the ”old-water paradox” (Birkel et al., 2012; Klaus
and McDonnell, 2013; Rinaldo et al., 2015). To consider the ability of a catchment to
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store and mix water as well as solutes a new approach was developed by Botter et al.,
(2011) and improved by van der Velde et al., (2012) and Harman, (2015).

The residence time distribution (RTD) pS(T, t) describes the age distribution in the
storage. It is defined as

pS(T, t) = ST (T, t)
S(t) (1.5)

where ST (T, t) is the storage at time t older than age T and S(t) the total storage at time
t (Botter et al., 2011; Harman, 2015; van der Velde et al., 2012). While the residence
time distribution (RTD) describes the current state of the storage, TTDs describe the
age distribution as water exits the system. They can be differentiated into a forward
transit time distribution (fTTD) and a backward transit time distribution (bTTD). The
fTTD described as −→p Q(T, t), defines the ”age” T of water leaving the system over an
extended period of time, which entered on the same time ti. The bTTD or ”reverse travel
time distribution” on the other hand (van der Velde et al., 2010) describes the ”age” T
of water particles entering the system over an extended period of time and leaving as
discharge at the same exit time t. The backward transit time distribution is defined as:

←−p Q(T, t) = QT (T, t)
Q(t) (1.6)

where QT (T, t) is the discharge at time t older than age T and Q(t) the total discharge
at time t (Botter et al., 2011; Harman, 2015; van der Velde et al., 2012). The bTTD of
water particles leaving the system via evapotranspiration is described respectively as:

←−p ET (T, t) = ETT (T, t)
ET (t) (1.7)

The definition of a bTTD is mostly used in the area of chemical engineering where
it is called the ”exit age distribution” (Danckwerts, 1953; Harman, 2015; Levenspiel,
1999; Rinaldo et al., 2015). The advantage of using a reverse TTD is that it allows to
predict the tracer concentration in the output by knowing the input tracer concentration
(Harman, 2015; Rinaldo et al., 2011).

Cout(t) =
∫ t

−∞
Cin(ti) ←−p Q(T, t) dti (1.8)

The forward transit time distribution described as −→p Q(T, t) and backward transit
time distribution do not take the same functional form unless constant input/output
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conditions (steady-state) are assumed (Niemi, 1977). While artificial or natural tracer
experiments generate fTTD for the time ti, bTTDs can not, or only at great effort,
for example by using multiple tracers (McDonnell et al., 2010), be determined from
tracer breakthrough curves. Instead their functional form is determined through lumped
parameter models or derived from the observed change in natural tracer signals (Kirchner
et al., 2000).

Botter et al., (2011) was the first to establish a connection between bTTD and the
residence time distribution pS(T, t) as the water removed from the system through the
bTTD is directly dependent on the water age distribution that is available for removals
as described by the RTD. They established a Master Equation, which describes the
connection between RTD and bTTD. The transformation between storage with a known
age-distribution into discharge with a known age distribution is expressed as what Botter
et al., (2011) called a ”mixing function” and what is since then known under the more
established term StorAge Selection (SAS) function (Rinaldo et al., 2015). For the two
fluxes discharge Q and evapotranspiration ET the SAS is written in the notation by
Rinaldo et al., (2015) as:

ωQ(T, t) = pQ(T, t)
pS(T, t) (1.9)

ωET (T, t) = pET (T, t)
pS(T, t) (1.10)

Harman, (2015) explains the complication associated with this approach. The param-
eters to describe ωQ(T, t) can only be determined for a simple case, as pS(T, t) depends
on the full, partly unknown history of input fluxes into the system. Due to this reason
van der Velde et al., (2012) further developed the framework by selecting the discharge
not from the RTD but from the cumulative probability of the residence time distribution.
The advantages detected by van der Velde et al., (2012) are an easier parametrization,
an improved interpretation of the parameters in terms of actual mixing behaviour in the
aquifer, and more consistency in time.

Harman, (2015) adopts a similar approach by applying the selection function to the
new variable age-ranked storage ST (T, t) [mm]. The approach is described in more detail
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in section 3.3. The age-ranked storage is defined in relation to the cumulative RTD
(PS(T, t)) and total storage as:

ST (T, t) = S(t) PS(T, t) (1.11)

In agreement with Botter et al., (2011), van der Velde et al., (2012) and Harman,
(2015) the SAS framework ωQ(T, t) is referred to as ”absolute” StorAge Selection (aSAS)
function, ωQ(PS, t) is referred to as ”fractional” StorAge Selection (fSAS) function and
the new approach ωQ(ST , t) is referred to as ”rank” StorAge Selection (rSAS) function.

The advantage of rSAS is that it does not require knowledge about the total storage
volume, which is often difficult to determine, but can instead be applied to the active part
of storage. This further means that no lower system boundary needs to be assumed, thus
reducing the risk of errors (Harman, 2015). The main advantage is its ability to include
a catchment state variable, which influences transit time distribution and describes their
temporal variability. This can be storage, but other state variables such as water level
or discharge can be chosen as well (Harman, 2015; Rinaldo et al., 2015). rSAS has been
developed and tested at the Lower Hafren catchment in Wales. It was possible to predict
chloride transport dynamics in the discharge by applying a storage-dependent gamma
distribution as selection function. The age composition of the discharge, derived from the
chloride transport, showed a connection to the moisture content of the catchment. During
a state of low storage the discharge is mainly composed from pre-event water. This was
termed the ”inverse storage effect” (Harman, 2015). Since then the rSAS framework has
been applied to a sloping lysimeter, in an attempt to measure TTDs experimentally
(Kim et al., 2016), and to a small stream under baseflow conditions to model sequential
tracer injections (Harman et al., 2016).

Harman, (2015) and Rinaldo et al., (2015) theorize that the rSAS/SAS framework is
flexible enough to potentially be applied to a flow system independent of its structure,
which would make it a widely applicable tool. The spatial heterogeneity of the chosen
catchment which results in multiple different flowpaths is taken into account by the
flexibility of the selection function, which regards the water input over the complete
system.





2 Problems and objectives

The hypothesis for this study is that the rSAS model developed by Harman, (2015) fulfils
all the prerequisites to perform well even in a catchment with a complex flow regime
such as karst. The assumption to be tested is that the application of a time-variable
StorAge selection function to an age ranked storage (rSAS) is well suited to calculate
solute transport in karst. It has been recommended by Harman, (2015) and Rinaldo et
al., (2015) to test the new SAS theory on different flow systems to prove their assumed
broad applicability. Harman, (2015) further recommended to test the model in different
landscapes to see if a connection between the parameters and the physical structure of
the catchment can be established. Although this is not discussed as part of this thesis,
as only one catchment is analysed, this work adds to the experience with rSAS and
the general SAS theory. This work incorporates not yet published further enhancements
by Ciaran Harman to the rSAS model in the form of an enrichment function to model
geogenic dissolution as tracer input. They were developed to adapt the model to the
specific requirements for solute transport in karst aquifers. Neither the SAS framework
in general nor the rSAS model has been applied to a karst catchment before. If it
performs well, it could support the management of drinking water resources in regard
to the risk of contamination as an less data intensive transport model. Commonly used
lumped parameter models have furthermore been described to be error prone in karst
areas as they are limited in the display of the aquifer heterogeneities (Ford and Williams,
2007; Palmer, 1999). The application of rSAS as a first assessment of the aquifer or in
combination with lumped parameter models might be able to reduce uncertainty and
errors in modelling. In connection to the results delivered by rSAS for this specific
catchment an additional question is discussed during the scope of the thesis: Is the rSAS
model a black-box model, that does not assume any parameter information or can it be
regarded as a grey-box model as it provides information about the catchment processes
and takes the physical structure of the catchment into account? The hypothesis is that
rSAS can be classified as a grey-box model. To prove or disprove both hypothesis a
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catchment in northern Spain is modelled with rSAS. It qualified as study area since
it has been investigated extensively regarding the hydrology, geology and flow system.
The application of a transport model is of interest for that specific area, as the spring
supplies a small village with drinking water. The success of the rSAS model is determined
by comparing it against the benchmark model VarKarst, which has been applied to the
study area as well (Hartmann, Barberá, et al., 2013) and to the results of previous tracer
experiments (Mudarra and Andreo, 2011; Mudarra, Andreo, Marin, et al., 2014).



3 Methods

3.1 Study area

The Alta Cadena mountain range is based in southern Spain, close to Malaga City and
is drained by multiple Karst springs. One of them is Rosario spring, which drains the
Villanueva del Rosario Karst system located in the middle of the Alta Cadena massif.
The recharge area of Rosario spring, depicted in Figure 3.1 is approximately 13.85 km2

as determined by several studies (Marin et al., 2010; Mudarra, Andreo, Marin, et al.,
2014; Hartmann, Mudarra, et al., 2014). The main geologic feature of the catchment is
limestone with some small patches of clays and sandstone close to the surface. While
there are some large areas of underlying dolostone they rarely reach the surface. Upper
Triassic clays and evaporite rocks, in the form of gypsum, are located below the roughly
400-450 m of limestone and dolostone and are a source of SO4

2– in the spring discharge.
Traces of halite in the area lead to the input of Cl– into the spring water (Mart́ın-
Algarra, 1987; Hartmann, Mudarra, et al., 2014; Mudarra, Andreo, Marin, et al., 2014;
Peyre, 1974). The relief is rugged with altitudes rising from 600 to 1640 m above sea
level (ASL). The vegetation is dominated by light patches of pasture and shrubs with
scattered areas of bare soil. There are some forested areas and a few olive and nut tree
plantations. Occasional livestock farming leads to a slight nitrate (NO3

– ) input into the
spring. The catchment receives 760 mm of mean annual precipitation (Mudarra, Andreo,
Barberá, et al., 2014) with a distinct wet season during the fall, winter and spring and a
dry period during the summer months. Rosario spring is located at the north west corner
of the catchment at 755 m ASL, where it discharges the karstified Rosario catchment
(Mudarra, Andreo, Barberá, et al., 2014). A tracer test done by Mart́ınez et al., (2010)
proved the karstic behaviour of the catchment. Karstic landscape features of the area are
karrenfields, dolines, uvalas and swallow holes, which are triggered during large storm
events (Hartmann, Mudarra, et al., 2014). The catchment reacts quickly to precipitation
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events with a fast flow component that reaches velocities of up to 200 m/h (Mart́ınez
et al., 2010).

