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“Imagination is more important than knowledge. For knowledge is limited to all we
now know and understand, while imagination embraces the entire world, and all

there ever will be to know and understand.”

– Albert Einstein
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Abstract

The development of large-scale hydrological models (LHMs) has substantially en-
hanced the global prediction of water resources. Large-scale models may have, how-
ever, a strongly limited prediction performance. While traditional benchmarking
efforts have given proof of the existence of model errors, to date, little empirical
evidence exists on the direct quantitative link between the model errors and the
surrounding climatic and physiographic settings. Hence, our aim was to identify
settings in which model errors are embedded and examine the control mechanism of
climatic and physiographic characteristics. To achieve this we systematically com-
pared daily runoff simulations (1979-2012; 0.5∘) of the ensemble mean from 10 state-
of-the-art LHMs, all driven by the WATCH Forcing Data ERA-Interim (WFDEI)
meteorological dataset, with 3653 observed streamflow time series (2-100 000 𝑘𝑚2).
We, then, combined a clustering approach with a regression analysis and a random
forest approach showing that model errors were linked to variables describing snow,
evapotranspiration, soil and geologic characteristics. We found that errors originate
from inadequacies of the corresponding model routines. Besides that, we ascertained
“climatic” control of WFDEI 𝑃 data on errors which we separated from structural
errors by employing the clustering. Overall, the presented analysis proved to be a
useful tool for advancing model development by identifying deficient model struc-
tures. The study emphasises the importance of the statistical approach allowing for
concise insights into error control parallel to traditional benchmarking efforts.

Keywords: Large-scale models, Model evaluation, Global, Machine learning, Re-
gression analysis
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Zusammenfassung

Die Entwicklung großskaliger hydrologischer Modelle (LHMs) hat die globale Vor-
hersage von Wasserressourcen erheblich verbessert. Allerdings können großskalige
Modelle eine stark eingeschränkte Vorhersageleistung haben. Während klassische
Benchmarking-Bemühungen die Existenz von Modellfehlern belegen, gibt es bis-
her wenig empirische Belege für den direkten quantitativen Zusammenhang zwi-
schen Modellfehlern und den umgebenden klimatischen und physiographischen Rah-
medingungen. Unser Ziel war es daher, Rahmedingungen zu identifizieren, in die
Modellfehler eingebettet sind, und den Kontrollmechanismus der klimatischen und
physiographischen Eigenschaften zu untersuchen. Dafür verglichen wir systematisch
die täglichen Abflusssimulationen (1979-2012; 0.5∘) des Ensemblemittelwertes von
10 state-of-the-art LHMs, die alle durch den meteorologischen Datensatz WATCH
Forcing Data ERA-Interim (WFDEI) angetrieben wurden, mit 3653 beobachteten
Abflußzeitreihen (2-100 000 𝑘𝑚2). Anschließend kombinierten wir einen Clustering-
Ansatz mit einer Regressionsanalyse und einem Random Forest Ansatz. Hier zeigen
wir, dass Modellfehler mit Variablen zur Beschreibung von Schnee, Evapotranspira-
tion, Boden und geologischen Eigenschaften verknüpft sind. Wir haben festgestellt,
dass Unzulänglichkeiten in den entsprechenden Modellroutinen dafür verantwortlich
sind. Außerdem stellten wir eine “klimatische” Kontrolle der WFDEI 𝑃 -Daten auf
die Fehler fest, die wir durch den Einsatz des Clusterings von strukturellen Fehlern
getrennt haben. Insgesamt erwies sich die vorgestellte Analyse als nützliches Werk-
zeug für die Weiterentwicklung der Modelle durch die Identifizierung mangelhafter
Modellstrukturen. Dabei steht im Vordergrund, dass der statistische Ansatz präg-
nante Einblicke in die Kontrolle der Fehler parallel zum klassischen Benchmarking
ermöglicht.

Stichworte: Großskalige Modelle, Modellevaluierung, Global, Machine Learning,
Regressionsanalyse
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1 Introduction

In the late 1980s and early 1990s the first detailed global water resources assess-
ments were carried out stating a shortage of global water resources (Bierkens 2015).
These early exertions considered only statistics of water use (e.g., AQUASTAT) and
observations of meteorological and hydrological variables. Thus, with such heter-
geneous information the assessment remained very rough as the statistics provided
mostly national averaged values (e.g., water use). Furthermore, the quality and den-
sity on which the statistics built up might have differed strongly between countries.
Unfortunately, these issues are still present today.

The emerging awareness of the shortage of global water resources and the need
for an improved assessment, however, lead shortly thereafter to the development of
the first large-scale hydrological models (LHMs). In contrast to the first assessment
efforts embedding LHMs, water resources could then be assessed more homoge-
neously. Among those, WaterGap (Alcamo et al. 1997), WBM (Vörösmarty et al.
1998) and MacPDM (Arnell 1999) are considered important pioneers in the field of
global hydrological modeling. The very basic idea of these models was to determine
the water availability globally. This was done by accumulating runoff over a stream
network. In addition to that, WaterGap and MacPDM implemented first routines
to calculate the water demand. While subtracting the demand from the available
water, the water stress can be estimated. Since then, various LHMs have appeared
and have undergone several rounds of improvement, increasing both functionality
and resolution of the models. For a detailed genealogy of these models and their
functions we refer to Bierkens (2015).

Apart from global water resources assessment LHMs have been applied for many
purposes including, but not restricted to, flood and drought hazard assessment (Hi-
rabayashi et al. 2013; Pappenberger et al. 2012; Tallaksen and Stahl 2014; Ward et
al. 2013), global groundwater depletion (Gleeson et al. 2012; Wada et al. 2010) and
assessing hydrological impacts of climate change (Pokhrel et al. 2013; van Vliet et al.
2016; Wada et al. 2012). In this respect, LHMs are often integrated as a supportive
tool into decision making (e.g., Yu et al. 2015). Yet, since in general all models can
only reproduce the real-world imperfectly, they may have a strongly limited predic-

1
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tion performance. Thus, it is essential that the limited prediction performance is
not neglected by the decision making processes. However, despite the knowledge
about this limited prediction performance systematic methods to benchmark those
models have rarely been deployed until today. Originally, the first model evaluation
efforts had been dedicated to catchment-scale models and an enormous amount has
been published on that ever since (e.g., Beven 2011). Although model evaluation
of LHMs is subject of an emerging field of research, the number of studies cannot
compete yet with those of catchment-scale models. Reasons for that are computa-
tional challenges on the one hand, lack of large datasets to characterise climatic and
physiographic settings (e.g., land use, soils, surface elevation, etc.) (Sperna Weiland
et al. 2015) on the other hand. Furthermore, observed data to which simulations
can be compared to are only available for certain catchments and their accuracy and
reliability is subject to global variations (Sperna Weiland et al. 2015). As a conse-
quence, evaluation is spatially restricted to those catchments for which observations
are available (Sperna Weiland et al. 2015).

1.1 State of the Art

Benchmarking models using independent data sources is paramount for advancing
model development, rejecting deficient model structures and quantifying model cred-
ibility (Beck et al. 2017a). In order to quantify these uncertainties several model
intercomparison initiatives have been established (e.g., WaterMIP: Haddeland et al.
2011; ISI-MIP: Schellnhuber et al. 2014). These initiatives have yielded numerous
multi-model evaluation focusing on hydrological variables. Among those, runoff is
one of the most useful variables for evaluation since it reflects the integrated catch-
ment response and thereby the involved hydrological processes (Beck et al. 2017a).
Moreover, observed runoff data is readily available for many catchments by public
data bases. At present, 22 large-scale studies evaluating the runoff simulations of
multiple models exist (Table 1.1). These studies typically consider LHMs. Within
the realm of LHMs, it is necessary to distinguish between two classes of models:
global hydrological models (GHMs) and land surface models (LSMs), the latter
ones being extended with hydrological schemes. In contrast to GHMs, LSMs are
not deliberately dedicated to the estimation of daily runoff. Originally, they have
been developed to reproduce soil-atmosphere interactions (Beck et al. 2017a). As
a consequence, they are often coupled with a separate routing scheme to convert
simulated runoff to streamflow. Whether studies are using such a routing model is

2
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marked explicitely in Table 1.1.

In the following, we briefly describe the studies listed in Table 1.1 with respect
to their methodology and their main findings and conclusions. It must be noted
that the individual study setup will not be mentioned explicitely. Instead we refer
to Table 1.1. From the studies listed in Table 1.1 9 covered the continental scale
and 13 covered the global scale. Concerning the continental scale only studies for
the European and North-American continent exist, the latter ones (3 in total) are
focusing on the conterminous USA. In this respect, Lohmann et al. (2004) were the
first who conducted a large-scale study in which they evaluated simulated runoff of
medium-sized catchments from four LSMs. For this purpose, they used the rela-
tive bias of the average runoff and the Nash-Sutcliffe-Efficiency (𝑁𝑆𝐸) (Nash and
Sutcliffe 1970). With their findings they concluded a runoff underestimation of all
models in areas with significant snowfall. Xia et al. (2012) conducted their study
with the exact same set of models as Lohmann et al. (2004), but in contrast they
used a different forcing and they added the anomaly correlation as a further evalu-
ation metric. Their findings reveal a good model performance in the eastern USA
and the west coast of the USA. Having a closer look, a poor NSE was found for
predicting daily streamflow, but they could prove the presence of an anomaly cor-
relation. Using the ensemble mean they improved the predictive accuracy which
outperformed the single models.

The most recent study of Melsen et al. (2018) investigates the uncertainty of
hydrologic projections. In their analysis they incorporated the sign of change of the
average annual runoff and the discharge timing between two time periods, 1985-
2008 and 2070-2100. This could reveal model uncertainties in regions where snow
processes and aridity are dominant. As a major source of uncertainty they identified
the forcing by the Global Circulation Models (GCMs). Similarly, Milly et al. (2005)
examined global pattern of trends in streamflow of large-sized basins and projected
these trends. This was also the first noteworthy study at a global-scale comparing
runoff estimates to observations; their modeling approach, however, is rather less
“hydrologic” and not in line with the studies presented in Table 1.1. This is the
case because runoff is being simulated by routing precipitation of several climate
models by a simple linear reservoir. They used, however, the ensemble mean of
models which was generally capable in reproducing the observed trend patterns in
runoff. Consistent disagreement in sign of the trend was found in Central America
and northern South America, northeastern Europe, and central and southeast Asia.

Five continental studies were carried out for Europe. Compared to the other two
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Table 1.1: Overview of all currently available large-scale (continental to global) studies evaluating simulated runoff of multiple
models, sorted by region and publication date. The table is adapted from Beck et al. (2017a).

Study Region Number of
(identical) models

Number of catchments (size
range)

Time period Model resolution Evaluation
timescale(s)

Forcing Routed
runoff

Lohmann et al. (2004) Cont. USA 4 (0) 1145 (23 - 10 000 𝑘𝑚2) 1996 - 1999 1/8∘ Daily, monthly,
annual, long-term

EDASa yes

Xia et al. (2012) Cont. USA 4 (0) 969 (23 - 1 353 280 𝑘𝑚2) 1979 - 2007 1/8∘ Daily, weekly,
monthly, annual,
long-term

NLDAS𝑏 no

Melsen et al. (2018) Cont. USA 3 (0) 605 (4 - 25 800 𝑘𝑚2) 1985 - 2008,
2070 - 2100

0.5∘ Long-term GCMs no

Prudhomme et al. (2011) Europe 3 (2) 579 (< 1000 𝑘𝑚2) 1963 - 2001 0.5∘ Daily WFD𝑐 no
Gudmundsson et al. (2012a) Europe 9 (4) 426 (< 4000 𝑘𝑚2) 1963 - 2000 0.5∘ Daily, annual,

long-term
WFD𝑐 no

Gudmundsson et al. (2012b) Europe 9 (4) 426 (< 4000 𝑘𝑚2) 1963 - 2000 0.5∘ Annual, long-term WFD𝑐 no
Greuell et al. (2015) Europe 5 (1) 46 (9948 - 658 340 𝑘𝑚2) 1970 - 2000 0.5∘ Daily, monthly,

annual, long-term
E-OBS, WFDEI𝑑,
WFD𝑐

no

Gudmundsson and Seneviratne (2015) Europe 9 (4) 426 (< 4000 𝑘𝑚2) 1963 - 2000 0.5∘ Monthly, annual,
long-term

WFD𝑐 no

Milly et al. (2005) Global 12 (0) 165 (> 50 000 𝑘𝑚2) 1900 - 1998,
2041 - 2060

Long-term GCMs yes

Decharme and Douville (2006) Global 6 (0) 80 (100 000 - 4 758 000 𝑘𝑚2) 1982 - 1995 1∘ Daily, monthly GSWP-2𝑒 yes
Decharme and Douville (2007) Global 6 (0) 80 (100 000 - 4 758 000 𝑘𝑚2) 1982 - 1995 1∘ Monthly GSWP-2𝑒 yes
Decharme (2007) Global 2 (0) 80 (100 000 - 4 758 000 𝑘𝑚2) 1982 - 1995 1∘ Monthly GSWP-2𝑒 yes
Materia et al. (2010) Global 13 (1) 30 (82 000 - 4 677 000 𝑘𝑚2) 1986 - 1995 1∘ Monthly NCEP-DOE yes
Zaitchik et al. (2010) Global 4 (0) 66 (19 000 - 4 600 000 𝑘𝑚2) 1979 - 2007 1∘ Daily, monthly,

annual
GLDAS𝑓 , Princeton𝑔 yes

Haddeland et al. (2011) Global 11 (3) 8 (650 000 - 4 600 000 𝑘𝑚2) 1985 - 1999 0.5∘ Monthly, annual WFD𝑐 no
Zhou et al. (2012) Global 14 (0) 150 (not specified; ≫10000 𝑘𝑚2) 1986 - 1995 1∘ Annual GSWP-2𝑒 no
van Dijk et al. (2013) Global 5 (1) 6192 (10 - 10 000 𝑘𝑚2) 1979 - 2008 1∘ Monthly Princeton𝑔, GLDAS𝑓 no
Beck et al. (2015) Global 4 (3) 4079 (10 - 10 000 𝑘𝑚2) 1979 - 2015 0.25 - 1∘ Daily, long-term ERA-Interim𝑔,

GLDAS𝑓 , Princeton𝑔
no

Yang et al. (2015) Global 7 (1) 16 (135 757 - 3 475 000 𝑘𝑚2) 1981 - 2010 0.5∘ Monthly, annual,
long-term

CRUNCEP yes

Zhang et al. (2016) Global 4 (0) 644 (≫ 2000 𝑘𝑚2) 1981 - 2010 0.5∘ Monthly, annual Princeton𝑔 no
Beck et al. (2016) Global 10 (10) 1113 (10 - 10 000 𝑘𝑚2) 1979 - 2012 0.5∘ Daily, 5-day, monthly,

long-term
WFDEI𝑑 no

Beck et al. (2017a) Global 10 (10) 966 (1000 - 5000 𝑘𝑚2) 1979 - 2012 0.5∘ Daily, 5-day, monthly,
annual, long-term

WFDEI𝑑 no

This study Global 10 5482 (2 - 100 000 𝑘𝑚2) 1979 - 2012 0.5∘ Daily, long-term WFDEI𝑑 no

aRogers et al. (1999) 𝑏Cosgrove et al. (2003) 𝑐Weedon et al. (2011) 𝑑Weedon et al. (2014) 𝑒Dirmeyer et al. (2006) 𝑓 Rodell et al. (2004) 𝑔Sheffield et al. (2006) 𝑔Dee et al. (2011)
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regions, those studies all share the same model resolution and their forcings are al-
most the same (see Table 1.1). Prudhomme et al. (2011) posed the question on how
well large-scale models reproduce regional hydrological extremes in Europe. They
applied the regional deficiency index and the regional flood index representing low
flows and high flows, respectively. The indexes derived from observed and simulated
time series are evaluated by the relative mean error, the ratio of the standard devi-
ation of simulated and observed runoff and the Spearman correlation. As a result,
they recognized a skill in the models for reproducing the spatiotemporal evolution of
hydrological extremes. Regarding the low flows the models capture the broad-scale
characteristics, whereas deficiencies are found for high flows related to the spatial
resolution in the forcing. Instead of focusing solely on hydrological extremes, Gud-
mundsson et al. (2012b) covered the entire flow range of the hydrograph with their
study by comparing the model simulations to five observed runoff percentiles. They
carefully analysed spatially aggregated annual time series of the five flow percentiles.
On the one hand, the models are able to seize the interannual variability, which was
reflected in the Spearman correlation, on the other hand, the relative bias in the
mean and the standard deviation is diverging between models emphasising model
uncertainties. In particular, the greatest divergence is encountered for low flows.
The ensemble mean exhibited a good performance. Another study conducted by
Gudmundsson et al. (2012a) evaluated LHMs with respect to the seasonal runoff
climatology. For their setup they utilized the same models, catchments, investi-
gated time period and evaluation metrics as in Gudmundsson et al. (2012b) (see
Table 1.1). In addition to that, they were the first to described the influence of
catchment characteristics and climatic conditions on model errors quantitavely. For
that, the Spearman correlation was computed between the evaluation metrics and
the catchment characteristics (e.g., mean catchment elevation) and climatic condi-
tions (e.g., observed mean annual temperature). When analysing this they obtained
a positive correlation between the difference in grid cell elevation and catchment el-
evation and the relative bias in the mean and a strong negative correlation between
the relative bias in the mean and the runoff ratio. Their findings illustrate that
models perform poorly for snow-influenced regions, while they perform well in all
other regions. Although large differences are present among the models, the overall
good performance of the ensemble mean can be emphasized.

Using the same study setup (see Table 1.1) like the two previously described
studies Gudmundsson and Seneviratne (2015) applied a machine learning approach.
In that respect, they employed random forests to estimate monthly runoff. The
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statistical model included climate (e.g., temperature) and land parameters (e.g.,
slope) for the estimation. The results indicate that the model is capable of repro-
ducing monthly runoff estimates with reasonable accuracy. Although the reasonable
skill in runoff estimation was stated, uncertainties in model input data are empha-
sized by the authors, which can have a remarkable impact on the model outcome.
Another machine learning approach is provided by Beck et al. (2015); they used
artificial neural networks (ANNs) to generate global maps of streamflow character-
istics based on climate and physiographic characteristics. A comparison of these
maps with the simulations of 4 LHMs unveiled a weak performance of the LHMs in
simulating baseflow recession rate, an early bias in discharge timing and an under-
estimation of runoff over mountain ranges. Additionally, they conducted a simple
linear regression between streamflow characteristics and climate and physiographic
characteristics. According to their findings, climate and topographic predictors are
more important than the ones related to soil and geology.

At a global scale, Decharme and Douville (2006), Decharme (2007) and Decharme
and Douville (2007) can be mentioned as the first studies evaluating mature LHMs.
The setup of their studies, in which they focused on different issues, was identical.
Decharme and Douville (2006) aimed to unravel the uncertainties in the forcing and
their impacts on the hydrologic simulations. Taking the ratio of mean simulated and
observed discharge and the NSE as evaluation metrics they could provide evidence
for systematic errors in simulated discharge over the mid and high latitudes caused
by overestimation of precipitation in the forcing. Analogously, Materia et al. (2010)
subjected the sensitivity of simulated river discharge similarly to Decharme and
Douville (2006), but they additionally appended land surface representations into
their considerations. Although they used a different meteorological forcing data,
their findings are in agreement insofar as simulated discharge is most sensitive to
variations in precipitation.

Decharme (2007) further validated simulated runoff against monthly observed
values. In comparison to Decharme and Douville (2006) they added the square
correlation between simulated and observed monthly anomalies to the evaluation
procedure. A simulated late snow melt uncovered the inadequate representations
of snow melt processes in the selected models. Further limitations are given by the
river routing scheme used to convert simulated runoff to streamflow in which, for
example, seasonal floodplains are not considered. Zaitchik et al. (2010) evaluated
simulations of four LSMs extensively by embedding mean annual discharge, sea-
sonal and intraseasonal variability, interannual variability and the timing of peak
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flow. Their evaluation highlights diverging accuracy of streamflow estimates related
to geographic patterns. In particular, the models have the tendency to underesti-
mate discharge in tropical regions. Mostly, this is caused by an underestimation of
the precipitation in the forcing. By contrast, high-latitudes exhibit a poor timing in
peak flow caused by an early onset of the snow melt where additionally simulations
underestimate river discharge. Furthermore, Zaitchik et al. (2010) could show that
the model accuracy is bound to the choice of the atmospheric dataset. The study of
Haddeland et al. (2011) elaborates on the multimodel (dis)agreement in estimating
the global terrestrial water balance of eight very large basins. For that cause, they
compared mean annual and mean monthly values of water balance variables. No
major differences in interannual variation of runoff could be found between mod-
els despite different runoff schemes. However, a high disagreement for runoff was
observed in tropics and arid areas where in the latter case runoff is overestimated.
They further stress a high inter-model disagreement for snow-influenced catchments
due to different model implementations of snow hydrology. Zhou et al. (2012) bench-
marked mean annual simulated runoff of 14 LSMs. In their approach they made use
of the relative bias of the mean annual runoff, the coefficient of determination and
the NSE. Large positive biases prevailed in northern high-latitudes originating from
an overestimation of the precipitation in the forcing. Conversely, large negative
biases for the Amazon and Orinoco region were found due to underestimated pre-
cipitation. They further provide evidence of large biases in regions with low mean
annual precipitation. In particular, wet basins with a large baseflow ratio exhibit
smaller biases than wet basins with small baseflow ratio. This error may be assigned
rather to the model structure than to the forcing. Yang et al. (2015) assessed dis-
charge simulation in dynamic global vegetation models (DGVMs). They could give
proof for a good reproduction of the seasonal runoff cycle by the models at low-
and mid-latitudes. Peak discharge in high latitudes was underestimated. Generally,
mean annual runoff was understimated while interannual variability was well simu-
lated. The results of Zhang et al. (2016) confirmed these results since the models
are capable of reproducing seasonal and interannual variability. Moreover, simula-
tions correlate reasonably with observations. Nevertheless, models perform poorly
in simulating monthly and annual runoff. Recently, the study of Beck et al. (2017a)
evaluated the runoff of 10 state-of-the-art LHMs. They focused on medium-sized
catchments which used a broad range of performance metrics related to important
aspects of the hydrograph. They revealed an early bias in spring snow melt peak
due to an underestimation of precipitation in the forcing and misrepresentation of
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certain processes in snow hydrology. Further precipitation biases in the forcing are
present in (semi-)arid regions and propagates into the simulated runoff.

The two studies of van Dijk et al. (2013) and Beck et al. (2016) are not primarily
designated to the evaluation of simulated runoff. Instead, LHM runoff estimates are
used to assess and validate their novel developed approaches. van Dijk et al. (2013)
implemented a seasonal streamflow forecasting system. In terms of predictive accu-
racy, compared to four LMSs, the system performed equally well or slightly better.
The simulated runoff used in the previously described studies was generated by un-
calibrated LHMs. Some of the models in Beck et al. (2017a) are called “calibrated”.
This notion should be considered with caution. Calibration of LHMs is not compa-
rable to the calibration procedure applied to catchment-scale models. Different from
that is the globally calibrated HBV model by Beck et al. (2016). They presented a
global-scale regionalisation scheme for the first time. Using an aggregate objective
function consisting of runoff signatures and goodness-of-fit measures they could il-
lustrate that HBV with regionalised parameters outperformed nine state-of-the-art
LHMs.

Summing these studies up we could identify some common deficiencies in sim-
ulating runoff with LHMs. Several studies attested the LHMs a poor performance
in snow influenced regions (Beck et al. 2017a; Decharme 2007; Decharme and Dou-
ville 2006; Gudmundsson et al. 2012a; Haddeland et al. 2011; Lohmann et al. 2004;
Melsen et al. 2018; Zaitchik et al. 2010). This was caused either by underestimation
of precipitation in the forcing (e.g., Beck et al. 2017a; Gudmundsson et al. 2012b)
or shortcomings of the models in representing snow dynamics (e.g., Zaitchik et al.
2010,Gudmundsson2012a). Further, poor performances were found for (semi-)arid
regions (Beck et al. 2017a; Haddeland et al. 2011; Melsen et al. 2018) and tropi-
cal regions (Haddeland et al. 2011; Zaitchik et al. 2010) where wrong precipitation
in the forcing translated into model errors. Furthermore, inadequate model struc-
tures (e.g., storage routine) were found to be responsible for underestimation and
overestimation (e.g., Gudmundsson et al. 2012b; Zhou et al. 2012), respectively. A
second common conclusion of the studies is that the ensemble mean can lead to an
improvement of the predictive accuracy. Either it performs slightly worse than the
best model (Beck et al. 2017a; Gudmundsson et al. 2012b) or it even outperforms
the best model (Xia et al. 2012). However, many of these studies used either a
relatively small amount of time series (≤ 200) or they only evaluated monthly or
annual mean runoff (Beck et al. 2017a). Moreover, many of them incorporated only
a few LHMs (≤ 5) or evaluation metrics (≤ 2) (Beck et al. 2017a) where the relative
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bias of the average simulated and observed runoff, the Pearson correlation and the
NSE are altogether frequently used.

1.2 Research Objectives

All these studies somehow addressed the model errors, but to our knowledge none
of the studies has profoundly answered the question how or by what the model error
is controlled quantitavely. To date, only the study of Gudmundsson et al. (2012a)
has already put some effort in this direction. They linked climate and physiographic
characteristics to streamflow charcteristics and model errors in a bivariate way. Yet,
eventually, a bivariate approach might not account for the complex interplay of cli-
matic and physiographic characteristics. A multivariate approach might be more
appropriate for allowing such an interplay. Beck et al. (2013) and Beck et al. (2015)
used similar climatic and physiographic catchment descriptors to investigate their
control mechanisms on streamflow characteristics and baseflow characteristics, re-
spectively. For this purpose, both studies implemented a bivariate and multivariate
statistical approach.

Thus, the main research objective of this study is to reveal the linkage between
model errors and the climatic and physiographic catchment descriptors with a bi-
variate regression analysis and random forest analysis. In order to identify the
settings describing a hydrological system (Winter 2001) for which large scale models
behave wrongly/incorrectly, we will divide the data according to the concept of hy-
drologic landscapes into subsets and run the analysis on each subset separately. The
subsets might also facilitate the identification of potentially important hydrological
processes. Distinguishing those subsets and the corresponding settings that cause
the error, we hope to provide lead for modelers towards improvements.