Figure 3.1: Map of the geology and recharge area of the Villanueva del Rosario catch-
ment, including the location of the spring and gauging station as well as the
general location of the catchment in Southern Spain (Hartmann, Mudarra,
et al., 2014)

3.2 Data
The data used in this study was collected by Mudarra and Andreo, (2011) and Mu-
darra, Andreo, Barberá, et al., (2014) between October 2006 and September 2009. The
same data was used in the application of the benchmark model VarKarst (Hartmann,
Mudarra, et al., 2014). It was checked for completeness, but was assumed to be already
interpolated to the study area. During the study period discharge, electrical conductivity
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(EC) and water temperature (TW ) of Rosario spring and precipitation were continuously
recorded and aggregated to daily mean values (discharge) and daily sums (precipitation).
The precipitation station was located in the North-West of the study area (Figure 3.1) at
1,130 m ASL. The input hydrochemistry was measured in 31 irregular precipitation bulk
samples over the three years. Discharge hydrochemistry was measured more regularly at
a weekly interval during the rainy season and biweekly intervals during the dry season.
Additional samples were taken during high flow conditions. The last precipitation sample
was taken on 29.09.2009. The last discharge sample was taken earlier on 25.03.2009. The
solutes and hydrochemistry parameters measured in precipitation and discharge were:
ALK, Ca2+, Cl– , F– , K+, Na+, Mg2+, NO3

– , and SO4
2– . Furthermore, pH, logPCO2,

and SIcalcite were measured solely in the discharge. rSAS requires continuous input con-
centrations. The precipitation bulk sample results were therefore assigned to all days,
with values reaching backward until the previous sample. Another requirement is that
there cannot be any solute input, if there is no water input. Therefore, on days with
zero precipitation input concentration was set to zero as well (Harman, 2015). If it was
not already the case in the original data, all concentrations were converted to mg/L.
Discharge was converted from l/s to mm/d using the recharge area given by (Hartmann,
Mudarra, et al., 2014) of 13.85 km2.
Actual evapotranspiration data was taken from Kirn et al., (2016). They calculated po-
tential evapotranspiration (PET) from temperature data using Thornthwaite’s method
(Thornthwaite, 1948) and entered it into a simple soil routine to compute actual evap-
otranspiration (AET). The MODIS (Moderate-resolution Imaging Spectroradiometer)
evapotranspiration data set was considered as well. It relies on satellite measurements of
land cover, leaf area index, air temperature, pressure and humidity and radiation, which
are used to compute plant and soil evaporation for a 1 km x 1 km grid and 8-day time
frame (ORNL DAAC, 2008). Both ET datasets were compared to the ET determined
by the VarKarst model. The soil routine ET was closer to the benchmark model and
was therefore chosen for the simulations to model with similar initial conditions .
There was no isotope data availabe for the study period, which is why two solutes
were chosen as tracer. Chloride (Cl– ) is a solute that has previously been used in dif-
ferent models (e.g. Hrachowitz et al., (2010), Kirchner et al., (2001), and Oda et al.,
(2009)). Harman, (2015) used Cl– to compute solute transport when he developed the
rSAS model and applied it to a catchment in Plynlimon, Wales. Chloride input into
the Rosario system originates from precipitation as well as geogenic dissolution. It can
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therefore be considered to enter the system from the surface as well as over the whole
depth of the aquifer. Sulfate (SO4

2– ) on the other hand mainly enters the system through
geogenic dissolution. The source, gypsum, is located deeper in the aquifer and can thus
provide information about the deeper flow system. The two solutes were analysed sepa-
rately to preserve the information gained from the different locations within the aquifer
(Hartmann, Weiler, et al., 2013).

3.2.1 Storage estimation

The time variable transit time distribution of the rSAS model varies with a state variable.
This state variable should represent a catchment parameter which influences the transit
time. Harman, (2015) suggests to use the catchment storage, as flow conditions change
with different states of wetness. Since this applies for karst catchments as well, storage
was chosen as the state variable (Hartmann et al., 2012; McDonnell et al., 2010; White,
2002). A method to calculate changes in catchment storage is to use a simple water
balance equation, where storage change is the difference between fluxes in (precipitation
P) and fluxes out (evapotranspiration ET and discharge Q), as seen in equation 3.1.
The storage estimation does not calculate actual storage but instead represents the
hydrologically active part of storage, thus leaving out water which does not partake in
the flow regime. In order to not assume any prior knowledge about storage levels the
starting value of the storage is set to zero. The calculated changes in storage are added
up with each time step. The cumulative sum of all previous time steps is assumed to be
the storage at the current time step. With a base value of zero negative storage values
are possible and do not imply an actual negative storage. It would have been possible to
add a set value to the calculated storage, which would have increased it enough for all
values to be positive. However, this would have implied that the lowest storage values
calculated during the study period are actually the lowest storage values possible. To
not make this assumption a base value of zero is assumed, which is not restricted to a
lower limit.

∆S = P − ET −Q (3.1)
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3.3 rank StorAge Selection

Harman, (2015) developed the concept of an age-ranked StorAge Selection function
(rSAS) to predict transit times and thus solute transport in a system. It extents theories
by Botter et al., (2011) and van der Velde et al., (2012). An outline of the framework
described by Harman, (2015) and taken further by Harman et al., (2016) is presented
here. A more detailed description can be found in the respective papers.

The theoretical background of the model is the transport through a control volume
with defined boundaries, which can for example be a catchment, river or a lysimeter
as long as input and output conditions are known. ST = ST (T, t) is defined as the new
variable age-ranked storage, where the water volume at time t is aged less than age T.
ST can be expressed as

ST (T, t) = S(t) ∗ PS(T, t) (3.2)

if the total storage is known. A similar variable QT (T, t) can be defined for the discharge
which leaves at time t with an age less than T. It is the un-normalized expression of the
transit time distribution.

PQ(T, t) = ST (T, t) ∗ S(t) (3.3)

As the total storage is difficult to quantify, ST can be calculated without knowledge of
the actual storage by applying the conservation law:

d

dt
ST (t− ti, t) = ∂ST

∂T
+ ∂ST

∂t
= J(t)−QT (T, t)− ETT (T, t) (3.4)

The storage at time t consists of water younger than age T, that has not been removed
so far. The change in storage is described by adding the input J(t) (here called J to
distinguish from the TTD notation), which has an age of zero and the removal of water
through discharge or evapotranspiration. The water that is removed has a specific age
distribution. The age distribution, described by the transit time in form of water age, can
also be described in form of ST instead, as T and ST are connected by the monotonically
increasing water age. The new function ΩQ(ST , t) equals the transit time distribution
PQ(T, t), when ST = ST (T, t). This cumulative distribution is the actual rank StorAge
Selection function and represents a probability distribution over the storage (Harman
et al., 2016). To obtain the probability density function (PDF) of the rSAS function, a
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derivative is taken over the transit time distribution and rSAS function, which allows to
express the transit time distribution in terms of storage instead of age:

pQ(T, t)∂T = ωQ(ST , t)∂ST (3.5)

for ST = ST (T, t). If input and output into the system as well as the rSAS function
ΩQ(ST , t) are known, it is possible to calculate the time-variable transit time distri-
bution. With a known tracer inflow concentration it can be used to calculate outflow
concentration, as mentioned in section 1.2.2, Equation 1.8. For the functional form of ΩQ

(Harman, 2015) suggests to refer to the properties of the associated TTD. The compari-
son between a uniform and a gamma distribution as rSAS function to describe discharge
age revealed that the gamma distribution returned better results as it was better able
to cover the age variability of the Plynlimon catchment (Harman, 2015). Kirchner et al.,
(2000) and Hrachowitz et al., (2010) both proved that the flexibility of a two parameter
gamma function covers mixing processes in the catchment and is a good representation
of transit time distributions. The rSAS function is therefore defined as:

ΩQ(ST , t) = Γα−1

βαΓ(α)e
−ST \β (3.6)

with α as a shape parameter and β as a scale parameter. While the external variability
of the system is taken into account by using time-variable in- and outflows, the internal
variability can be included by using a time-variable β parameter. It is defined as:

β = λ

α
(∆S −∆Scrit) (3.7)

where λ is described as a fitting parameter and dScrit as the critical storage. The state
variable, which introduces the time-variance is the storage S. If the storage passes crit-
ical storage, only event water is sampled for the discharge. The parameter influences
how much young water contributes to discharge composition. The closer the storage is
to the critical storage, the more recent event water is sampled. The parameter were de-
termined by applying an optimization approach to find the best model prediction. The
evapotranspiration flux out of the system was sampled through a SAS function as well.
According to Harman, (2015) a uniform distribution represents evapotranspiration from
the age-ranked storage. In addition a time-invariant model run with a beta parameter
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defined through optimization was done for SO4
2– to briefly compare the time-variant

and time-invariant approach.
The solute transport calculations applying rSAS were done using the rSAS library

by Harman, (2016). The model specific parameters were defined according to a general
implementation. A warm-up period was not included in the calculations, as no data
suitable for a rSAS were available. The use of the actual three years of data as warm-up
would have started the calculations with elevated solute concentrations, due to the long
dry period in the summer 2009. The use of average values of the three years on the other
hand, would have resulted in a distorted relationship between concentration in storage
and concentration in discharge.

3.4 Enrichment function

To model the geogenic dissolution of minerals as source of tracer solutes an enrichment
function is included in the model comparable to the approach used by Benettin, Bailey,
et al., (2015), where it was used to calculate dissolved silicon and sodium concentra-
tions. Benettin, Bailey, et al., (2015) applied a simple first order reaction rate. The
concentration of the solute (C(T)) in Equation 3.8 is dependent on the contact time (T)
between source and fluid, the equilibrium concentration (Ceq) and the reaction rate (k1)
(Benettin, Bailey, et al., 2015; Maher, 2011; Mercado and Billings, 1975).

C(T ) = Ceq ∗ (1− e(−k1∗T )) (3.8)

With a small change the method can be included into the rSAS model. rSAS calculates
for every water parcel the time it spends inside the system in the form of a transit time
distribution. Location within the aquifer and temperature changes during the year can
be neglected for the calculation of geogenic dissolution (Botter et al., 2010; Ford and
Williams, 2007). Benettin, Bailey, et al., (2015) assume an initial concentration of zero
in the fluid, where solutes enter entirely through geogenic dissolution. Both solutes in
this study, Cl– and SO4

2– , enter the system through precipitation as well as geogenic
dissolution, Equation 3.8 was therefore modified (Equation 3.9) to include an initial
concentration (input concentration (Cin)). Input into Equation 3.9 is water age, T = t−ti
(T), which is expressed through the PDF of the backwards transit time distribution and
the input concentration. The parameters which are fit during the optimization process
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are the reaction rate (k1) and the equilibrium concentration (Ceq), which is the limit
that is approached by the exponential function. Another optimization parameter is the
background concentration (Cback). At the start of the modelling period the concentration
in the storage is unknown, but plays a significant role in the composition of discharge
as the majority of the water is sampled from this undefined storage. To reduce the error
a uniform background concentration is assumed, which ages with time the same way as
the input water parcels. The enrichment function was included into the current version
of the rSAS library (Harman, 2016).

C(T ) = [Cin(t) ∗ e(−k1∗T )] + [Ceq ∗ (1− e(−k1∗T ))] (3.9)

3.5 Model calibration and evaluation
To find the best parameter set, the function ”fmin” of the Python (version 2.7.12)
package ”scipy” is applied (Nelder and Mead, 1965; Wright, 1996). It utilises a Nelder-
Mead simplex algorithm to find the local minimum of the objective function. In this case
the Euclidian distance (ED) between the simulated and observed output concentration
as defined in equation 3.10 is used as the objective function during the optimization
process. An optimal ED is close to zero (Gupta et al., 2009).

ED =
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (3.10)

with
α = σs

σo
β = µs

µo
(3.11)

r is here the linear correlation coefficient between simulate and observed solute concen-
tration in discharge, σs/σo and µs/µo are the mean and standard deviation between
simulated and observed values. The ED is part of the commonly used Kling-Gupta
efficiency (KGE) (Gupta et al., 2009) and is defined as

KGE = 1− ED (3.12)

The ED was chosen as the objective function since the KGE in contrast to the ED is an
efficiency measure that is maximized not minimized as requested by the optimization
algorithm. To compare the modelling results with the results by Hartmann, Mudarra,
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et al., (2014) the more common KGE with an aspired value close to one is calculated
for the optimal parameter set determined by the optimization as well. It is also used
for the calculation of the Generalized likelihood uncertainty estimation (GLUE) and
the Hornberge-Spear-Young (HSY) sensitivity estimation. The algorithm runs with the
starting parameters displayed in Table 3.1. As they are only the starting values for the
optimization algorithm they are the same for both solutes.

3.5.1 Hornberger-Spear-Young method

Spear, (1980) developed the so called HSY method to detect sensitive parameters in a
model (Beck, 1987). In preparation for the HSY method a Monte Carlo simulation with
30 000 runs was completed, where the parameter values were each randomly chosen from
a uniform distribution. The boundaries of the uniform distribution were set to ± 75 %
for the upper/lower limit of the optimized parameter value returned by the Nelder-Mead
simplex algorithm. An exception was made for the upper limit of k1 and for the alpha
(α) parameter. Previous HSY analysis showed that the relevant parameter space for k1
may vary by one power of ten. Similar effects took place for the α parameter, which
caused an unstable model where log(α) fell below -2. To compare both solutes assumed
parameter limits were kept the same, although the Cl– model found an optimised value
of less than two. According to Beven, (2012) parameter bounds can be chosen based
on previous knowledge to include good model fits or to exclude infeasible model runs.
The number of runs were limited to 30 000 runs by available computing capacity and
computing time. For each run the respective parameter set, efficiency value and simulated
solute concentration were saved. The model runs were separated into behavioural and
non-behavioural runs. The two solutes were modelled separately and reached different
levels of efficiency in the rSAS model as well as the benchmark model. The binary
classification rule takes these differences into account, by not using a fixed KGE value.
Instead the 500 model runs with the highest KGE were declared as behavioural and
compared to the non-behavioural model runs. For each parameter and parameter value
the efficiency is normalised by calculating the likelihood value (Li) of the parameter
value using Equation 3.13. Based on this the empirical cumulative distribution function
(eCDF) can be plotted for both groups.

Li = KGEi∑
KGE

(3.13)
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A parameter is determined sensitive, if a Kolmogorov–Smirnov test (KS test) finds a
significant difference (p<0.05) between the eCDF of the behavioural and non-behavioural
model runs. In addition to the p-value the KS test calculates the maximum absolute dif-
ference between behavioural and non-behavioural, called the D statistic (Massey, 1951).
Based on the D statistic a relative difference in sensitivity can be assumed (Beven, 2012)
and allows to sort sensitive parameters into three categories. Considering a p-value ≤
0.05, a D value >0.2 indicates a high sensitivity, a D statistic between 0.2 and 0.1 a
medium sensitivity and a D statistic <0.1 a low sensitivity. Parameters with a p-value
>0.05 are deemed to be not sensitive.

Table 3.1: List of parameters with upper and lower Monte Carlo parameter ranges for
SO4

2– and Cl– and initial parameter values for the Nelder-Mead algorithm
(Start)

Parameter Description Unit SO4
2– Cl– Start

Lower Upper Lower Upper
Cback background

concentration
[mg/l] 10 68 7 49 50

k1 reaction rage [mg/(l*d)] 0.0003 0.0100 0.0002 0.0100 0.001
Ceq equilibrium

concentration
[mg/l] 48 338 20 140 90

log(α) shape parame-
ter

[-] -2 0 -2 0 -1.6

lambda (λ) lambda [-] -2 -0.34 -2 -0.28 -1.5
critical stor-
age (dScrit)

critical storage [mm] 67 469 64 450 200

3.5.2 Generalized likelihood uncertainty estimation

To identify equifinality in the rSAS model a Generalized likelihood uncertainty estima-
tion is performed. It builds on the concept by Beven and Binley, (1992) that several
different parameter sets can reach an equally good fit to the observed data. Thus, single
parameter should not be evaluated by itself, instead the results of different parameter
sets have to be compared. The model output concentration for each behavioural param-
eter set from the Monte Carlo simulations, split with the same binary classification rule,
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is used to calculate the prediction range for each time-step. A 95 % confidence interval
denotes the predictive uncertainty.

3.5.3 Comparison to VarKarst

To test the performance of the new rSAS method the simulated vs. observed discharge
concentrations of SO4

2– and Cl– are compared to the simulation results of the VarKarst
model (Hartmann, Barberá, et al., 2013). The VarKarst model was applied to the same
catchment and time frame (Hartmann, Mudarra, et al., 2014) and will therefore be con-
sidered as the target modelling performance that rSAS should reach or surpass to qualify
as an acceptable new method. The modelling performance is assessed by comparing the
KGE of both models for SO4

2– and Cl– as well as a visual comparison of the simulate
versus observed values of both models.





4 Results

4.1 Hydrology

The Villanueva del Rosario catchment received a mean annual rainfall of 752 mm be-
tween October and September (hydrologic year) during the years 2006/2007 - 2008/2009,
which was close to the mean historic annual precipitation of 760 mm. There was a high
interannual variability between the three years. While the hydrologic years of 2006/2007
and 2007/2008 were comparatively dry with 642 and 682 mm respectively, 2008/2009
could be considered a wet year with 932 mm of precipitation. The corresponding dis-
charge during the wet year was elevated as well with 692 mm during 2008/2009 and only
307 mm and 174 mm for the years 2006/2007 and 2007/2008. The low discharge values
in 2007/2008 were a result of high AET values (referred to as ET from here on) during
that year of 447 mm compared to 397 mm and 350 mm during the years 2006/2007 and
2008/2009. Spring discharge reacted quickly to precipitation events, as can be seen in
Figure 4.1. A cross-correlation between discharge and precipitation showed two correla-
tion peaks at one day lag and at four day lag both with a correlation coefficient of 0.32.
The evapotranspiration calculated through a soil routine was highest in the second year
with a total of 447 mm. This is partly due to a first peak in ET in October, followed
by the regular peak at the end of spring. ET was lowest in the wet year with 350 mm.
The first year had a total evapotranspiration of 397 mm. In general, precipitation peaks
at the end of spring and drops during the summer months. The error in the water bal-
ance amounted to -61 mm, 62 mm and -109 mm. A comparison between ET calculated
through VarKarst, ET calculated with the soil routine and satellite measured ET values
by MODIS suggested that the MODIS ET values are too low, which would introduce an
even greater error into the water balance and would have lead to a stronger storage ac-
cumulation (Figure 6.1 in the Appendix). The evapotranspiration returned by VarKarst
was similar to the ET calculated through the soil routine. The storage calculated from

34
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Figure 4.1: Time series of precipitation, discharge, actual evapotranspiration (ET) and
storage in the Villanueva del Rosario catchment.

the three input and output variables P, Q and ET, with an initial value of zero, peaked
at 121 mm in 2006/2007, 209 mm in 2007/2008 and 336 mm in 2008/2009. Figure 4.1
illustrates the increase in storage during the winter and the decrease during the sum-
mer. A comparatively short precipitation-free period in 2008 resulted in high storage
values at the beginning of the wet season. The addition of a strong precipitation event
in November 2008 lead to high storage values in 2008/2009.