In order to address this question, we systematically compare a global ensemble
of hydrological simulations with a large dataset of observed streamflow time series
(~5500) around the globe, mainly on a daily time scale. In a second step, we compare
the model error to climatic and physiographic catchment descriptors. Our study is
organised as follows:

• First, the runoff data both simulated runoff and observed streamflow are in-
troduced.

• Secondly, we present the climatic and physiographic characteristics describing
a hydrological system

9



Research Objectives

• In the section of hydrologic landscapes the subsets are defined.
• We, then, introduce the metrics used for the model evaluation.
• Subsequently, the approach of statistical analysis is explained.
• Finally, we present and discuss the results.

To facilitate future benchmarking and to also enhance its comparability we provide
parts from the methodology in the form of the Python-package GHMeval. This aims
to encourage further model evaluation efforts.
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2.1 Forcing

Running GHMs successfully cannot be accomplished without the presence of a driver
comparable to that of a car. Yet, unlike in a car this driver is not a person, but
in the hydrological modelling jargon this driver is commonly known as forcing. In
fact, the notion forcing typically refers to a meteorological dataset which comprise
exogenous factors like precipitation or temperature which force the hydrologic sys-
tem. This dataset is usually a reanalysis product. The term reanalysis describes a
data assimilation scheme on heterogeneous distributed data. The reanalysis is es-
sential since the structure of LHMs asks for spatio-temporally distributed input data
and observations of meteorological variables are unevenly distributed over time and
space. Currently, several global forcing datasets (e.g., Dee et al. 2011; Dirmeyer et
al. 2006; Sheffield et al. 2006; Weedon et al. 2011, etc) exist. Each comes along with
its own caveats (e.g., Rust et al. 2015). In our study the LHMs were all consistently
forced by the daily 0.5∘ WATCH Forcing Data ERA-Interim (WFDEI) meteorolog-
ical dataset (Weedon et al. 2014) that covered the period between and including
1979 and 2012. The dataset contains both 3-hourly time intervals and daily time
intervals. WFDEI has been generated on the basis of the ECMWF ERA-Interim
reanalysis (Dee et al. 2011) and is corrected with the CRU dataset (Harris et al.
2014). By doing that, the effects of incorrect elevation and monthly bias have been
reduced. Although WFDEI scheme leads to an improved forcing, one needs to keep
in mind that there exist a number of problems when it comes to application. In this
respect seven issues are identified according to Schellekens et al. (2017) and Beck et
al. (2017a):

1. Unrealistic high rainfall in Gabun, Africa likely due to a unit error in the
reported precipitation

2. Concerns about the energy forcing terms of WFDEI over the Amazon region
where the average incident longwave radiation is understimated and the aver-
age incident shortwave radiation is overstimated. The spurious estimation is
attributed to the ERA-Interim dataset.
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3. Incoming radiation noise at night time (about 0.05 𝑊 𝑚−2) for a certain
number of time steps. This originate also from ERA-Interim dataset.

4. Large positive values of the average incident shortwave radiation (> 5 𝑊 𝑚−2)
at night time

5. Substantial conversion of liquid precipitation (in ERA-Interim) into snowfall
(in WFDEI) for nine grid cells

6. 𝑃 underestimation in the Rocky Mountains due to missing correction for oro-
graphic effects

7. 𝑃 overestimation in the northern Great Plains

These issues are due to their influence on the model outputs very important as far
as the interpretation of the results is concerned.

2.2 Simulated Runoff

In hydrological modeling the simulated runoff is one of the main model outputs be-
cause of its reflection of the integrated catchment response (see Chapter 1). Instead
of taking the simulated runoff of a single model we here use an ensemble of models.
Ensembles are widely used in earth system sciences (Beck et al. 2017a; Fowler and
Ekström 2009; Guilyardi 2006; Krishnamurti et al. 2000; Schellekens et al. 2017).
Typically, they contain the outputs from different models or from a single model
with different realizations (Beck et al. 2017a). One advantage of this technique is
that an improvement of the model predictive accuracy can be achieved even though
less accurate models are included in the ensemble (Gudmundsson et al. 2012b; Milly
et al. 2005; Xia et al. 2012). Beck et al. (2017a) proved the suitability of the ensem-
ble for runoff prediction although it performed slightly worse than the best model.
For our study the ensemble comprises 10 state-of-the-art LHMs. From the ensemble
we derived the ensemble mean runoff, which we call from here on simulated runoff,
by averaging the output of the 10 models. The ensemble mean runoff is readily
available from the eartH2Observe Tier-1 dataset (Schellekens et al. 2017), in which
the simulated runoff (𝑘𝑔 𝑚2 𝑠−1) is provided unrouted and on a daily time scale.
The models were run globally at a daily time step for the period 1979-2012 using the
same forcing dataset described in chapter 2.1. The ensemble includes two classes
of models the GHMs and LSMs (see Sect. 1.1). An overview of the models is given
in Table 2.1. Note that some ensemble members, such as WaterGAP3, integrated

12



Data

Figure 2.1: Location of the catchments and the corresponding time scales of the
observed streamflow time series. The catchments are represented by its centroid.
Catchments with daily time scale are indicated in blue and catchments with monthly
time scale are in red.

anthropogenic water use. For details on the individual model spin-up procedure
we refer to Schellekens et al. (2017). In addition to the mean ensemble runoff, we
used the standard deviation ensemble runoff to describe the (dis)agreement in the
ensemble (see Sect. 3.3).

Access to the data is given by the eartH2Observe Water Cycle Integrator (WCI:
http://wci.earth2observe.eu) or by a THREDDS server (https://wci.earth2observe.
eu/thredds/catalog/ens/wrr1/catalog.html) allowing direct download via OPeNDAP,
WCS and HTTP (ftp is also supported). All files are in the Network Common Data
Format (NetCDF).

2.3 Observed Streamflow

In order to evaluate the runoff estimates of the ensemble, we gathered observed
streamflow time series and catchment boundaries from three different sources:

1. Global Runoff Date Centre (GRDC: http://ww.bafg.de/GRDC/)
2. Attributes of Gages for Evaluating Streamflow (GAGES)-II database (Falcone

et al. 2010)
3. Australian streamflow data compilation (Peel et al. 2000)

13

http://wci.earth2observe.eu
https://wci.earth2observe.eu/thredds/catalog/ens/wrr1/catalog.html
https://wci.earth2observe.eu/thredds/catalog/ens/wrr1/catalog.html
http://ww.bafg.de/GRDC/


Observed Streamflow

The streamflow records are observed either at a daily or monthly time scale. At
present, this dataset with approximately 5500 both near-natural and anthropogeni-
cally influenced catchments provides to our knowledge the greatest possible amount
of observed streamflow time series one can publicly have access to. Since the per-
formance metrics in Section 3.3 require rather daily values than monthly values, we
transformed monthly time series into daily time series using linear interpolation.
The locations of the 3653 catchments which were finally included in our study are
shown in Fig. 2.1. For more details on how we chose the catchments we refer to Sec-
tion 3.3. From those 3653 catchments 2754 are measured at a daily time scale and
881 at a monthly time scale. Additionally, information on the temporal coverage of
the observed streamflow data for the period of 1979-2012 is given in Figure 2.2 and
on the catchment area in Figure 2.3. Moreover, their overall distribution is illus-
trated in Figure 2.4. The record length of the observed streamflow time series varies
from 5 to 33 years with median record length of 20 years, whereas the catchment
area ranges from 2 to 100 000 𝑘𝑚2 with median size of 1047 𝑘𝑚2.

10 20 30 40 50 60 70 80 90 100
Temporal coverage [%]

Figure 2.2: Global map of the temporal coverage (in %) of the observed streamflow
time series between 1979 to 2012. Blue (yellow) displays low (full) temporal coverage.
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Table 2.1: Overview of models and summary of processes included. The table is adapted from Schellekens et al. (2017).

Model Model class Interception Evaporation Snow Soil layers Groundwater Runoff Reservoirs/lakes Routing Water use Time step
HTESSEL-CaMa LSM Single reservoir,

potential
evaporation

Penman-
Monteith

Energy balance,
1 layer

4 No Saturation
excess

No CaMa-Flood No 1h

JULES LSM Single reservoir,
potential
evaporation

Penman-
Monteith

Energy balance,
3 layers

4 No Saturation and
infilt. excess

No No No 1h

LISFLOOD GHM Single reservoir,
potential
evaporation

Penman-
Monteith

Degree-day, 1
layer

2 Yes Saturation and
infilt. excess

Yes Double
kinematic wave
linear cascade of
reservoirs
(sub-grid)

Yes 1 day

ORCHIDEE LSM Single reservoir
structural
resistance to
evaporation

Bulk PET
(Barella-Ortiz et
al. 2013)

1 moisture
layer, 1-5
thermodynamic
layers

11 Yes Green-Ampt
infiltration

No Travel time
approach

irrigation
only

900 s
balance,
routing
energy 3 h

PCR-GLOBWB GHM Single layer,
subject to open
water evaporation

Hamon (tier 1)
or imposed as
forcing

Temperature
based melt
factor

2 Yes Saturation
excess

Tier 1 only lakes TRIP with
stream

Not in tier
1

1 day

SURFEX-TRIP LSM Single reservoir,
potential
evaporation

Penman-
Monteith

Energy and
mass balance,
12 layers

14 Yes Saturation and
infilt. excess

No No No 900 s for
ISBA,
3600 s for
TRIP

SWBM GHM No Inferred from
net radiation

Degree-day, 1
layer

1 No Inferred from
precipitation
and soil
moisture

No No No 1 day

W3RA GHM Gash event-based
model

Penman-
Monteith

Degree-day, 1
layer

3 Yes Saturation and
infiltration
excess

No Cascading linear
reservoirs

No 1 day

WaterGAP3 GHM Single reservoir Priestley-Taylor Degree-day, 1
layer

1 Yes Beta function Yes Manning-
Strickler

Yes 1 day

HBV-SIMREG GHM No Penman 1948 Degree-day, 1
layer

1 No Beta function No No No 1 day
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Figure 2.3: Global map of the catchment area (in 𝑘𝑚2) of the observed streamflow
time series. Blue (yellow) displays small-sized (large-sized) catchments.
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Figure 2.4: Distributions of temporal coverage (in %) of the observed streamflow
time series between 1979 to 2012 (a) and the catchment area (in 𝑘𝑚2) (b)

2.4 Climatic and Physiographic Characteristics

In Table 2.2 we present the climate and physiographic catchment characteristics.
Although this selection is similar to the one in Beck et al. (2015), we, in contrast,
modified and extended some characteristics, respectively. Precipitation was modified
by using the most recent Multi-Source Weighted-Ensemble Precipitation (MSWEP)
dataset (Beck et al. 2017b). In order to make the nonlinear 𝐴𝐼 a linear index we
applied a logarithmic transformation. To exemplify this, distances would be nonlin-
ear for an 𝐴𝐼 of 2 resulting from an 𝑃𝐸𝑇 twice as big as 𝑃 while vice versa the 𝐴𝐼
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Table 2.2: Climatic and physiographic characteristics. The table is adapted from
Beck et al. (2015).

Predictor Unit Description Calculation and data source Resolution
Climate
𝐴𝐼 – Aridity index Calculated as 𝐴𝐼 = 𝑃𝐸𝑇/𝑃 , where 𝑃 is the mean annual precipitation

and 𝑃𝐸𝑇 is the mean annual potential evaporation. We then applied a
logarithmic transformation to 𝐴𝐼. See 𝑃 and 𝑃𝐸𝑇 for data sources.

~0.25∘

𝑃𝑠𝑖 – Precipitation seasonality Calculated following Walsh and Lawler (1981) as
𝑃𝑠𝑖 = 𝑃 −1

𝑦𝑟

∑︀
|𝑃𝑚 − 𝑃𝑦𝑟|/12, where 𝑃𝑦𝑟 and 𝑃𝑚 are the mean annual and

monthly precipitation, respectively, and the summation is over all
months. See 𝑃 for data source.

~0.25∘

𝑃 𝑚𝑚 𝑦𝑟−1 Mean annual precipitation 𝑃 is the mean annual precipitation derived from MSWEP (Beck et al.
2017b)

~0.25∘

𝑃𝐸𝑇 𝑚𝑚 𝑦𝑟−1 Mean annual potential
evaporation

Calculated from monthly values derived following the
temperature-based approach of Hargreaves et al. (1985). See 𝑇𝐴 for
data source.

~1 km

𝑃𝐸𝑇𝑠𝑖 – Potential evaporation
seasonality

Calculated following Walsh and Lawler (1981) as
𝑃𝐸𝑇𝑠𝑖 = 𝑃𝐸𝑇 −1

𝑦𝑟

∑︀
|𝑃𝐸𝑇𝑚 − 𝑃𝐸𝑇𝑦𝑟|/12, where 𝑃𝐸𝑇𝑦𝑟 and 𝑃𝐸𝑇𝑚 are

the mean annual and monthly potential evaporation, respectively, and
the summation is over all months. See 𝑃𝐸𝑇 for data source.