4.2 Hydrochemistry

Of the available data two solutes were used for the application of rSAS. Input concentra-
tion for sulfate ranged from a minimum of 0.28 mg/l to a maximum of 2.23 mg/l with a
daily mean concentration of 1.2 mg/l on days with precipitation. All non-precipitation
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Figure 4.2: Correlation between discharge and solute concentrations (SO4
2– , Cl– and

NO3
– ). The values represent the absolute correlation coefficient, with corre-

lation strength given in font size.

days were set to zero. Chloride reached comparable values of 0.08 g/l as minimum, 2.04
mg/l as maximum and 0.89 mg/l as mean input concentration. As Figure 4.3 illustrates,
the output concentration for both solutes was decidedly higher than the input concentra-
tion, although the difference between input and output is not quite as high for chloride
as it is for sulfate. The output concentration for SO4

2– ranged from 4.59 mg/l to 78.0
mg/l with a mean value of 38.83 mg/l. Chloride concentration in the spring was lower
than sulfate, with an observed minimum of 3.78 mg/l, a maximum of 19.18 mg/l and
mean value of 8.34 mg/l. Total mass flux out for sulfate was higher than input flux,
while total mass flux out for chloride was lower than the input flux. Figure 4.3 depicts
an increase in solute concentration during the dry summer months. High discharge on
the other hand coincided with drops in solute concentration. Similar regimes can be
seen for the other solutes measured in the spring, with the exception of NO3

– , fluoride
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(F– ) and potassium (K+) (Figure 6.2). Nitrate peaks occurred at the beginning of the
rainy season, after that, nitrate concentrations partly increased with discharge increase
but partly decreased with discharge increase as well. Figure 4.2 supports the connection
between discharge and concentration of the three solutes SO4

2– , Cl– and NO3
– . While

SO4
2– and Cl– show an exponential decrease in correlation with increasing discharge,

the relation between NO3
– and discharge is less distinct. Figure 4.2 further reveals a

linear correlation between SO4
2– and Cl– with a correlation coefficient of 0.79.

4.3 rSAS

The solute concentration of SO4
2– and Cl– in the Rosario spring was predicted by

separately applying the rSAS model for each solute. An optimised fit was reached by
using the Nelder-Mead optimisation algorithm, which returned the parameters displayed
in Table 4.1. It includes the fitted parameter log(α) as well as its corresponding α. While
background concentration, reaction rate and equilibrium concentration differ, due to
the different solutes, the values for critical storage (dScrit) are quite close. The critical
storage for solutes is surpassed in the last year 2008/2009. The difference in the α and
λ parameter is relatively high compared to the critical storage.

Table 4.1: Optimized rSAS parameter values of the best fit returned by the optimization
algorithm (Nelder-Mead) for the two solutes.

Cback k1 Ceq log(α) α λ dScrit

SO4
2– 38.65 0.00118 193.41 -0.0236 0.9767 -1.37 268.08

Cl– 28.15 0.00078 80.24 -2.2246 0.1081 -1.11 257.25

For each solute a different form of the age-ranked StorAge Selection function depending
on storage and the optimised parameters was created. The gamma function distributions
are plotted in Figure 4.4 for SO4

2– and Figure 4.5 for Cl– . For both solutes rSAS selects
older water under low storage conditions, whereas under high storage conditions more
young water is sampled. A notable difference between both gamma function distributions
though is that the form of ωQ(T ) is more diverse for SO4

2– as it varies between sampling
more old water during low storage to sampling mainly young water under high storage
conditions. The rSAS model for Cl– samples more young water than the SO4

2– model.
For Cl– at least 40 % of the water at any storage condition is young water of only a few
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Figure 4.3: Time series of measured SO4
2– and Cl– concentrations in the input (precip-

itation bulk sample) and output (spring discharge), as well as time series of
precipitation and discharge.
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Figure 4.4: Cumulative rSAS function for
SO4

2– depending on storage
volume.
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Figure 4.5: Cumulative rSAS function for
Cl– depending on storage
volume.

days age. In contrast to that, water in the SO4
2– model is always at least a few days

old.

The cumulative transit time distributions for SO4
2– (Figure 4.6) and Cl– (Figure 4.7)

are based on the rSAS function and have in general a similar form. The transit time
distribution covered an increasing age during the course of the study, as the water aged
through the storage. During 2006-2008 for both solutes mostly young water was sampled.
The sampled water ages increased during 2007-2008. The wet year 2008-2009 showed a
wider range of transit time distributions. During some days the discharge was sampled
from the old storage, and then there were also some days where 80 % of the water
sampled was younger than ∼100 days (SO4

2– ) or younger than ∼10 days (Cl– ).

Figure 4.8 displays the modelling results for SO4
2– . The simulated concentration fol-

lowed the general course of the measured concentrations of Rosario spring and reached
a KGE of 0.80. The daily mean simulated output concentration is 51.85 mg/l, which is
higher than the observed output concentration at 38.83 mg/l. Figure 4.8 displays the
simulated concentrations in comparison to the observed concentrations. At the begin-
ning of the modelling period in October 2006 the model first underestimated sulfate in
the spring and then overestimated the concentrations until September 2007, with a few
peak exceptions. The model did not follow the drops in concentration after major pre-
cipitation events. rSAS did follow the enrichment curve in the summer 2007, though it
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Figure 4.6: Cumulative transit time distributions for SO4
2– for the different hydrologic

years: 2006-2007 red, 2007-2008 green, 2008-2009 blue.

overestimated absolute values, as it started with higher concentrations from the spring.
The first drop in concentration after both summers is predicted too early by the model.
In fall 2007 the predicted concentrations fell below the observed concentrations until the
beginning of 2008, when the simulated values where estimated too high again. The drop
in concentration during the strongest precipitation event in the spring 2008 and during
the major events in 2009 were predicted very closely by the model. The strong increase
in concentration in 2009 cannot be evaluated due to missing observed data points.

The results for the rSAS simulation of the chloride concentration are displayed in
Figure 4.9. The rSAS simulation for Cl– reached a KGE of 0.71. The mean simulated
concentration was 11.68 mg/l compared to a mean observed concentration of 8.34 mg/l
in the spring. In contrast to the SO4

2– simulation, the modelled chloride concentration
started too high, but followed closely the drop in concentration with the onset of pre-
cipitation. For the rainy season 2006/2008 the model generally overestimated the Cl–

concentration but followed the increase in concentration during phases of decreasing
discharge. It miscalculated the drops in concentration during that season, which were
stronger than the model proposed. Similar to SO4

2– the chloride concentration was over-
estimated during both summers with a drop in concentration earlier than the observed
values suggest. The drop in concentration during the strongest precipitation event in the
spring 2008 and during the major events in 2009 were predicted equally well as sulfate.



Chapter 4. Results 41

0 200 400 600 800 1000 1200

age T

0.0

0.2

0.4

0.6

0.8

1.0

P
Q
(T

)

Figure 4.7: Cumulative transit time distributions for Cl– for the different hydrologic
years: 2006-2007 red, 2007-2008 green, 2008-2009 blue.

However, the chloride model underestimated the increase in concentration right after
the events. Towards the end of the modelling period (30.08.2009) the model returns a
peak of 50.45 mg/l.

For comparison a time-invariant model run with the parameters predicting sulfate
concentration was done as well. The corresponding plot can be found in the Appendix
(Figure 6.3). While the steady-state model did reach a KGE of 0.66, the simulated
concentration followed the observed concentration during the dry season in 2008 and
during fall/winter 2008/2009. rSAS predicted for the remaining time a straight, slightly
increasing concentration of SO4

2– in the spring.

4.4 Model evaluation
Based on the results of the optimization algorithm the limits for the parameter space of
the Monte Carlo simulations were set to the values displayed in Table 3.1. The 30 000
Monte Carlo simulations concluded with the highest efficiency value of 0.79 and 0.70
for SO4

2– and Cl– respectively. This is close to the results returned by the optimization
algorithm. As Figure 4.10 illustrates, for SO4

2– the KS test determined a significant
difference between the eCDF of the 500 behavioural runs compared to the eCDF of the
non-behavioural runs for all parameters except λ. According to the HSY method the
remaining parameters of the solute can be regarded as sensitive. To further differentiate
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Figure 4.8: Time series of predicted sulfate concentration (SO4 sim) and observed sul-
fate concentration (SO4 obs) in the discharge calculated with a time-variant
gamma function. Precipitation input and spring hydrograph time series for
comparison.

between the strength of sensitivity the D statistic of the KS test is considered likewise
depicted in Figure 4.10. While Cback has a low sensitivity and Ceq and log(α) have a
medium sensitivity, k1 and dScrit are very sensitive parameters.

For Cl– the HSY method determined different importance of the parameters as high-
lighted in Figure 4.11. All parameters are highly sensitive, if rSAS is applied to calculate
the output concentration for chloride, except for λ, which has a medium sensitivity.