~1km

𝐶𝑂𝑅𝑅 – Seasonal correlation
between water supply and
demand

Correlation coefficient calculated between monthly climate values of 𝑃
and 𝑃𝐸𝑇 (Petersen et al. 2012). See 𝑃 and 𝑃𝐸𝑇 for data sources.

~1 km

𝑇𝐴 𝐾 Mean annual air
temperature

WorldClim (Hijmans et al. 2005) and PRISM (Daly et al. 1994) for the
United States.

~1km

𝑃𝐹 – Permafrost abundance National Snow and Ice Data Center vector map (Brown et al. 1997)
with classes C, D, S, and I reclassified to permafrost abundances of
0.95, 0.70, 0.30, and 0.05, respectively.

~10 km

Topography (T)
𝑆𝐿𝑂 ∘ Surface slope Consultative Group for International Agricultural Research (CGIAR)

Consortium for Spatial Information (CSI) Shuttle Radar Topography
Mission (SRTM), version 2.1 (Farr et al. 2007), for lat < 60∘N,
GTOPO30 (http://lta.cr.usgs.gov/GTOPO30) for lat > 60∘N.

~90 m, ~1 km

𝐸𝐿𝐸𝑉 𝑚 𝑀𝑆𝐿 Surface elevation CSI SRTM, version 2.1 (Farr et al. 2007), for lat < 60∘N, GTOPO30
for lat > 60∘N.

~90 m, ~1 km

Land cover (LC)
𝑓𝑊 – Fraction covered by lakes

and reservoirs
World Wildlife Fund (WWF) Global Lakes and Wetlands Database
(GLWD) level 3 (Lehner and Döll 2004).

~1 km

𝑁𝐷𝑉 𝐼 – Normalized difference
vegetation index

Systéme Pour l’Observation de la Terre (SPOT) Vegetation (VGT) S10
10-day max value composites (www.vgt.vito.be), mean of 2005.

~1 km

𝑓𝑆 – Fraction of snow cover MODIS Aqua snow cover daily level 3 global climate modeling grid
product (MYD10C1), version 5 (Hall et al. 2006), mean of 2003-13.

0.05∘

𝐺𝐿𝐴𝐶 – Fraction covered by glaciers Randolph Glacier Inventory (RGI), version 3.2, glacier outlines. ~30 - 60 m
Geology and soils
𝑃𝐸𝑅𝑀 𝑙𝑜𝑔10 𝑚2 Permeability of geology Global permeability map (Gleeson et al. 2011). ~1 km
𝑓𝐿𝑖𝑥𝑥 – Fraction of lithologic class Global Lithological Map database v1.1 (Hartmann and Moosdorf 2012)

where the subscript xx denotes the corresponding lithologic class: ev,
evaporites; ig, ice and glaciers; mt, metamorphic rocks; nd, no data; pa,
acid plutonic rocks; pb, basic plutonic rocks; pi, intermediate plutonic
rocks; py, pyroclastics; sc, carbonate sedimentary rocks; sm, mixed
sedimentary rocks; ss, siliclastic sedimentary rocks; su, unconsolidated
sediments; va, acid volcanic rocks; vb, basic volcanic rocks; vi,
intermediate volcanic rocks; wb, water bodies

~2 km

𝑆𝐴𝑁𝐷 % Soil sand content SoilGrids1km (Hengl et al. 2014) version April 2014, mean over all
layers.

~1 km

𝑆𝐼𝐿𝑇 % Soil silt content SoilGrids1km (Hengl et al. 2014) version April 2014, mean over all
layers.

~1 km

𝐶𝐿𝐴𝑌 % Soil clay content SoilGrids1km (Hengl et al. 2014) version April 2014, mean over all
layers.

~1 km

Water use (WU)
𝑈𝑅𝐵 – Fraction of urban area “artificial areas” class of the map from GlobCover (Bontemps et al.

2011) version 2.3
~300 m

𝐼𝑅𝑅 % Percentage of irrigated area Global Irrigated Area Map (Siebert et al. 2013) 0.08333∘

would be 0.5 if 𝐴𝐼 is not transformed. Additionally, geologic characteristics have
been extended by joining the proportional area of the lithology. For this purpose the
global lithological map (GLiM) dataset of Hartmann and Moosdorf (2012) was uti-
lized. Moreover, we included characteristics about water usage, which is described
by the percentage of urban (Bontemps et al. 2011) and irrigated areas (Siebert et
al. 2013), respectively. As a consequence, we have 33 descriptors in total delineating
the climate and physiographic catchment characteristics. Among those descriptors,
eight are related to climate, three to topography, five to land cover, two to geol-
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ogy, three to soils, and two to water use. The fraction of lithological class 𝐿𝑖𝑥𝑥 is
subdivided in 16 lithologic classes. Most of the data have a resolution of ≤1km
and values, for example, mean annual air temperature represent average catchment
characteristics. It must be noted that NDVI ranges from 0 to 255 (Hylke Beck,
personal communication) and not as it is supposed to be from 0 to 1. This is due
to its data format. Thus, a value of 255 is equal to 1.
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3 Methodology

3.1 Hydrologic Landscapes: Concept and Classification

Understanding the landscape embedded into a catchment is crucial when it comes
to identification of the driving hydrological processes. However, the perception of
a landscape in its entire complexity and describing the underlying interactions of
its features may be an unsolvable task. From an hydrologic perspective focusing on
three landscape dimensions which consist of topography, geology and climate may
be sufficient to identify the most important attributed processes. By unifying those
three dimensions into a conceptual hydrologic framework Winter (2001) developed
the well-known concept of hydrologic landscapes. The core of this concept is built up
by a fundamental hydrologic landscape unit (FHLU). It is illustrated by the diagram
in Figure 3.1; different landscapes can be categorized using the three landscape
features topography, geology and climate with respect to the attributed movement
of water. The study of Wolock et al. (2004) exemplifies how one can turn the concept
into practice. They applied the concept to the conterminous USA. For that they
first ran a principal component analysis to data describing the landscape before they
applied a cluster analysis to the outcome of the principal component analysis. With
this approach they could identify 20 hydrologic landscape regions.

In an analogous manner to Wolock et al. (2004), we also make use of the concept
of hydrologic landscape with the goal to partition our dataset into subsets accord-
ing to their relevant hydrological processes. We argue that this is more hydrologic
and more suitable for process-based model evaluation than borrowing the popular
Köppen-Geiger climate classification system. In this sense, the very recent study of
Knoben et al. (2018) disproved the suitability of the Köppen-Geiger classification
for hydrological studies. A hydrologic landscape is described through three dimsen-
sions by aridity index (𝐴𝐼), surface elevation (𝐸𝐿𝐸𝑉 ) and permeability (𝑃𝐸𝑅𝑀)
(see Table 2.2). We, then, applied a 𝐾-means clustering to it. With means of the
𝐾-means clustering we could divide our dataset into 𝐾 distinct and non-overlapping
clusters (James et al. 2017). A pivotal step is the determination of the appropri-
ate number of clusters 𝐾. In order to specify 𝐾 we utilized the so-called “elbow
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Figure 3.1: Diagram of a Fundamental Hydrologic Landscape Unit. The figure is
adapted from Winter (2001).

method”, a visual approach in which the sum of squared errors is plotted against
the number of clusters. 𝐾 is chosen when an distinctive elbow is perceptible, which
means that at this point a greater 𝐾 will reduce the sum of squared errors only
marginally. Hartmann et al. (2015) came up with an smiliar approach defining typ-
ical karst landscapes. In our case each cluster represents a hydrologic landscape
region (HLR).

3.2 Assignment of Simulated Runoff

Allowing a comparison of simulated runoff and observed streamflow, the simulated
runoff in its gridded form has to be assigned to each gauged catchment. This is
achieved similarly to Beck et al. (2017a). Depending on the match of grid cell cen-
troid(s) and the catchment boundaries, we suggest here three options for assigning
the simulated runoff:

1. Single grid cell centroid is enveloped by the catchment. The runoff of the
single grid cell is assigned.

2. Multiple grid cell centroids are located within the catchment boundaries. The
runoff of the multiple grid cells is first averaged before assigning it.

3. No grid cell centroid is within the catchment boundaries. The runoff is pro-
vided by the grid cell whose centroid is closest to the catchment's centroid.

Simulated runoff and observed streamflow are paired simultaneously with each other.
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Thereby, both time series are equipped with the same length which is important
for their comparability. Additionally, we assigned the ensemble standard deviation
runoff to each catchment making use of the exact same procedure as described
above. Note that simulated values and observed values are indicated in 𝑚𝑚 𝑑−1.
The observed streamflow, originally indicated in 𝑚3/𝑠, is converted using the given
catchment area.

3.3 Model Evaluation

In order to evaluate the model error we introduce some evaluation metrics here.
Since we use an ensemble of 10 models, we also introduce an measure describing the
inter-model disagreement. In particular, we calculate three evluation metrics:

1. Bias 𝐵𝑞 (-) between simulated and observed values for 5 flow percentiles. High
flows are characterised by 5 percentiles (𝑄5), moderate high flows by 25 per-
centiles (𝑄25), medium flows by 50 percentiles (𝑄50), moderate low flows by 75
percentiles (𝑄75) and low flows by 95 percentiles (𝑄95). The definition of the
flow percentiles corresponds to the statistical convention commonly used in
Europe representing the exceedance frequencies (Gudmundsson et al. 2012b).
We are calculating three sorts of biases, namely, a relative Bias 𝐵𝑟𝑒𝑙,𝑞 (-), a
standardised Bias 𝐵𝑠𝑡𝑑,𝑞 (-), and a standardised-square-rooted Bias 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡,𝑞

(-). The relative Bias is defined as

𝐵𝑟𝑒𝑙,𝑞 = 𝑞𝑠𝑖𝑚 − 𝑞𝑜𝑏𝑠

𝑞𝑜𝑏𝑠

(3.1)

whereas 𝐵𝑠𝑡𝑑,𝑞 and 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡,𝑞 can be expressed mathematically as

𝐵𝑠𝑡𝑑,𝑞 = 𝑞𝑠𝑖𝑚 − 𝑞𝑜𝑏𝑠

𝜎𝑜𝑏𝑠

(3.2)

𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡,𝑞 =
√

𝑞𝑠𝑖𝑚 − √
𝑞𝑜𝑏𝑠

𝜎𝑜𝑏𝑠

(3.3)

where 𝑞 represents the flow percentile and the 𝑠𝑖𝑚 and 𝑜𝑏𝑠 subscripts refer
to simulated and observed runoff values, respectively. 𝜎 denotes the standard
deviation of 𝑞𝑜𝑏𝑠 over all catchments and represents spatial variability across
the landscape (Beck et al. 2017a). The 𝐵𝑞 values range from −∞ to +∞,
with lower values corresponding to better model performance. A negative
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value suggests underestimation whereas a positive sign indicates the opposite.
Since the majority of the catchments are small sized (see Figure 2.4b) we
argue to use the relative bias in addition to standardised biases to give small
catchments a greater weight. For those catchments the relative bias will be
more pronounced.

2. Kling-Gupta-Efficiency (𝐾𝐺𝐸). The 𝐾𝐺𝐸 (Gupta et al. 2009) is a very pop-
ular efficiency measure widely used for model calibration. We, here, use a
modified version introduced by Kling et al. (2012). By omitting the 𝑟 term
which represents the correlation coefficient between simulated and observed
runoff we further modified the measure. We call this measure 𝐾𝐺𝐸𝛾𝛽 (-) and
it is calculated as follows:

𝐾𝐺𝐸𝛾𝛽 = 1 −
√︁

(𝛾 − 1)2 + (𝛽 − 1)2 (3.4)

where

𝛾 = 𝐶𝑉𝑠𝑖𝑚

𝐶𝑉𝑜𝑏𝑠

=
𝜎𝑠𝑖𝑚

𝜇𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

𝜇𝑜𝑏𝑠

(3.5)

𝛽 = 𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠

(3.6)

with 𝜎 as the standard deviation of the runoff and 𝜇 as the average runoff.
The subscripts 𝑠𝑖𝑚 and 𝑜𝑏𝑠 denote simulated and observed runoff values, re-
spectively. 𝛾 (-) is the variability ratio and 𝛽 (-) represents the bias ratio.
The maximum attainable value is 1. We used this modified version since it
prevents a potential cross-correlation between the variability and bias ratio
(Kling et al. 2012). As the model input comes in form of reanalysis data, we
argue that the 𝑟 term is biased because of discrepancies in real-world precip-
itation and precipitation in the reanalysis data. Also using the 𝑁𝑆𝐸 would
allow a intercomparibility to other studies because many of them used 𝑁𝑆𝐸

for their evaluation (see chapter 1.1); yet, we omit this efficiency measure.
This is because 𝑁𝑆𝐸 is highly criticised (Schaefli and Gupta 2007) for being
overly sensitive to the timing and the magnitude of peak flows. The metrics
defined by equations (3.1), (3.3), and (3.4) refer hereafter to the model errors.

3. Coefficient of variation of simulated runoff at each flow percentile 𝐶𝑉𝑞 (-).
Quantifying the inter-model (dis)agreement of the ensemble is achieved by

22



Methodology

calculating the 𝐶𝑉𝑞. It can be calculated because every time series of simulated
runoff is paired simultaneously with the corresponding time series of standard
deviation for the simulated runoff. Thus, at each flow percentile the related
standard deviation can be extracted. We formulate 𝐶𝑉𝑞 as

𝐶𝑉𝑞 = 𝑞𝑠𝑑

𝑞𝑠𝑖𝑚

(3.7)

where the subscript 𝑠𝑑 denotes the standard deviation of the simulated runoff.
A value of 0 reflects perfect inter-model agreement. The metric defined by
equation (3.7) is hereafter called the inter-model disagreement.

We calculate the introduced evaluation metrics both for the entire dataset and each
HLR. In order to select interesting HLRs we inspected the distributions of the model
errors visually and chose those for which the error is likely not caused by the forcing.

For both the entire dataset and the selected HLRs we compared the distribu-
tions of the evaluation metrics in the form of boxplots. Additionally, the underly-
ing median, mean, standard deviation, skewness and kurtosis of the distributions
are computed. To examine whether the distribution of the evaluation metrics of
the entire dataset and the HLRs are equal a two-sample Kolmogorov-Smirnov-Test
(Conover 1971) was carried out. This is a two-sided test for the null hypothesis that
two independent samples are drawn from the same continuous distribution. If the
𝐾𝑆 statistic is small or the 𝑝 value is high, we cannot reject the hypothesis that the
distributions of the two samples are the same.

Initially, we computed the evaluation metrics for the original dataset. Yet, we
encountered some outliers in the 𝐵𝑟𝑒𝑙 which might originate from inaccuracies of
streamflow measurements (Sperna Weiland et al. 2015). We excluded those catch-
ments for which 𝐵𝑟𝑒𝑙 fall outside the range spanning from 1.5 times the inter-quantile
range subtracted from the first quartile to 1.5 times the inter-quantile range added
to the third quartile. By that around 1800 catchments had to be excluded. This
radical step was necessary to prevent us from false conclusions on the one hand, and
to make the results of our statistical analysis more reliable on the other hand.
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3.4 Bivariate Regression: Climatic and Physiographic
Controls on Model Errors

In order to scrutinize the climatic and physiographic control on the evaluation met-
ric we conducted a bivariate regression analysis. Beck et al. (2013) investigated the
same control mechanism. They, however, focused on catchments base flow charac-
teristics. In a similar manner we therefore employed simple (non-)linear regression.
Parameters of linear, exponential, logarithmic and power functions were fitted by
least squares. The function reaching the highest coefficient of determination (𝑅2)
was used to describe the relationship between climatic and physiographic character-
istics and the evaluation metrics defined in the previous section. The 𝑅2 was also
used to quantify the strength of the relationship. 0 indicates that no relationship
exists and 1 accounts for a perfect relationship. We define strength of the relation-
ship as follows: 0–0.1 (no relationship), > 0.1–0.3 (weak), > 0.3–0.6 (moderate), >
0.6–0.9 (strong), and > 0.9 (very strong). In particular, the regression curve was
not tested for significance (𝑝 value) since the 𝑝 value may be misleading, especially
when using large number of catchments (Beck et al. 2013). The bivariate regression
analysis was carried out both for the entire dataset and the HLRs. Although the
bivariate regression analysis is straightforward in terms of application and interpre-
tation, one of the major disadvantages is that complex interplay of climatic and
physiographic characteristics cannot be reflected.

In order to account for spatial scaling effects (Gudmundsson et al. 2012a), we
ran a regression analysis between the evaluation metrics and catchment size for both
the entire dataset and the HLRs.

3.5 Random Forest: Climatic and Physiographic Controls on
Model Errors

Enabling such complex interplay we introduce a machine learning approach here.
Machine learning is already widely applied in hydrology. Fields of application range
from regionalisation approaches for the prediction in ungauged basins (e.g., Blöschl
et al. 2013) to hydrologic impact studies (e.g., Bachmair et al. 2016) and classifica-
tion approaches (e.g., Cloutier et al. 2008). Numerous machine learning methods
exist; we, however, focus on random forest (RF) only, which has already been estab-
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lished in the hydrologic community. For example, Bachmair et al. (2016) utilized
RFs to predict drought impacts on the basis of drought indicators.

The RF technique, a supervised machine learning algorithm, was originally de-
veloped by Breiman (2001). In its core a RF consists of an ensemble of regression
trees (James et al. 2017). For our analysis we applied the RF algorithm implemented
in Python’s machine learning library “Scikit-learn” (Pedregosa et al. 2011). In a ran-
dom forest each regression tree is constructed on bootstrapped sub-sample of the
dataset for which the pairing between predictors (climatic and physiographic charac-
teristics) and predictand (evaluation metrics) is preserved. The term bootstrapping
means that samples are drawn randomly with replacement from the dataset for which
the sample size is about two-thirds of the sample size of the dataset (James et al.
2017). In contrast to the parametric bivariate regression analysis a non-paramteric
regression tree applies a series of splitting rules to the bootstrapped sub-sample, i.e.
each time a split in a tree is considered a sub-sample of 𝑚 predictors is randomly
chosen from the full set of 𝑝 predictors (see Table 2.2) (James et al. 2017). Hence,
splitting rules are defined such that they minimize the residual sum of squares. Thus,
the prediction represents the average of observed values for the regions defined by
the splitting rules. Finally, predictions are averaged over all trees.

We set the number of trees (n_estimators) used to build the random forest suffi-
ciently large to 1000 to enable a good performance whereas the size of subsamples of
predictors at each split (max_features) is set to 𝑚 ≈ √

𝑝. In this way the algorithm
is forced to consider only small subsamples of predictors at each split. Typically, 𝑚

is chosen small when we have a large number of correlated predcitors (James et al.
2017). As a consequence, the trees consider on average only (𝑝 − 𝑚)/𝑝 predictors,
which means that splitting rules will not solely be dominated by strong predictors
(James et al. 2017). The remaining parameters take on the defaults. Using this
parameterization RFs were, then, run for the entire dataset and each HLR.

To distinguish those climatic and physiographic characteristics which are best
linked to the evaluation metric we used the unscaled and unconditional “permu-
tation importance” measure described in Strobl et al. (2008). In particular, the
measure quantifies the mean decrease in accuracy on the out-of-bag subsamples (i.e.
samples which are not drawn by the bootstrap and consequently unseen by the RF)
when a predictor is being perturbated. We, then, ranked the variable importance
measure to identify important predictors. Moreover, to make the relationship be-
tween predictors and model output visible in a smiliar way like in Section 3.4 we
computed the partial dependence of the predictions on important predictors (Hastie
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et al. 2017). Partial dependence reflects the marginal effect of a given predictor
towards the model outcome for which average model outcomes are derived for dif-
ferent values of the predictor (Hastie et al. 2017). In other words, the idea behind
partial dependence is that it illustrates how the value of the predictor influences the
model predictions after we have averaged out the influence of all other variables.
For computational reasons partial dependence was only calculated for the four most
important predictors: it was computed for an equally-spaced grid of size 30. The
grid ranges from the minimum to the maximum of the given predictor. The partial
dependence will be shown together with the deciles of the given predictor to include
information on data density. Since the human perception is limited to low dimen-
sions, we illustrate the single-variable partial dependence of the four highest ranked
predictors in two dimensional line plots and the two-variable partial dependence for
the two highest ranked predictors in form of a three dimensional surface plot. The
latter one illustrates partial dependence of the prediction on joint values of the two
most highest ranked predictors.

Note that due to the explorative character of our analysis we have not been
conducting a cross-validation. Nonetheless, we show the 𝑅2 computed on the out-
of-bag subsamples to give evidence about the model accuracy (James et al. 2017).
This gives an insight into the accuracy of the RF predictions. The computation of
it is, in contrast to the cross-validation, very economic since the out-of-bag accuracy
(𝑅2) is already included in the fitting procedure of the RF (Hastie et al. 2017).
We define the model accuracy as follows: 0–0.1 (poor), > 0.1–0.3 (fair), > 0.3–0.6
(moderate), > 0.6–0.9 (good), and > 0.9 (excellent).
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4 Results

4.1 Hydrologic Landscape Regions

Inspecting the elbow plot of the cluster analysis (Fig. 4.1) ten clusters can be deter-
mined. Yet, since this number of clusters does not result in plausible clusters (e.g.,
single clusters encompassed both humid and arid climates), we further increased the
number of clusters to 12 resulting in coherent clusters for the three dimensions by
which the clusters are described (Fig. 4.3) as well as by their locations (Fig. 4.2).
On the basis of distinct cluster means (Table 4.2) and their corresponding standard
deviations (Table 4.2) we defined 12 hydrologic landscape regions and attributed
the assumed main hydrological processes with respect to their primary flow paths
(Table 4.1). In terms of aridity index (𝐴𝐼) we distinguished between very humid
(𝐴𝐼 < 0.5), humid (𝐴𝐼 < 1), sub-humid (𝐴𝐼 < 2), semi-arid (𝐴𝐼 < 4), and arid
(𝐴𝐼 > 4). In context of surface elevation (𝐸𝐿𝐸𝑉 ) we separated in plains (𝐸𝐿𝐸𝑉 <
1000), plateaus/low range mountains (𝐸𝐿𝐸𝑉 1000 - 2000), and mountains (𝐸𝐿𝐸𝑉

< 2000). The permeability of the geology (𝑃𝐸𝑅𝑀) was classified into very per-
meable (𝑃𝐸𝑅𝑀 < -12.3), permeable (𝑃𝐸𝑅𝑀 < -13.5), impermeable (𝑃𝐸𝑅𝑀 >
-13.5) and very impermeable (𝑃𝐸𝑅𝑀 > -14.8). Note that the term permeable

"elbow"

number of 
selected clusters

Figure 4.1: Elbow plot of sum of squared errors for 𝐾-means clustering
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reflects higher permeability while impermeable indicates lower permeability. For
the classification of 𝑃𝐸𝑅𝑀 we followed Gleeson et al. (2011). The permeability of
impermeable crystalline rocks, for example, are associated with -14.1 while highly
permeable carbonate rocks are assigned a value of -11.8 (Gleeson et al. 2011). In
case of the cluster mean being close to one of the thresholds and the cluster stan-
dard deviation not being small enough, we merged two classes (e.g., (sub-)humid or
plains/plateaus).

1 2 3 4 5 6 7 8 9 10 11 12
HLR

Figure 4.2: Global hydrologic landscape regions (HLR)

Table 4.1: Descriptions of hydrologic landscape region (HLR) and the assumed
hydrologic flow paths

Primary hydrologic flow paths

HLR
number Description

Overland
flow

Shallow
ground
water

Deep
ground
water

1 Humid plains with permeable bedrock x x
2 (Sub-)Humid plains with impermeable bedrock x x
3 (Sub-)Humid plains with very permeable bedrock x x
4 Humid low range mountains with impermeable bedrock x
5 Humid plains with impermeable bedrock x x
6 Subhumid and (semi-)arid mountains with permeable bedrock x x
7 Humid mountains with impermeable bedrock x
8 Subhumid plains/plateaus with permeable bedrock x x
9 (Sub-)Humid plains with very impermeable bedrock x
10 (Sub-)Humid mountains with permeable bedrock x x
11 (Sub-)Humid plains/plateaus with impermeable bedrock x
12 Very humid plains with impermeable bedrock x x
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Figure 4.3: 3-D graph of hydrologic landscape regions (HLR). Logarithmic trans-
formation of 𝐴𝐼 was undone.

Table 4.2: Mean and standard deviation of aridity index (𝐴𝐼), surface elevation
(𝐸𝐿𝐸𝑉 ) and permeability of geology (𝑃𝐸𝑅𝑀) calculated for hydrologic landscape
regions (HLR). Logarithmic transformation of 𝐴𝐼 was undone.

HLR
number 𝐴𝐼 [-] 𝐸𝐿𝐸𝑉 [m MSL] 𝑃𝐸𝑅𝑀 [𝑙𝑜𝑔10 𝑚2]
1 0.47 ± 0.06 695 ± 200 -12.7 ± 0.2
2 0.98 ± 0.10 392 ± 103 -13.9 ± 0.2
3 1.01 ± 0.10 214 ± 93 -12.3 ± 0.3
4 0.70 ± 0.08 1431 ± 161 -14.3 ± 0.3
5 0.55 ± 0.05 432 ± 115 -14.7 ± 0.2
6 2.60 ± 0.75 2217 ± 209 -12.7 ± 0.3
7 0.81 ± 0.13 3082 ± 249 -14.4 ± 0.3
8 1.36 ± 0.19 1050 ± 161 -12.7 ± 0.3
9 1.03 ± 0.10 413 ± 112 -14.9 ± 0.1
10 1.00 ± 0.13 2558 ± 216 -12.7 ± 0.3
11 1.59 ± 0.25 1166 ± 224 -14.3 ± 0.3
12 0.27 ± 0.04 787 ± 198 -14.6 ± 0.3

To illustrate how different hydrologic landscape regions may be conceptualized
in different hydrologic systems we give several examples in the following:

• (Sub-)Humid plains with permeable bedrock (HLR 2) are characterised by flat
topography, a surplus of precipitation over potential evaporation and perme-
able bedrock. Groundwater recharge is expected to be high. Hence, shallow
and deep groundwater are assumed to be important components of the hydro-
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logical system.
• Humid low range mountains with impermeable bedrock (HLR 4) have a medium

altitude and mountanious landscape morphology, a surplus of precipitation
over potential evaporation and impermeable bedrock. Hydrologic flow paths
are dominated by overland flow whereas groundwater recharge is less impor-
tant.