Applying GLUE to calculate the 95 % confidence interval revealed that the highest
prediction uncertainty is during the dry summer period, when concentration increases.
During the longer dry period in 2009 the prediction bounds spread farther than the
two other summers. For both solutes not all observed concentrations fell within the
confidence interval. As Figure 4.12 illustrates for SO4

2– at the beginning of 2007 and
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Figure 4.9: Time series of predicted chloride concentration (Cl sim) and observed chlo-
ride concentration (Cl obs) in the discharge calculated with a time-variant
gamma function. Precipitation input and spring hydrograph time series for
comparison.

2008, though not in 2009, rSAS overestimated SO4
2– concentrations, with the observed

concentrations in the lowest points of the curve lower than the 2.5 % quantile. The model
further underestimated concentrations in the fall of 2007. A general agreement between
most of the 500 behavioural models and the observed concentration were reached during
the drop of SO4

2– at the end of the wet season 2008 and during fall and winter 2008/2009.
The predictive uncertainty and observed concentration for the modelling results of Cl–

are displayed in Figure 4.13. With few exceptions the observed concentration fell close
to or within the confidence interval. Modelling uncertainty is high right at the beginning
of the modelled time period but decreased with the start of the wet season 2006/2007,
where only a few drops in concentration are underestimated by the model. Similar to
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Figure 4.12: Results of GLUE for SO4
2– : 95 % confidence interval and median of the

behavioural Monte Carlo runs as well as the predicted concentration with
the Nelder-Mead optimized parameters.

SO4
2– the prediction uncertainty is low during the wet season 2008/2009, especially

during the drops in concentration.
Based on the Kling-Gupta efficiency the rSAS model reached slightly better results

than the semi-distributed VarKarst model. For SO4
2– the KGE was 0.80 while VarKarst

reached 0.69. The difference for Cl– is similarly pronounced with a KGE of 0.71 for rSAS
and 0.45 for VarKarst. A comparison between the graph of the simulated versus observed
values of VarKarst and rSAS (Figure 4.14) revealed that rSAS predicted the SO4

2–

concentrations better for high concentrations. rSAS predictions were evenly scattered
with some values overestimated and some underestimated. VarKarst underestimated
more than overestimated. This effect is more pronounced for the predictions of Cl– ,
where most values are underestimated by VarKarst as Figure 4.15 (a) illustrates. rSAS
on the other hand tended to overestimate chloride concentrations, but again is mostly
evenly scattered, as revealed by Figure 4.15 (b).
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Figure 4.13: Results of GLUE for Cl– : 95 % confidence interval and median of the be-
havioural Monte Carlo runs as well as the predicted concentration with the
Nelder-Mead optimized parameters.
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Figure 4.14: Observed versus simulated values with VarKarst (a) and rSAS (b) for SO4
2–
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Figure 4.15: Observed versus simulated values with VarKarst (a) and rSAS (b) for Cl–





5 Discussion

5.1 rSAS application and evaluation

The rSAS model has been applied to a karst catchment in southern Spain to test the
hypothesis, that the new framework is able to model satisfactorily the solute transport
in a complex flow system. The results which will be discussed in this section, allow the
conclusion that the rSAS model can predict solute transport in this highly variable karst
environment.

The Villanueva del Rosario catchment exhibits the typical landscape features, geol-
ogy and flow regime of a karst catchment as described in several studies (Hartmann,
Mudarra, et al., 2014; Mudarra and Andreo, 2011; Mudarra, Andreo, Barberá, et al.,
2014). The recorded spring discharge during the study period reveals a corresponding
flow behaviour, with a short time lag between precipitation and discharge and a strong
increase in discharge after heavy precipitation events. This quick flow component can
be explained by the existence of an underground conduit system. A long recession curve
during the dry summer months on the other hand indicates the additional existence of
a large matrix storage. Recharge values calculated for the Rosario catchment allowed
Hartmann, Mudarra, et al., (2014) to reach similar conclusions, namely that the main
source of spring water during drought periods was the karst matrix. The variable flow
component and karstic nature of the system proved to be a suitable catchment to test
the applicability of the rSAS framework. Hoewever, a certain degree of caution needs to
be considered in regard to the input data for the model. Measured data retains a cer-
tain factor of inaccuracy that could impair reliability of the model. Precipitation is an
especially error prone variable, where the error propagates into the storage calculation
(Kirchner, 2009). The method to calculate storage itself relies on the accuracy of the
input data as well as an assumed knowledge of all fluxes into and out of the system. The
impact on the calculation with rSAS can nevertheless be deemed minor, as it does rely

50



Chapter 5. Discussion 51

on the relative storage and not the on absolute storage values.
A further data uncertainty affecting the modelling results is however the use of bulk sam-
ples to measure solute input. rSAS requires continuous input data, which in connection
with a long measuring interval of two weeks or more means a possible error is intro-
duced by interpolation. As the major part of the solutes is introduced into the system
through geogenic dissolution, this inaccuracy is estimated low as well. An enrichment
function is introduced into the model to cover the geogenic dissolution. Based on a con-
cept by Benettin, Bailey, et al., (2015) it applied a first order reaction rate to simulate
the dissolution of the minerals depending on contact time. Additional parameters which
contribute to dissolution such as pH and temperature were neglected (Benettin, Bailey,
et al., 2015). It can be discussed, if the reaction type is correct to model geogenic dis-
solution. However, the application of a full geochemical model would have gone beyond
the scope of this thesis. The simpler solution of a first order reaction, as it was applied
by Benettin, Bailey, et al., (2015) was therefore chosen to include geogenic dissolution.
The application of an enrichment function is the reason, why NO3

– was discarded as
a potential tracer. It accumulates during the dry season and is flushed during the first
precipitation events of the season. NO3

– concentrations in the discharge depend to some
extent on the time passed since the last precipitation event and not on the transit time,
which could be seen in the correlation between discharge and NO3

– concentration. The
concentration is additionally to some extent influenced by anthropogenic input into the
system. As there are some farming activities in the study area, the anthropogenic input
could not be quantified, which makes it a less suitable tracer for this model. Chloride
and Sulfate on the other hand, were chosen based on their widespread application as
tracer in karst and other catchments.

Based on the achieved efficiency values and the comparison with the benchmark model
VarKarst, it can be concluded that rSAS was able to predict solute transport in this
karst catchment. This result supports the statement by Rinaldo et al., (2015) that SAS
can potentially be applied to different flow systems. Especially the prediction of chloride
proved to be better than the semi-distributed VarKarst model. Although the predicted
solute concentration followed the general course of the observed concentration during the
summer, rSAS predicted the drop in concentration too early in the summer 2007. Hart-
mann, Mudarra, et al., (2014) discovered, that the first rainfall of the season produces
no or only limited amounts of recharge due to high evaporation values. The calculated
actual evapotranspiration in this study were therefore potentially too low for the change
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between dry season and wet season. This means that the storage mistakenly increased
and influenced the shape of the selection function. Although most of the first rainfall of
the season evaporated, it is assumed by rSAS to contribute to the discharge in terms of
solute transport. As the observed values lay outside the confidence interval of the GLUE
analysis during the change in season, it can be assumed to be a structural problem of
the model in this area (Beven, 2012). The increase in uncertainty during the summer
periods on the other hand is covered by the model. The enrichment function has the
most impact during the summer month, where the most geogenic dissolution happens.
Any faults with the simple first order reaction rate therefore contribute most during the
summer month.

The accuracy of the rSAS prediction changed over the study period. While the changes
in concentration were predicted well for both solutes for the wet year (2008/2009), the
results for the first and second year were less compliant with the observed solute concen-
trations. On the start of the modelling period the water was sampled from the unknown
storage with a set background concentration. It therefore contributed a large part to the
discharge composition, although new input was quickly added. The start of the simu-
lation is hence heavily influenced by the parameter Cback. The storage evolved during
the study period, allowing a more defined storage to be sampled. This could explain,
why the accuracy of rSAS improved for the last year. An additional factor contributing
to this effect is the age of the water sampled. The form of the rSAS function and thus
the percentages of young and old water it sampled depends on the storage. The reverse
storage effect Harman, (2015) noticed for the Plynlimon watershed, where higher storage
values are related to a higher percentage of event water, were observed for the Rosario
catchment as well. A full storage was for both solutes associated with the sampling of
younger water. As the storage during the wet year was higher than during the other
two years, more young water with stored concentration informations was sampled and
improved the accuracy of the discharge composition. The study period is too short to
distinctively conclude if there is indeed a difference in accuracy between wet years and
dry years or if the accuracy improved with each year analysed regardless of storage size.
It is possible that a combination of both effects took place. It can therefore be argued,
that a longer study period should improve modelling results, as well as allow a separate
analysis of wet and dry years. McGuire and McDonnell, (2006) supports this reasoning,
when he states that the accuracy of modelled transit times increases with data record
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length. For reasons explained in the method section, a warmup would not have been
suitable to improve modelling results.

The general form of the cumulative rSAS function ωQ(T, t) differs between the two
solutes. rSAS modelled with SO4

2– as tracer selected in average more water from the
older part of the storage. The shape of the function was more influenced by the storage
volume than for chloride, where the difference in shape between low storage conditions
and high storage conditions was less pronounced. The average age of discharge modelled
with SO4

2– would thus be older than for Cl– . The difference of rSAS function and
thus discharge age between the two solutes can be explained by the different locations
of the solute sources within the aquifer. The triassic evaporites, which are the main
source of sulfate are located deeper within the aquifer with some outcrops at the eastern
border of the aquifer. To become enriched with sulfate the water travels through deeper
layers and longer flowpaths. Water enriched with sulfate can therefore be assumed to
be in average older than water with high chloride values, which are partly supplied by
precipitation. As sulfate originates in the deeper layers it is furthermore continuously in
contact with the saturated zone, with lower flow velocities and thus in average longer
transit time in general and particularly during the summer months. This is especially
visible for the last year of the study, when even the majority of the young water was at
least 100 days old. Mudarra and Andreo, (2011) illustrate, that the deeper regions of the
aquifer, where the evaporites are located, are saturated even at low storage conditions.
Lopez-Chicano et al., (2001) noticed similar effects for evaporite layers in the Cabra-
Alcaide massif, around 60 km north of the study area. The longer flow times through
evaporites there were an effect of lower permeability. Marin et al., (2015) mapped the
vulnerability of contamination in the Rosario catchment. One contributing reason for
the lowest vulnerability class were amongst others the longer transit time. The areas
assigned with this class correspond with areas of evaporite outcrops again at the eastern
border of the catchment.

Chloride on the other hand has a less localized origin with sources throughout the
depth of the aquifer. The two main sources of chloride in the rosario catchment are
triassic rock and rainfall (Mudarra, Andreo, Marin, et al., 2014). In terms of modelling
chloride can therefore be assumed to be a better tracer to represent overall catchment
dynamics. The interpretation of the rSAS function indicates a large contribution of wa-
ter aged 10 days or less during any storage condition. This is supported by the short
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lag time between precipitation and discharge, which can be contributed to conduit flow.
The findings correlate with the results by Mudarra and Andreo, (2011), who determined
high flow velocities and short transit times in the Rosario catchment.

The difference between the two solutes is equally visible in the values and sensitivity
of the parameters. Although SO4

2– input is dependent on the enrichment function, only
the reaction rate parameter is assessed as highly sensitive. The equilibrium concentra-
tion seems to be less relevant for the modelling output. Both parameters could not be
confirmed by literature values. Gypsum has a equilibrium concentration of 2400 mg/l
(Gutiérrez et al., 2008), which is several magnitudes higher than what was found as
optimized parameter value for rSAS. The approach by Benettin, Bailey, et al., (2015)
to assume equilibrium concentration during low flow conditions, instead of reaching the
value through calibration, was not applicable for both solutes, as equilibrium concentra-
tion was never reached in the discharge. The dissolution rate could not be compared to
literature values. Previous studies state the dissolution rate in mm of disolved gypsum
per year in stead of mg/(l*d) (Klimchouk et al., 1996). As there is no information about
the absolute amount of gypsum rock in the study area, the units are non transferable.
The enrichment function parameter for chloride on the other hand are all highly sensi-
tive. Although halite has a higher solubility than gypsum, the reaction rate parameter is
still lower. This can be explained by the fact, that a major part of the chloride enters the
system via precipitation and does not need to be simulated by the enrichment function.
It seems for both solutes that the parameter of the enrichment function are dependent
on the absolute amount of rock, with which they come in contact. As this can not be
quantified, it can be established that the enrichment function parameter values itself
contribute no information about the aquifer. However, since the reaction rate of chloride
is very low, it can be argued, that chloride could potentially be modelled without the
enrichment function. It would further support the assumption, that chloride as a tracer
is a better suited to model catchment dynamics with rSAS. A potential solution to not
lose the information supplied by the spatial distribution of SO4

2– , could be to combine
the rSAS optimized parameter α, λ and dScrit for chloride and fit new parameter for the
enrichment function of SO4

2– .
The rSAS parameter for chloride transport had high or medium sensitivity. The α pa-
rameter controlled the shape of the rSAS function and thus the proportion of young
water that was sampled from the storage. With a large α more old water is sampled,
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with a small α more water from the younger part of the storage is drawn. The α value
of the non-karstic Plynlimon watershed in Wales is with 0.69 in the middle between the
values for the two tracer (Harman, 2015). It is reasonable, that a karst catchment with
short flow times had a higher percentage event water in the discharge and thus a smaller
α value. Hrachowitz et al., (2010) confirms, that the α parameter of the gamma function
to describe transit time distributions is dependent on catchment characteristics. The
application of rSAS to additional catchments in the future might contribute more infor-
mation as to how the parameter is connected to catchment characteristics. The critical
storage parameter is related to catchment flow systems. The closer the storage is to the
critical storage, the more event water contributes to discharge. The one time storage
values in the Rosario catchment crossed the critical storage was during a heavy precipi-
tation event with the highest discharge of the three years. The reaction of natural and
artificial tracer during this event lead Mudarra and Andreo, (2011) to the conclusion,
that the Rosario catchment had a limited storage capacity, with fast reaction times.
dScrit values found by Harman, (2015) were considerable lower at 48 mm, but they were
combined with considerably lower λ values as well of -103 mm and are thus difficult to
compare. λ itself is not connected to a physical interpretation, but is a fitting parameter
according to Harman, (2015).

The comparison between rSAS and the benchmark model proved that rSAS was able
to reach and surpass the benchmark model VarKarst in regard to its ability to predict
solute concentration. While SO4

2– concentration were predicted equally well, the dif-
ference is noticeable in the prediction of chloride concentration, where rSAS reached
higher efficiency values. Although rSAS might perform better at predicting solute trans-
port, there are two advantages to VarKarst. It can be used to calculate the temporal
variability of recharge and it can be combined with a distributed model to cover the
spatial variability of recharge as well (Hartmann, Mudarra, et al., 2014). rSAS as a new
framework has yet to be further developed to expand its application beyond solute and
transit time modelling.

5.2 rSAS model structure

One question to be discussed was the model type of the rSAS concept. The assumption
of an age-ranked storage in the model, which provides information about the transit



Chapter 5. Discussion 56

time distributions of discharge, allows the conclusion, that rSAS is more than a transfer
function between input and output and can thus be deemed a grey-box model. If a
model predicts solute concentrations accurately, it can be argued that the transit time
distributions were simulated correctly. Hence it might be deduced that the model is an
valid representation of catchment processes (McDonnell et al., 2010). As the previous
section proved, rSAS was able to predict solute transport , it thus assumedly predicts
transit times correctly as well, if the tracer source is taken into account. However, the
comparison between the two different solute tracer indicates that a certain knowledge
about the geology of the catchment is necessary for a valid interpretation. The alternative
would be to use, if available, isotope data, which are known to have an even input
throughout the catchment. Nevertheless, a global tracer in the rSAS model, returns not
only information about the output, but about the age composition of the discharge as
well. With the information about transit times it is for example possible to model the
behaviour of a contaminant within the storage.
The use of a state variable such as storage connects transit time predictions to the
physical environment, thus making rSAS more than a black-box model. Mudarra and
Andreo, (2011) illustrated that storage volume and flow path variability are directly
related in the Rosario catchment. They established that under high water conditions
more karst conduits are active, which explains short transit times. This is mirrored by
the rSAS model, where more young water in the storage is sampled during high storage
conditions. This feature is controlled by the parameter critical storage (dScrit). The
shape parameter α is an additonal parameter that is potentially connected to physical
catchment characteristics as suggested by Harman, (2015) and Hrachowitz et al., (2010).
However, the experience with rSAS at this point is to limited to interpret the parameter
value.





6 Synthesis

6.1 Conclusion

The newly developed rSAS framework was applied to the Villanueva del Rosario catch-
ment in northern Spain to test the performance of the model in a karst catchment for the
first time. It was applied to predict the discharge concentration of two solutes: sulfate
and chloride. The solutes enter the catchment through precipitation as well as geogenic
dissolution. An enrichment function was included in the model to calculate geogenic
tracer input. It was based on the concept that solute concentration in the spring is de-
pendent on the contact time between water and mineral, which are gpysum and halite
in this study. A first order reaction based on equilibrium concentration, reaction rate
and contact time, which is taken from the rSAS calculation, was used to calculate the
enrichment of the water with solutes. The new rSAS framework applies the concept of
an age-ranked storage, from which discharge is chosen according to a selection func-
tion. For this study a two parameter gamma function with a storage dependent scale
parameter was chosen as rSAS function. The time-variance of transit time distributions
under different states of catchment wetness was thus taken into account. The model was
able to predict solute concentration in the discharge with an efficiency of 0.80 for SO4

2–

and 0.71 for Cl– . With these results it reached and surpassed the benchmark model
VarKarst. However, a closer analysis of the results returned by the application to sulfate
revealed the problem that SO4

2– as a tracer provided information about deeper aquifer
layers, where the gypsum is located and not about the whole catchment area. Chloride
on the other hand, was determined to be a good representative of catchment dynamics.
The transit times returned by the model corresponded to the results of Mudarra and
Andreo, (2011), who performed extensive natural and artificial tracer experiments in
the Rosario catchment. The hypothesis that rSAS is able to model solute transport in
a karst catchment can thus be confirmed. Additionally, it was discussed if rSAS can be
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classified as a black-box or a grey-box model. As the physical properties of the catchment
were included into the model by using storage as a state-variable, it was decided, that
rSAS should be considered a grey-box model. This study expanded the knowledge about
StorAge Selection functions and about rSAS in particular. It has now been established
that rSAS can potentially be applied in a system with variable flow characteristics such
as karst.