• Humid mountains with impermeable bedrock (HLR 7) are described by high
altitude and mountanious landscape morphology, a surplus of precipitation
over potential evaporation and impermeable bedrock. Given this geologic set-
ting groundwater recharge is expected to be minimal. Due to the steep terrain
the hydrologic flow path is dominated by overland flow whereas groundwater
recharge is limited.

• (Sub-)Humid plains with very impermeable bedrock (HLR 9) can be sum-
marised as follows: flat topography, a surplus of precipitation over poten-
tial evaporation and very impermeable bedrock. Embedded into this setting
groundwater recharge is minimal and the main contributor is overland flow.

4.2 Model Evaluation

Figure 4.4 presents maps of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 for all five flow percentiles. For all five flow
percentiles the ensemble consistently underestimates the runoff for some parts of
southern Siberia and for the central part of the Rocky Mountains. For the latter
one, the negative bias is more pronounced for high flows (Fig. 4.4a) compared to the
low flows (Fig. 4.4e). Furthermore, the spatial coherent region of underestimation for
the high flows reaches up to Alaska. In Japan high flows are slightly overestimated,
but for the remaining four flow percentiles the understimation increases towards
the low flows. Generally, the negative 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 appears to be more pronunced for
low flows. By contrast, there is no region for which the positive 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 points
for all flow percentiles consistently in one direction. Regarding the moderate low
flows and low flows the ensemble shows an overestimation for the East Coast of the
USA. Generally, the ensemble performs well for the central USA and the UK. Figure
4.5 exhibits maps of 𝐵𝑟𝑒𝑙 for all five flow percentiles. These maps reveal patterns
similar to those in Figure 4.4; the 𝐵𝑟𝑒𝑙 is, however, more accentuated for smaller
catchments (Fig. 2.3). This can be observed for the overestimation of moderate high
flows and high flows in Western and Southern Russia (Figs. 4.4a, 4.4b, 4.5a, and
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Figure 4.4: Global maps of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 for the five flow percentiles (a-e) computed
by equation (3.3). Red (blue) indicates a negative (positive) 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡. Hotspots
for strong underestimation are found in Alaska (a-e), the Rocky Mountains (a-e),
central Asia (d-e), and Japan (c-e), whereas hotspots for strong overestimation are
located in the US East Coast (d-e) and western Russia (a-b).

4.5b) and also for low flows of the US East Coast (Figs. 4.4e and 4.5e). Although we
computed 𝐵𝑠𝑡𝑑, we found the results not suitable because the data was less normally
distributed than 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡. Thus, we decided to exclude them from the statistical
analysis and will not show any results. Furthermore, we argue that one standardised
bias is sufficient.

Figure 4.6 shows maps of 𝐾𝐺𝐸𝛾𝛽 and its two components 𝛾 and 𝛽. With re-
spect to 𝛾 an overall tendency towards slight underestimation is predominant with
only some exceptions (e.g., Central Europe, New Zealand). The picture is more
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Figure 4.5: Global maps of 𝐵𝑟𝑒𝑙 for the five flow percentiles (a-e) computed by
equation (3.1). Maps as Figure 4.4. Hotspots for strong underestimation are found
in Alaska (a-e) and the Rocky Mountains (a-e), central Brasil (d-e), central Asia
(d-e), and Japan (c-e), whereas hotspots for strong overestimation are located in
the US East Coast (d-e), western Russia (a-b), partly in southern Russia (a-b),
south-western Australia (e).

complex for 𝛽 and the pattern resembles those in Figure 4.4 and 4.5, which show
an underestimation for Alaska, the Rocky mountains and parts of southern Siberia.
Overestimation is mainly found in western and southern Russia. Particularly, the
𝐾𝐺𝐸𝛾𝛽 performs poorly for those regions where 𝛽 is overestimated and underesti-
mated, respectively. A good performance is found for the US East Coast and the
UK.

Figure 4.7 depicts maps of 𝐶𝑉 for all five flow percentiles which show that the
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Figure 4.6: Global maps of 𝛾 (a), 𝛽 (b) and 𝐾𝐺𝐸𝛾𝛽 (c) computed by equations (3.4
— 3.6). Blue (red) displays an overestimated (underestimated) 𝛾 and 𝛽, respectively.
Dark green (light green) indicates a good (poor) 𝐾𝐺𝐸𝛾𝛽. A hotspot of poor 𝐾𝐺𝐸𝛾𝛽

is located in the Rocky Mountains.

inter-model disagreement is systematically high for all five flow percentiles in Alaska,
the Rocky Mountains and southern Siberia. We found low inter-model disagreement
for the US East Coast, the UK, Japan, New Zealand, central and northern Europe,
and western Russia; however, for the US East Coast, central and northern Europe
the disagreement increases towards the low flows.

After inspecting the distributions of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 for all HLRs, we selected
HLR 2, HLR 3, HLR 8, HLR 9, and HLR 11. We call them selected HLRs hereafter.
Those HLRs which were not listed are refered to as non-selected HLRs hereafter.
We further present the underlying mean, median, standard deviation, skewness, and
kurtosis of those distributions in Table 4.3. Figure 4.8 depicts the distributions of
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡, 𝐵𝑟𝑒𝑙, and 𝐶𝑉 on all five flow percentiles for the entire dataset and selected
HLRs. For the 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 of the entire dataset, no clear pattern is detectable. The
medians are negative, but close to zero. The standard deviation does not vary much
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Figure 4.7: Global maps of 𝐶𝑉 for the five flow percentiles (a-e) computed by equa-
tion (3.7). Blue (yellow) depicts low (high) inter-model disagreement. Hotspots of
high inter-model disagreement exist for Alaska, the Rocky Mountains and southern
Russia.

among the percentiles. This also holds for the slightly negative skewness values
(Table 4.3). Similarly, there is also no pattern in 𝐵𝑟𝑒𝑙 of the entire dataset. Likewise
medians are negative and close to zero, but in contrast means are positive as well
as values for skewness (Table 4.3). When considering the distributions of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡

and 𝐵𝑟𝑒𝑙 of all selected HLRs two distinct issues can be identified: (i) mean values
of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 are always less than median values; (ii) mean values of 𝐵𝑟𝑒𝑙 are greater
than median values. Common patterns are shared by HLR 2, HLR 3, HLR 8, and
HLR 11. In particular, they tend to have positive median values for 𝑄5 and 𝑄25 and
negative median values for 𝑄75 and 𝑄95. Another common ground for those HLRs
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is that 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 show a larger spread at 𝑄95 than at 𝑄5. This is reflected
by a greater standard deviation (Table 4.3). By contrast, 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 in HLR
9 show a tendency towards positive biases for 𝑄50, 𝑄75, and 𝑄95. For 𝑄5 and 𝑄25

this tendency is diminishing.
For the non-selected HLRs we found especially consistent patterns for HLRs with

complex topography (HLR 1, HLR 4, HLR 7, HLR 10, and HLR 12). The complex
topography manifests, for example, in higher 𝑆𝐿𝑂 (Fig. A.10k). Their distributions
of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 completely point towards a negative bias. For further details
we refer to Figure A.11.

The 𝐶𝑉 rises consistently for the entire dataset and the selected HLRs from
high flows to low flows (Figs. 4.8k-4.8o). HLR 8 and HLR 11 appear to have highest
𝐶𝑉 values (Figs. 4.8m and 4.8o, respectively). For HLR 2, HLR 3, and HLR 9
distributions are similar to those of the entire dataset (Figs. 4.8k, 4.8l, and 4.8n,
respectively).

𝐾𝑆 statistic and 𝑝 value derived from the two-sample Kolmogorov-Smirnov-Test
between the distribution of the entire dataset and every HLR are given in Table 4.4.
At a significance level of 5% (two-tailed 𝑝 value) most distributions of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and
𝐵𝑟𝑒𝑙 are significantly different from each other. Exceptions exist, for example, in
HLR 3 where for 𝐵𝑟𝑒𝑙 𝑄75, 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95, and 𝐶𝑉 𝑄25 distributions are the same.

4.3 Bivariate Regression: Climatic and Physiographic
Controls on Model Errors

The 𝑅2 values obtained from the bivariate regression analysis are illustrated in
Figure 4.9. Best 𝑅2 values suffice just to describe weak relationships. Moreover,
no relationship for the majority of the predictor-predictand pairs is available. For
informative predictor-predictand pairs with 𝑅2 > 0.15 scatterplots are shown in
Figure 4.11. The weak relationships were predominantly nonlinear and/or often
characterised by heteroscedasticity (i.e. uneven variance of the data). For the sake
of simplicity we placed the predictors into groups of climate, topography (T), land
cover (LC), geology, soils (So), and water use (WU). The results unveil that at this
level (𝑅2 > 0.15) seven predictors have an influence on the model errors. From those,
three relate to climate, one to land cover, one to topography, one to geology, and one
to Water use. 𝑓𝑆 was negatively related to 𝐵𝑟𝑒𝑙 𝑄5 in HLR 8 (Fig. 4.11d). Negative
relationships were also found for 𝐾𝐺𝐸𝛾𝛽 between 𝑃𝑠𝑖 in HLR 9 and 𝐴𝐼 in HLR 11,
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Figure 4.8: Distributions of 𝐵𝑟𝑒𝑙 (a-e), 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 (f-j), and 𝐶𝑉 (k-o) on all five
flow percentiles for the entire dataset and selected HLRs. 𝑛 refers to the number
of data points. The box plot whiskers range from the 10% to the 90% percentile of
the distribution, the box represents the inter-quartile range, solid line depicts the
median, and dashed line displays the mean. The dark grey boxes in the background
represent the boxes of the entire dataset (𝑛 = 3635). For catchments locations see
Fig. 4.2.

respectively (Figs. 4.11g and 4.11h, respectively). 𝑆𝐿𝑂 was negatively related to
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 in HLR 8 (Fig. 4.11b). Conversely, the relationship between 𝐶𝑂𝑅𝑅

and 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 in HLR 8 is positive (Fig. 4.11a). Further positive relationships
could be shown between 𝐴𝐼 and 𝐵𝑟𝑒𝑙 𝑄5 in HLR 8 (Fig. 4.11c), between 𝑓𝐿𝑖𝑠𝑠 and
𝐵𝑟𝑒𝑙 𝑄75 in HLR 8 (Fig. 4.11f), and between 𝐼𝑅𝑅 and 𝐵𝑟𝑒𝑙 𝑄5 in HLR 8 (Fig.
4.11e). Besides that, the latter one is characterised by a high heteroscedasticity.
The variance is high for low 𝐼𝑅𝑅 and vice versa.

The results of the bivariate regression describing the predictor-predictand rela-
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Table 4.3: Mean, median, standard deviation, skewness, and kurtosis of evaluation metrics for the entire dataset and selected
HLRs. 𝑛 refers to the number of data points. In each subset the mean, median, standard deviation skewness and kurtosis of the
distribution of each evaluation metric are shown. Table 4.1 lists the descriptions of the HLRs.

Metric Mean Median
Standard
deviation Skewness Kurtosis Mean Median

Standard
deviation Skewness Kurtosis Mean Median

Standard
deviation Skewness Kurtosis

𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5

A
ll

(n
=

36
35

)

-0.13 -0.04 0.65 -2.21 15.61

H
LR

2
(n

=
48

6)

0.1 0.14 0.75 -3.07 26.41

H
LR

3
(n

=
47

5)

0.14 0.19 0.58 -0.76 2.8
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄25 -0.12 -0.02 0.6 -3.1 30.39 -0.01 0.01 0.79 -6.82 80.16 0.18 0.2 0.55 -1.12 8.13
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50 -0.15 -0.05 0.62 -4.23 50.12 -0.1 -0.01 0.85 -8.56 105.92 0.02 0.08 0.65 -2.74 19.87
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 -0.2 -0.09 0.69 -2.02 12.08 -0.15 -0.07 0.78 -1.62 7.42 -0.18 -0.09 0.79 -2.98 21.63
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 -0.2 -0.13 0.76 -1.13 4.03 -0.09 -0.09 0.87 -0.4 0.64 -0.26 -0.26 0.86 -0.67 1.67

𝐵𝑟𝑒𝑙 𝑄5 0.08 -0.04 0.59 1.15 1.54 0.21 0.12 0.53 1.08 1.54 0.26 0.15 0.52 1.14 1.5
𝐵𝑟𝑒𝑙 𝑄25 0.13 -0.02 0.71 1.78 4.07 0.2 0.01 0.7 2.16 5.66 0.38 0.17 0.71 1.75 3.47
𝐵𝑟𝑒𝑙 𝑄50 0.07 -0.06 0.65 1.53 3.5 0.12 -0.02 0.6 1.62 3.84 0.25 0.08 0.66 1.39 2.3
𝐵𝑟𝑒𝑙 𝑄75 0.06 -0.13 0.75 1.49 2.97 0.1 -0.07 0.67 1.35 2.55 0.12 -0.1 0.76 1.74 3.63
𝐵𝑟𝑒𝑙 𝑄95 0.27 -0.18 1.22 1.8 3.03 0.39 -0.07 1.22 1.67 2.33 0.23 -0.22 1.19 2.07 4.14

𝐾𝐺𝐸𝛾𝛽 0.51 0.57 0.32 -1.79 5.81 0.57 0.63 0.33 -1.97 5.48 0.52 0.57 0.28 -1.97 5.8

𝐶𝑉 𝑄5 0.79 0.69 0.42 1.53 3.33 0.81 0.72 0.39 1.19 1.56 0.75 0.66 0.4 1.88 5.05
𝐶𝑉 𝑄25 0.78 0.69 0.38 1.23 2.02 0.73 0.67 0.3 1.4 2.87 0.76 0.68 0.34 1.47 2.96
𝐶𝑉 𝑄50 0.84 0.78 0.34 1.14 2.05 0.8 0.77 0.26 1.28 2.8 0.81 0.77 0.27 0.85 1.19
𝐶𝑉 𝑄75 0.96 0.88 0.35 1.17 2.32 0.91 0.87 0.24 0.84 0.98 0.93 0.86 0.26 0.97 1.05
𝐶𝑉 𝑄95 1.09 1.03 0.36 1.22 2.42 1.07 1.03 0.27 0.65 0.31 1.06 1.03 0.27 0.79 0.9
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-0.02 0.1 0.94 -7.77 89.91
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄25 0 0.12 0.75 -1.93 7.75 0.1 0.13 0.62 -2.51 21.15 -0.15 -0.01 0.95 -8.79 103.86
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50 -0.25 -0.08 0.78 -2.18 7.5 0.12 0.21 0.69 -2.24 11.9 -0.21 -0.07 0.95 -9.47 118.2
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 -0.49 -0.34 0.86 -1.4 2.54 0.14 0.24 0.86 -1.47 6.41 -0.32 -0.19 0.92 -6.53 67.89
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 -0.48 -0.34 0.89 -1.75 4.26 0.15 0.17 0.93 -0.92 2.45 -0.32 -0.12 0.88 -3.75 27.41

𝐵𝑟𝑒𝑙 𝑄5 0.38 0.16 0.8 0.65 -0.54 0.18 0.05 0.54 1.26 2.1 0.31 0.16 0.79 0.75 -0.26
𝐵𝑟𝑒𝑙 𝑄25 0.34 0.15 0.85 1.24 1.84 0.31 0.09 0.76 1.97 4.04 0.15 -0.02 0.75 0.83 0.15
𝐵𝑟𝑒𝑙 𝑄50 0.04 -0.09 0.7 1.68 3.84 0.31 0.17 0.67 1.42 3.15 0.08 -0.11 0.8 1.22 1.23
𝐵𝑟𝑒𝑙 𝑄75 -0.12 -0.37 0.76 2.27 7.34 0.39 0.22 0.83 1.15 1.58 0.04 -0.34 0.91 1.51 2.42
𝐵𝑟𝑒𝑙 𝑄95 -0.04 -0.42 1.01 2.28 5.83 0.79 0.23 1.47 1.26 0.7 0.38 -0.24 1.49 1.6 1.93

𝐾𝐺𝐸𝛾𝛽 0.38 0.47 0.36 -1.54 2.79 0.53 0.62 0.37 -2.43 8.48 0.29 0.33 0.35 -1.31 2.99

𝐶𝑉 𝑄5 0.8 0.68 0.47 1.87 4.36 0.82 0.71 0.44 1.8 4.18 0.97 0.86 0.5 1.37 2.21
𝐶𝑉 𝑄25 0.92 0.85 0.38 0.75 0.32 0.76 0.67 0.34 1.51 3.74 1.07 1.03 0.4 0.82 0.92
𝐶𝑉 𝑄50 1.03 0.97 0.33 1.24 2.13 0.82 0.76 0.3 1.06 1.14 1.21 1.17 0.38 1.39 3.34
𝐶𝑉 𝑄75 1.15 1.09 0.33 1.12 2.11 0.93 0.87 0.28 0.89 0.93 1.37 1.31 0.45 1.11 1.44
𝐶𝑉 𝑄95 1.28 1.24 0.38 0.77 0.96 1.11 1.06 0.29 1.2 2.68 1.5 1.42 0.47 0.93 0.6637
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tionship for the non-selected HLRs will not be shown (see Sect. 5.1).
In contrast to the model errors, informative relationships found in the inter-model

disagreement are characterised by greater strength (Fig. A.4). Important predictors
are predominantly related to climate and land cover. The latter one restricts to 𝑄5.
In the appendix, we present informative relationships (𝑅2 > 0.3) between climatic
and physiographic characteristics and inter-model disagreement (see Fig. A.6 for
further details).

Concerning the scaling effect low 𝑅2 values derived from the regression analy-
sis between the evaluation metrics and the catchment size for the selected HLRs
suggesting that there is no systematic error (Table A.1).

4.4 Random Forest: Climatic and Physiographic Controls on
Model Errors

Figure 4.10 shows ranks of importance of climatic and physiographic characteristics
found by using RF to predict the model errors. Those results for the selected HLRs
are mainly in agreement with those found by the bivariate regression. For the sake
of simplicity we placed the predictors into groups of climate, topography (T), land
cover (LC), geology, soils (So), and water use (WU). From the entire dataset (Fig.
4.10a) we obtained that especially 𝑆𝐿𝑂 and 𝑓𝑆 have high relevance for biases of
high flows. Topography-related predcitors exhibited a high importance over all flow
percentiles in general. Moreover, it is clearly discernible that 𝑃𝑠𝑖 and 𝑃𝐸𝑅𝑀 gain
importance for biases of 𝑄75 and 𝑄95 while the importance of 𝐴𝐼 is restricted to
𝑄25 and 𝑄5. However, high ranks for the selected HLRs (Figs. 4.10b-4.10f) are
hetergeneously distributed among the predictor groups. Hence, the general picture
drawn by those findings is more complex than that resulting from the bivariate
regression. The results of the RF approach are only described for HLR 3, HLR
8, and HLR 9 here. The reason for that is the shift from positive biases of 𝑄5

to negative biases of 𝑄95 is most distinct in HLR 3 and HLR 8 (Figs. 4.8c, 4.8d,
4.8g, and 4.8h, respectively). By contrast, biases of 𝑄75 and 𝑄95 in HLR 9 were
predominantely positive. We found distinct different patterns between HLR 3, HLR
8, and HLR 9:

• (Sub-)Humid plains with very permeable bedrock (HLR 3): Regarding the pre-
dictor importances (Fig. 4.10c) there is clearly a difference between the three
metrics describing the model error. Topography-related and water use-related
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Figure 4.9: Coefficients of determination (𝑅2) of bivariate (non-)linear regression
for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡, 𝐵𝑟𝑒𝑙 and 𝐾𝐺𝐸𝛾𝛽. Heatmaps of the 𝑅2 are depicted for entire data (a)
and for selected HLRs (b-f). Purple (white) indicates moderate (no) relationship.
Abbreviations referring to: T, Topography; So, Soils; WU, Water use.

predictors are relatively unimportant for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5. Important predictors
for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄25, 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50, and 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 are related to climate, topog-
raphy, land cover, and soils. For 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 predictors related to soils are less
important. Instead, water use and geology provide important predictors. For
𝐵𝑟𝑒𝑙 important predictors mainly concentrate on climate and land cover ex-
cept for 𝑄50 and 𝑄75 where geology comes in addition. Furthermore, relevant
predictors for 𝑄75 are complemented by topography. For 𝐾𝐺𝐸𝛾𝛽 important
predictors are limited to climate and land cover.

• Subhumid plains/plateaus with permeable bedrock (HLR 8): Predictor im-
portances found for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡, 𝐵𝑟𝑒𝑙, and 𝐾𝐺𝐸𝛾𝛽 are mainly in agreement (Fig.
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Figure 4.10: Ranks of permutation importance of random forest for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡, 𝐵𝑟𝑒𝑙

and 𝐾𝐺𝐸𝛾𝛽. Heatmaps of the ranks are depicted for entire data (a) and for selected
HLRs (b-f). Red (yellow) displays high (low) ranks. Abbreviations referring to: T,
Topography; So, Soils; WU, Water use.

4.10d). This agreement between the two biases is present for 𝑄5, 𝑄75, and
𝑄95, but not for 𝑄25 and 𝑄50. For 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄25 climate-related, topography-
related, geology-related, and soil-related predictors are relevant while for 𝐵𝑟𝑒𝑙

𝑄25 climate-related, land cover-related, and water use-related predictors are
important. Climate-related and topography-related predictors are relevant for
both 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50 and 𝐵𝑟𝑒𝑙 𝑄50. Predictors related to land cover and soils come
in addition for 𝐵𝑟𝑒𝑙 𝑄50, and for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50 geology provides further impor-
tant predictors. Regarding 𝐾𝐺𝐸𝛾𝛽 every predictor group provides somewhat
relevant predictors except water use.

• (Sub-)Humid plains with very impermeable bedrock (HLR 9): Important pre-
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Figure 4.11: Scatterplots of climatic and physiographic characteristics (along the
𝑥-axis) versus 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 (along the 𝑦-axis), including the best-fit regression.
Scatterplots are shown for informative predictor-predictand pairs with 𝑅2 > 0.15.
Each data point represents a catchment. Abbreviations referring to the HLR (for
description see Table 4.1) and to the type of the best-fit regression function: EXP,
exponential; LIN, linear; LOG, logarithmic; and POW, power.

dictors of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 were found to be in agreement for 𝑄5 and 𝑄95.
For 𝑄95 these were associated with climate and soils, whereas for 𝑄5 these
predictors concern climate, topography, and land cover. These three relevant
predictor groups are in agreement for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 at 𝑄25. Similar pat-
tern exist for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 at 𝑄50 except that for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50 soils gained
further relevance. For biases of 𝑄75 and 𝑄95 climate and soils reached high
importances except for 𝐵𝑟𝑒𝑙 𝑄75 where geology added. For 𝐾𝐺𝐸𝛾𝛽 important
predictors are found within climate and land cover.

Predictor importances of HLR 2 and HLR 11 are not described here. Instead, we
refer to Figures 4.10b and 4.10f. Heatmaps with predictor importances of non-
selected HLRs will not be shown (see Sect. 5.1).

Patterns on the importance of climatic and physiographic characteristics found
for the inter-model disagreement (Fig. A.5) emphasize high importance of climate-
related predictors over all five flow percentiles. Among those especially 𝐴𝐼, 𝑃 , and
𝑃𝐸𝑇 are associated with higher ranks. At 𝑄5 further important predictors com-
pleting climate-related predictors belong to land cover where 𝑓𝑆 is highly relevant.
The patterns at 𝑄25, 𝑄50, and 𝑄75 are characterised by a high spottiness. For exam-
ple, the at 𝑄50 highly ranked predictors are not only related to climate, but also to
land cover and geology (Figs. A.5c, A.5d, and A.5f, respectively). At 𝑄25 and 𝑄75
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Figure 4.12: Single-variable partial dependence (PD) plots of climatic and physio-
graphic characteristics (along the 𝑥-axis) versus partial dependence of 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5,
𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75, and 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (along the 𝑧-axis), respectively. Plots are shown
for HLR 3 (a, b), HLR 8 (c, d), and HLR 9 (e, f). The hash marks at the base
of the plots delineate deciles of the corresponding predictor variable. 𝑅2 exhibits
the out-of-bag accuracy. The hat (^) denotes the predicted metric by the RF. For
abbreviations on 𝑥-axis and 𝑦-axis see Table 2.2.

important predictors are mainly related to climate, but predictors related to land
cover partly appear to be relevant as well (Figs. A.5b and A.5c, respectively).

In Figure 4.12, we present the single-variable partial dependence on 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5

and 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 in HLR 3 and HLR 8, and single-variable partial dependence on
𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 and 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 in HLR 9. These are shown for the four highest
ranked predictors. Notice that results of partial dependence will only be described
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Figure 4.13: Two-variable partial dependence (PD) plots of climatic and physio-
graphic characteristics (along the 𝑥-axis and 𝑦-axis) versus partial dependence of
𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5, 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75, and 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (along the 𝑧-axis), respectively. Plots
are shown for HLR 3 (a, b), HLR 8 (c, d), and HLR 9 (e, f). 𝑅2 exhibits the out-of-
bag accuracy. The hat (^) denotes the predicted metric by the RF. For abbreviations
on 𝑥-axis see Table 2.2 and for descriptions of HLRs see Table 4.1.

for those cases in which data density is sufficient. Data density is indicated by deciles
(see Section 3.5). Since different important predictors are identified for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and
𝐵𝑟𝑒𝑙 we show only the results of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 here. For the same partial dependencies as
in Figure 4.12 but for 𝐵𝑟𝑒𝑙 we refer to Figures A.2 and A.3. The relationships were
predominantly nonlinear and/or often characterised by non-monotony.
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In HLR 3 the partial dependence of 𝐵̂𝑠𝑞𝑟𝑡 𝑄5 (Fig. 4.12a) on 𝑃𝐸𝑅𝑀 is decreasing
monotonically. The partial dependence on 𝑁𝐷𝑉 𝐼 also reveals a monotonic decrease.
We recall that 𝑁𝐷𝑉 𝐼 ranges from 0 to 255 (see Section 2.4). This is opposed by a
monotonic increase existing for partial dependence on 𝑆𝐼𝐿𝑇 and 𝑃𝐸𝑇𝑠𝑖. However,
relationships derived from the partial dependence on 𝑄95 (Fig. 4.12b) show positive
relationship for 𝐶𝐿𝐴𝑌 , 𝑁𝐷𝑉 𝐼, and 𝐴𝐼. 𝑁𝐷𝑉 𝐼 exhibits a sudden increase at 180.
A sudden increase was also for 𝐴𝐼 at -0.1. The relationship of 𝑆𝐿𝑂 is characterised
by negative monotonic shape partial dependence decreasing between 0.5 and 1.5.