6.2 Outlook
As rSAS is a new framework it has not been widely test yet. While this study con-
tributes to expand the experience with rSAS, it also leaves room for improvement. A
major impediment on the significance of the results is the short study period. The accu-
racy of the parametrized StorAge selection function could potentially improve if a longer
data record was available. For a future application of the rSAS framework at catchment
level it is therefore recommended to use a longer data record, which ideally consists of
both solute and isotope data. The application to a different karst system would addi-
tionally assess if the experience with this study is transferable to other karst systems.
The internal difference between various karst systems commonly results in a difficulty to
transfer modelling approaches. rSAS might be an exception for this as the assumed gen-
eral applicability of SAS functions allows to reason that rSAS will perform well in other
systems. The application to additional catchments, karst and non-karst, could further-
more support the analysis of a potential connection between catchment characteristics
and rSAS parameter values. Finally, rSAS could be tested to actually model contami-
nant transport. If the behaviour of the contaminant in the aquifer is known, transit time
distributions can be used to predict the release of the contaminant into the catchment
outlet. A model that could more easily supply this information might contribute to the
safety of drinking water supplies.
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Hartmann, A., J. A. Barberá, et al. (2013). “Progress in the hydrologic simulation of
time variant recharge areas of karst systems – Exemplified at a karst spring in
Southern Spain”. In: Advances in Water Resources 54, pp. 149–160. issn: 03091708.
doi: \url{10.1016/j.advwatres.2013.01.010}.

http://dx.doi.org/\url{10.1007/s100400050006}
http://dx.doi.org/\url{10.1023/A:1005782102565}
http://dx.doi.org/\url{10.1002/9781118684986}
%5Curl%7Bhttp://site.ebrary.com/lib/alltitles/docDetail.action?docID=10295774%7D
%5Curl%7Bhttp://site.ebrary.com/lib/alltitles/docDetail.action?docID=10295774%7D
http://dx.doi.org/\url{10.1007/s10040-012-0897-4}
http://dx.doi.org/\url{10.5038/1827-806X.37.1.3}
http://dx.doi.org/\url{10.5038/1827-806X.37.1.3}
http://dx.doi.org/\url{10.1016/j.jhydrol.2009.08.003}
http://dx.doi.org/\url{10.1016/j.jhydrol.2009.08.003}
http://dx.doi.org/\url{10.1007/s00254-007-0721-y}
http://dx.doi.org/\url{10.1016/j.jhydrol.2006.01.022}
%5Curl%7Bhttp://onlinelibrary.wiley.com/doi/10.1002/2014WR015707/full%7D
%5Curl%7Bhttp://onlinelibrary.wiley.com/doi/10.1002/2014WR015707/full%7D
%5Curl%7Bhttps://github.com/charman2/rsas/tree/fort%7D
%5Curl%7Bhttps://github.com/charman2/rsas/tree/fort%7D
http://dx.doi.org/\url{10.1002/2016WR018832}
http://dx.doi.org/\url{10.1016/j.advwatres.2013.01.010}


Bibliography xiii

Hartmann, A., N. Goldscheider, et al. (2014). “Karst water resources in a changing
world: Review of hydrological modeling approaches”. In: Reviews of Geophysics 52.3,
pp. 218–242. issn: 87551209. doi: \url{10.1002/2013RG000443}.

Hartmann, A., M. Mudarra, et al. (2014). “Modeling spatiotemporal impacts of hydro-
climatic extremes on groundwater recharge at a Mediterranean karst aquifer”. In:
Water Resources Research 50.8, pp. 6507–6521. issn: 00431397. doi: \url{10.1002/
2014WR015685}.

Hartmann, A., M. Weiler, et al. (2013). “Process-based karst modelling to relate hydro-
dynamic and hydrochemical characteristics to system properties”. In: Hydrology and
Earth System Sciences 17.8, pp. 3305–3321. issn: 1607-7938. doi: \url{10.5194/
hess-17-3305-2013}.

Hartmann, A. et al. (2012). “Identification of a karst system’s intrinsic hydrodynamic
parameters: Upscaling from single springs to the whole aquifer”. In: Environmental
Earth Sciences 65.8, pp. 2377–2389. issn: 1866-6299. doi: \url{10.1007/s12665-
011-1033-9}.
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Jukić, Damir and Vesna Denić-Jukić (2006). “Nonlinear kernel functions for karst aquifers”.
In: Journal of Hydrology 328.1, pp. 360–374. issn: 0022-1694.

— (2009). “Groundwater balance estimation in karst by using a conceptual rainfall–
runoff model”. In: Journal of Hydrology 373.3-4, pp. 302–315. issn: 0022-1694. doi:
\url{10.1016/j.jhydrol.2009.04.035}.

Kim, Minseok et al. (2016). “Transit time distributions and StorAge Selection functions
in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal
and external transport variability”. In: Water Resources Research. issn: 00431397.
doi: \url{10.1002/2016WR018620}.

http://dx.doi.org/\url{10.1002/2013RG000443}
http://dx.doi.org/\url{10.1002/2014WR015685}
http://dx.doi.org/\url{10.1002/2014WR015685}
http://dx.doi.org/\url{10.5194/hess-17-3305-2013}
http://dx.doi.org/\url{10.5194/hess-17-3305-2013}
http://dx.doi.org/\url{10.1007/s12665-011-1033-9}
http://dx.doi.org/\url{10.1007/s12665-011-1033-9}
http://dx.doi.org/\url{10.1002/2012WR013149}
http://dx.doi.org/\url{10.1029/2010WR009148}
http://dx.doi.org/\url{10.5194/hess-17-533-2013}
http://dx.doi.org/\url{10.5194/hess-17-533-2013}
http://dx.doi.org/\url{10.1016/j.jhydrol.2008.06.020}
http://dx.doi.org/\url{10.1016/j.jhydrol.2008.06.020}
http://dx.doi.org/\url{10.1029/2009JB006616}
http://dx.doi.org/\url{10.1016/j.jhydrol.2009.04.035}
http://dx.doi.org/\url{10.1002/2016WR018620}


Bibliography xiv

Kiraly, L. (1975). “Rapport sur l’état actuel des connaissances dans le domaine des
caractères physiques des roches karstiques”. In: Hydrogeology of karstic terrains.
Ed. by A. Burger and Louis Dubertret. Vol. v. 1. International contributions to
hydrogeology. Hannover, West-Germany: Heise, pp. 53–67. isbn: 9783922705055.

— (1998). “Modelling karst aquifers by the combined discrete channel and continuum
approach”. In: Bulletin d’Hydrogéologie 16, pp. 77–98.
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Figure 6.1: ET of the benchmark model VarKarst versus 1. ET from MODIS data
(ORNL DAAC, 2008), 2. ET calculated through soil routine (Kirn et al.,
2016).
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Figure 6.2: Time series of all available solutes and hydrochemical parameters measured
in the spring discharge.
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Figure 6.3: Time series of predicted sulfate concentration (SO4 sim) and observed sulfate
concentration (SO4 obs) in the discharge calculated with a time-invariant
gamma function. Precipitation input and spring hydrograph time series for
comparison.

Python code: rSAS, HSY and GLUE

# -*- coding: utf-8 -*-
"""
Created on Tue Jun 28 10:38:16 2016

@author: Lina Stein
"""
#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
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#Calculate solute transport by applying age-ranked StorAge Selection functions (rSAS)
#Concept explained in:
#Harman, C. J. (2015). Time-variable transit time distributions and transport:
#Theory and application to storage-dependent transport of chloride in a
#watershed.
#Water Resources Research, 51(1), 1-30.
#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
#˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import rsas
import os
os.chdir(’C:\Users\Lina\Studium\Masterarbeit\Data’)
# ========================================================================
# Set up inputs
# ========================================================================
input_filename=’AET_HCmat_SO4.csv’
df_data=pd.read_csv(input_filename, parse_dates=True, index_col=0)
return_obs=True
#redefine and adjust variables
N = len(df_data)
C_in = df_data[’C_J’].values #input concentration
C_in=np.array(C_in)
Q = df_data[’Q1’].values #discharge
P = df_data[’J’].values #precipitation
C_out = df_data[’C_Q1’].values #output concentration
S = df_data[’S’].values #storage
ET = df_data[’ET’].values #evapotranspiration
dS = S-np.mean(S)
ET_S = 1000 #ST_max for evapoconcentration rSAS
C_old_rsas = [0.]
C_old_transport = [0.]
## Unknown total storage
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MS_init = np.zeros((N + 1, 1))
S_large = 10000
ST_init = np.ones(N+1) * S_large
ST_init[0] = 0.
#set up inputs (one flux discharge, one flux ET)
flux = np.ones((N, 2))
flux[:,0]=Q
flux[:,1]=ET
alpha = np.ones((2,1))
alpha[0,0] = 1.
alpha[1,0] = 0.

#%%
# ========================================================================
# Define rSAS for optimization run
# ========================================================================

def run(params):
C_back1, k1_1, C_eq_1, Logalpha, lambd, dS_crit = params
CS_initf = np.ones((N,1)) * C_back1
k1f = np.ones((N,1)) * k1_1
C_eqf = np.ones((N,1)) * C_eq_1
#rSAS
Q_rSAS_fun_type = ’gamma’
ST_min = np.ones(N) * 0.
ST_max = np.ones(N) * np.inf
d_alpha = np.ones(N) * np.exp(Logalpha)
d_beta = np.maximum(0.01, (lambd/d_alpha)*(dS-dS_crit) )
Q_rSAS_fun_parameters = np.c_[ST_min, ST_max, d_beta, d_alpha] #scale, shape
rSAS_fun_Q = rsas.create_function(Q_rSAS_fun_type, Q_rSAS_fun_parameters)
# - ET
ET_rSAS_fun_type = ’uniform’
ET_rSAS_fun_parameters = np.c_[np.zeros(N), np.ones(N) * ET_S ]
rSAS_fun_ET = rsas.create_function(ET_rSAS_fun_type, ET_rSAS_fun_parameters)
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# Run it
outputs = rsas.solve(P, flux, [rSAS_fun_Q, rSAS_fun_ET], ST_init=ST_init,

mode=’RK4’, dt = 1., n_substeps=1,verbose=False,
debug=False, C_J=C_in, C_old=C_old_rsas, CS_init=CS_initf,
alpha=alpha, k1=k1f, C_eq=C_eqf)

return outputs

def err(params):
outputs = run(params)
C_Q = outputs[’C_Q’][:,0,0]
#mask to filter NA
isobs = np.isfinite(C_out)
#calculate KGE
r = np.corrcoef(C_out[isobs], C_Q[isobs])[0,1]
KGE_alpha = (np.std(C_Q[isobs])/np.std(C_out[isobs]))
KGE_beta = (np.mean(C_Q[isobs])/np.mean(C_out[isobs]))
err = np.sqrt((((r-1)**2)+((KGE_alpha-1)**2)+((KGE_beta-1)**2)))

print params, err
return err

#%%
# ========================================================================
# Find optimum parameter set
# ========================================================================
#for SO4
params0 = [50., 0.001, 90., -1.6, -1.5, 200.]
# run the optimzer
from scipy.optimize import fmin
params_opt = fmin(err, params0)
C_back1, k1_1, C_eq_1, Logalpha, lambd, dS_crit = params_opt
print "Optimum parameter set = ", params_opt
# extract the outputs
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outputs = run(params_opt)
C_Q = outputs[’C_Q’][:,0,0]
ST = outputs[’ST’]
PQ1m = outputs[’PQ’][:,:,0]
#%%
# ========================================================================
# Plot results optimized parameters
# ========================================================================
dates = df_data[’datetime’]
datetime = pd.to_datetime(dates, format="%Y-%m-%d")
fig = plt.figure(figsize = (6.5, 10))
#plot Q
ax = fig.add_subplot(411)
ax.plot(datetime, Q, label=’Discharge’)
plt.legend(loc=1, frameon=True, fontsize=8)
#plot P
ax = fig.add_subplot(412)
ax.plot(datetime, P, label=’Precipitation’)
plt.legend(loc=1, frameon=True, fontsize=8)
#plot C_in
ax = fig.add_subplot(413)
ax.plot(datetime, C_in, label=’Input Concentration [mg/l]’)
plt.legend(loc=1, frameon=True, fontsize=8)
#plot C_out and simulated
ax = fig.add_subplot(414) #414
ax.plot(datetime, df_data[’C_Q1’], ’r.’,

label=’Output Concentration observed [mg/l]’, zorder=1)
ax.plot(datetime, C_Q, ’b-’, label=’Output Concentration simulated [mg/l]’)
plt.ylim((0, 90))
plt.legend(loc=1, frameon=True, fontsize=8)
plt.tight_layout()
#%%
# ========================================================================
# Plot the rSAS function
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# ========================================================================
STx = np.linspace(0,S.max(),500) #S.max()+S_dead
Omega = np.r_[[rSAS_fun_Q.cdf_i(STx,i) for i in range(N)]].T
import matplotlib.cm as cm
#graphical parameters
norm = cm.colors.Normalize(vmin=np.min(S),vmax=np.max(S))
c_m = cm.jet
s_m = cm.ScalarMappable(cmap=c_m, norm=norm)
s_m.set_array([])

fig = plt.figure(13)
plt.clf()
for i in range(N):

plt.plot(STx, Omega[:,i], lw=1, color=cm.jet((S[i]-S.min())/S.ptp()))
plt.ylim((0,1))
plt.colorbar(s_m)
plt.ylabel(’$\Omega_Q(T)$’)
plt.xlabel(’age-ranked storage $S_T$’)
plt.title(’Cumulative rSAS function magnesium’)
plt.text(360, -0.08, ’Storage [mm]’)
#%%
# ========================================================================
# Plot the actual transit time distribution
# ========================================================================
fig = plt.figure(1)
plt.clf()
plt.plot(PQ1m, lw=1)
plt.ylim((0,1))
plt.ylabel(’$P_Q(T)$’)
plt.xlabel(’age $T$’)
plt.title(’Cumulative transit time distribution’)
#%%
# ========================================================================
# Define rSAS for GLUE
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# ========================================================================
def run(params):

C_back1, k1_1, C_eq_1, Logalpha, lambd, dS_crit = params
CS_initf = np.ones((N,1)) * C_back1
k1f = np.ones((N,1)) * k1_1
C_eqf = np.ones((N,1)) * C_eq_1
#rsas
Q_rSAS_fun_type = ’gamma’
ST_min = np.ones(N) * 0.
ST_max = np.ones(N) * np.inf
d_alpha = np.ones(N) * np.exp(Logalpha)
d_beta = np.maximum(0.01, (lambd/d_alpha)*(dS-dS_crit) )
Q_rSAS_fun_parameters = np.c_[ST_min, ST_max, d_beta, d_alpha] #scale, shape
rSAS_fun_Q = rsas.create_function(Q_rSAS_fun_type, Q_rSAS_fun_parameters)
# - ET
ET_rSAS_fun_type = ’uniform’
ET_rSAS_fun_parameters = np.c_[np.zeros(N), np.ones(N) * ET_S ]
rSAS_fun_ET = rsas.create_function(ET_rSAS_fun_type, ET_rSAS_fun_parameters)

# Run it
outputs = rsas.solve(P, flux, [rSAS_fun_Q, rSAS_fun_ET], ST_init=ST_init,

mode=’RK4’, dt = 1., n_substeps=1,verbose=False,
debug=False, C_J=C_in, C_old=C_old_rsas, CS_init=CS_initf,
alpha=alpha, k1=k1f, C_eq=C_eqf)

C_Q = outputs[’C_Q’][:,0,0]
isobs = np.isfinite(C_out)
r = np.corrcoef(C_out[isobs], C_Q[isobs])[0,1]
KGE_alpha = (np.std(C_Q[isobs])/np.std(C_out[isobs]))
KGE_beta = (np.mean(C_Q[isobs])/np.mean(C_out[isobs]))
err = 1-np.sqrt((((r-1)**2)+((KGE_alpha-1)**2)+((KGE_beta-1)**2)))

C_Q = outputs[’C_Q’][:,0,0]

return err, C_Q
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#%%
# ========================================================================
# GLUE
# ========================================================================
GlueRuns = 30000
Nparams = 6
#Define limits
#SO4 (+-75 %, except alpha and k1 )
upLim = [68. ,0.01 , 338. ,0. ,-0.34, 469. ]* np.ones(Nparams)
loLim = [10. ,0.0003 , 48. ,-2. ,-2.4, 67. ]* np.ones(Nparams)
##Cl (+-75 %, except alpha and k1 )
#upLim = [49. ,0.01 , 140. ,0. ,-0.28, 450. ]* np.ones(Nparams)
#loLim = [7. ,0.0002 , 20. ,-2. ,-1.95, 64. ]* np.ones(Nparams)
#Empty matrix for parameter storage
ParMat = np.zeros((GlueRuns,Nparams))
#randomly chooses parameter inside limits
for i in range(0, Nparams):

ParMat[:,i] = np.random.uniform(loLim[i], upLim[i],(GlueRuns,) )

EffMat = np.zeros(GlueRuns) #store efficiencies
CQMat = np.zeros((GlueRuns,N)) #store output concentrations

for i in range(0, GlueRuns):
err, CQ_sim = run(ParMat[i,])
EffMat[i] = err
CQMat[i] = CQ_sim
print(i)

#save arrays for HSY analysis in R
np.savetxt(’C:\Users\Lina\Studium\Masterarbeit\

Data\GLUE\EffMat30000_11_SO4.txt’, EffMat)
np.savetxt(’C:\Users\Lina\Studium\Masterarbeit\

Data\GLUE\ParMat30000_11_SO4.txt’, ParMat)
np.savetxt(’C:\Users\Lina\Studium\Masterarbeit\
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GLUEdata\CQMat30000_11_SO4.txt’, CQMat)
CQMatPlot = CQMat
EffMatPlot = EffMat
EffMatPlot = np.reshape(EffMatPlot, (GlueRuns,1))
ParMatPlot = ParMat
#combine arrays
fullMat = np.concatenate((EffMatPlot,ParMatPlot, CQMat), axis=1)
fullMat_sort = fullMat[np.argsort(fullMat[:, 0])]
#split into behavioural and non-behavioural runs
behavMat = fullMat_sort[-500:,:][::-1]
nonbehavMat = fullMat_sort[range(0,GlueRuns-500),:][::-1]
#calculate 95% confidence interval
perc_b_97_5 = np.apply_along_axis(lambda x: np.percentile(x,97.5), 0,

behavMat[:,range(7,N+7)])
perc_b_2_5 = np.apply_along_axis(lambda x: np.percentile(x,2.5), 0,

behavMat[:,range(7,N+7)])
perc_b_50 = np.apply_along_axis(lambda x: np.percentile(x,50), 0,

behavMat[:,range(7,N+7)])

#save percentiles for plotting in R
perc_mat = np.stack((perc_b_97_5,perc_b_2_5, perc_b_50,

behavMat[0, range(7,N+7)], df_data[’C_Q1’] ), axis=-1)
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Acronyms

AET actual evapotranspiration
ALK gran alkalinity
α alpha
ASL above sea level

bTTD backward transit time distribution

Ca2+ calcium
Cback background concentration
Ceq equilibrium concentration
Cin input concentration
Cl– chloride

EC electrical conductivity
eCDF empirical cumulative distribution function
ED Euclidian distance

F– fluoride
fTTD forward transit time distribution

GLUE Generalized likelihood uncertainty estimation

HSY Hornberge-Spear-Young

K+ potassium
k1 reaction rate
KGE Kling-Gupta efficiency
KS test Kolmogorov–Smirnov test

λ lambda

Mg2+ magnesium
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Na+ sodium
NO3

– nitrate

logPCO2 log. partial pressure of carbon dioxide
PDF probability density function
PET potential evapotranspiration

RTD residence time distribution

SAS StorAge Selection
dScrit critical storage
SIcalcite saturation index with respect to calcite
SO4

2– sulfate

T water age, T = t− ti
t time or exit time
ti input time
TW water temperature
TTD transit time distribution
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