The partial dependence of 𝐵̂𝑠𝑞𝑟𝑡 𝑄5 in HLR 8 reveals a slight positive relationship
for 𝐴𝐼 and a strong positive relationship for 𝐼𝑅𝑅 (Fig. 4.12c). Slight negative rela-
tionships are present for 𝐸𝐿𝐸𝑉 and 𝑃𝐸𝑇𝑠𝑖 (Fig. 4.12c). Conversely, 𝑃𝐸𝑇𝑠𝑖 behaves
in the opposite way for the partial dependence on 𝑄95 and increases monotonically
(Fig. 4.12d). This is also observed on 𝐶𝑂𝑅𝑅 (Fig. 4.12d). Monotonic decrease
exists for partial dependence both on 𝐸𝐿𝐸𝑉 and 𝑃𝐸𝑅𝑀 (Fig. 4.12d).

In HLR 9 there is a strong positive monotonic partial dependence apparent for 𝑃𝑠𝑖

for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 and 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (Figs. 4.12e and 4.12f). For 𝑆𝐼𝐿𝑇 a monotonic
increase was found (Figs. 4.12e and 4.12f). 𝑃𝐸𝑇𝑠𝑖 have a non-monotonic partial
dependence. Slight negative partial dependence is exhibited on 𝐴𝐼 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95

(Fig. 4.12e). Partial dependence on 𝑃 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 changes its slope several
times, but generally displays a positive relationship (Fig. 4.12f).

Corresponding to the single-variable partial dependencies the two-variable partial
dependencies of the two highest ranked predictors are illustrated by Figure 4.13.
The interaction surfaces are often characterised by high complexity. A flat shape
implies that the predicted metric is independent of the two variables considered.
In case the surface is inclined towards one variable, then the partial dependence
relies just on this variable. If the inclination is directed towards both variables an
interaction between the two variables exists. We found strong two-sided interaction
just for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 in HLR 8 between 𝐸𝐿𝐸𝑉 and 𝐶𝑂𝑅𝑅 (Fig. 4.13d). Concerning
the remaining two-variable partial dependencies interaction restrain to those areas
where non-constant partial dependencies intersect (Figs. 4.13a, 4.13b, 4.13c, 4.13e,
and 4.13f, respectively).

The 𝑅2 values of RF which give evidence about the model accuracy range from
poor to moderate (Table A.2).
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5 Discussion

5.1 Model Evaluation

The model evaluation based on the entire dataset did not provide any interesting
insights. On the contrary, assessing the ensemble performance from the perspective
of mean and median of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 would suggest that the models have some-
how slight biases (Fig. 4.8, Table 4.3). Thereby, it remains invisible where exactly
the ensemble performs poorly. The partitioning of the catchments into subsets high-
lighted those catchments for which the ensemble exhibited significant deficiencies in
capturing long-term runoff trends at five different flow percentiles. Results of the
two-sample Kolmogorov-Smirnov-Test demonstrated that distributions of biases of
selected HLRs were mostly significantly different from distributions of the entire
dataset (Table 4.4). This strongly underpinned our strategy to divide data into
subsets. By comparing 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 (Figs. 4.8 and A.11, Table 4.3) the man-
ifested deficiencies are threefold: (i) consistent tendency of runoff underestimation
for catchments with complex topography (e.g., HLRs with higher 𝑆𝐿𝑂; Fig. A.10k);
(ii) consistent tendency to overestimate runoff for 𝑄5 and 𝑄25 as well as to under-
estimate runoff for 𝑄75 and 𝑄95 for (sub-)humid catchments with flat topography
(e.g., HLRs with lower 𝑆𝐿𝑂; Fig. A.9k). It is conceivable that models release too
much of the precipitation too quickly, which would explain the overestimation of 𝑄5.
As a consequence, less water is stored in soils and aquifers which lead to an under-
estimation of 𝑄95. Since models included in the ensemble account for a closed water
balance (Schellekens et al. 2017), one can deduce that the error is attributed to the
model structure (e.g., storage routine). In this respect, it would be interesting to
see how the distributions for the total biases might look like (i.e. bias is calculated
between entire simulated and observed time series); (iii) tendency to overestimate
runoff for 𝑄75 and 𝑄95 for (sub-)humid catchments with flat topography and very
impermeable bedrock. The overestimation might be due to wrong parameterisation
of the storage (e.g., soil storage and/or groundwater storage). An oversizing of the
storage volume might lead to ongoing release of water although the storage already
has to be much more depleted.
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Due to the presence of a high spatial correlation in the patterns of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and
𝐵𝑟𝑒𝑙 (cf. Figs. 4.4, 4.5, and 4.2) errors may originate from the WFDEI 𝑃 data. Beck
et al. (2017a), for example, have demonstrated for the conterminous USA that model
errors and 𝑃 bias are correlated moderately strong and, thus, propagate into the
models. They argue that the biases in the WFDEI 𝑃 data are present because the
forcing does not properly account for orographic effects. Similarly, Gudmundsson
et al. (2012b) pointed towards biased forcing data that is possibly attributed to the
model error. This suggests that simulated runoff is highly sensitive to the forcing
(e.g., Sperna Weiland et al. 2015). Moreover, the 𝑃 bias may differ substantially for
different forcings (e.g., Materia et al. 2010). This makes it complicated to answer the
question of whether the error is attributed to model parameterisation or structural
errors (e.g., storage routine), or whether the spurious runoff estimates are solely
caused by the forcing. To overcome this ambiguity and enhance a process-based
evaluation two issues have to be clarified: (i) More effort should be devoted to
the global evaluation of 𝑃 biases in the forcing (e.g., Beck et al. (2017a)); (ii)
Catchments which are affected by forcing errors might be excluded from the model
evaluation. The evaluation of 𝑃 errors was beyond the scope of this study. However,
we propose using the independent MSWEP 𝑃 data (see Table 2.2) for profound
assessment. Currently, this is the most accurate global-scale 𝑃 dataset (Beck et al.
2017a). In contrast to the WFDEI dataset they corrected 𝑃 for gauge under-catch
and orographic effects.

One remarkable result of the model evaluation is that, independently from
dataset being considered, the inter-model disagreement increases from 𝑄5 to 𝑄95

(Fig. 4.8, Table 4.3). The larger spread for low flows is in line with the findings
of Gudmundsson et al. (2012b). A reason for the higher inter-model disagreement
is the associated uncertainty in mathematical representations for low flows (Gud-
mundsson et al. 2012b). Although the models in the ensemble incorporate smiliar
processes (see Table 2.1) the general inter-model disagreement for the five flow per-
centiles might also be explained by different parameterisation. The models use a
wide range of data products for setup. Even though models may have the same data
sources for parameterisation different processing and interpretation of the mapped
values may result in different model parameters (Gudmundsson et al. 2012b).

Several studies have shown that multi-model ensembles lead to an improved
performance (e.g., Beck et al. 2017a; Gudmundsson et al. 2012b; Materia et al. 2010);
we proved its suitabilty for multi-model evaluation. Using a multi-model ensemble
is less cumbersome since the evaluation metrics have to be calculated only once and
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not for each model seperately. Combining the biases and inter-model disagreement
at different flow perecentiles allows almost similar conclusions as evaluating each
model individually. Typically, the ensemble mean scatters around the true value (i.e.
removing random noise by averaging) unless the error is systematic (Gudmundsson
et al. 2012b). However, in this way if the error is not systematic, we lose track
of the error to its specific model. In case the error is systematic the inter-model
disagreement might diminish meaning that models agree on the error (e.g., Figs.
A.11g, A.11n, and A.11u). In order to allow a process-based evaluation it is crucial
that the ensemble members consider the same processes, albeit the mathematical
representations may differ.

Since the existing 22 large-scale studies which evaluated the runoff estimations
of multiple models (Table 1.1) often did not include the same models as well as
different forcing, it is, hence, difficult to compare the results directly. Regarding
this we call for the same suggestion as Beck et al. (2017a) and encourage efforts
towards a single community hydrological model (Weiler and Beven 2015) for which
it is possible to select alternative model structures. Beck et al. (2017a) proved
in their study that the multi-parameterisation ensemble HBV-SIMREG (Beck et
al. 2016) outperformed the multi-model ensemble. A single community hydrological
model would facilitate the comparability of the results of different studies. Moreover,
it would be unnecessary to set up, run, and maintain multiple models (Beck et al.
2017a). When focusing on a single community hydrological model, human resources,
which have been used for one of the plethora of models, could be used instead to
advance the community hydrological model.

5.2 Climatic and Physiographic Controls on Model Errors

The model evaluation already revealed “climatic” control of 𝑃 biases in the forcing
on the model errors. In this respect, we argue that the results of the statistical
analysis for HLRs with complex topography should be interpreted very cautiously.
Since model errors are corrupted by the forcing the statistical analysis would give
answers for the wrong reasons. It is highly recommended to interpret results for
which it is less likely that 𝑃 errors propagate into the simulated runoff.

The regression analysis unveiled the following insights about the relationship
between climatic and physiographic catchment characteristics and model errors:

• Subhumid plains/plateaus with permeable bedrock (HLR 8): The positive re-
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lationship between 𝐶𝑂𝑅𝑅 and 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (Fig. 4.11a) exhibits, that the
simulated runoff tends to understimate when there is a phase-shift (e.g., nega-
tive 𝐶𝑂𝑅𝑅) in the seasonality of supply and demand of water. This phase-shift
suggests that rather an inadequate storage routine than the evapotranspira-
tion routine might be responsible for that. Beck et al. (2013) found a nega-
tive relationship between 𝐶𝑂𝑅𝑅 and base flow index (BFI), which supports
our hypothesis. 𝑆𝐿𝑂 and 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 were negatively related (Fig. 4.11b)
when a greater underestimation is present for steeper slopes. A steeper terrain
and the geological setting of HLR 8 with a higher bedrock permeability sug-
gest that lateral groundwater flow may be significant. Presumably, simulated
runoff might be underestimated because steep sloping aquifers are drained too
quickly. Yet, it is also likely that models do not account for lateral groundwater
flow between grid-cells properly (Krakauer et al. 2014).
The relationship obtained between 𝐴𝐼 and 𝐵𝑟𝑒𝑙 𝑄5 was postive where sim-
ulated runoff tends to be underestimated (overestimated) for low (high) 𝐴𝐼

values (Fig. 4.11c). The reason for this overestimation could be either that
the models do not account for increasingly nonlinear response behaviour or
that it is attributed to the positively biased 𝑃 . The findings from Beck et
al. (2017a) suggest that positive 𝑃 errors are positively related to 𝐴𝐼. Runoff
underestimation in snow-influenced regions was already reported by Zaitchik
et al. (2010). This is in agreement with the present results (Fig. 4.11d). The
underestimation might result from shortcomings of the models when simulat-
ing the timing of snow accumulation and melt (Zaitchik et al. 2010). The
relationship found between 𝐼𝑅𝑅 and 𝐵𝑟𝑒𝑙 𝑄5 seem to be heavily influenced by
some outliers (Fig. 4.11e) and, thus, the interpretation may be misleading.
𝑓𝐿𝑖𝑠𝑠 and 𝐵𝑟𝑒𝑙 𝑄75 were positively related (Fig. 4.11f). The simulated runoff
appears to be underestimated (overestimated) for low (high) 𝑓𝐿𝑖𝑠𝑠. Thus, sim-
ulated runoff tends to overestimate the 𝑄75 for catchments with high fraction of
𝑓𝐿𝑖𝑠𝑠. In general, siliciclastic sedimentary rocks represent, for example, sand-
stone, mudstone, and greywacke (Hartmann and Moosdorf 2012). Yet, since
siliciclastic sedimentary rocks encompass both coarse grained and fine grained
sediments the log-scale permeability may range from -12.5 (higher permeabil-
ity) to -16.5 (lower permeability) (Gleeson et al. 2011). Due to this ambiguity
it can only be speculated whether it is the lower or higher permeability that
leads to the overestimation. Yet, since HLR 8 is characterised by permeable
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bedrock the overestimation might originate from a higher permeable bedrock.
• (Sub-)Humid plains with very impermeable bedrock (HLR 9): The negative

relationship found between 𝑃𝑠𝑖 and 𝐾𝐺𝐸𝛾𝛽 (Fig. 4.11g) can be attributed
to shortcomings of the models coping with greater seasonal precipitation dy-
namic.

• (Sub-)Humid plains/plateaus with impermeable bedrock (HLR 11): 𝐴𝐼 and
𝐾𝐺𝐸𝛾𝛽 were negatively related (Fig. 4.11h). This is in accord with Beck et
al. (2017a) and Haddeland et al. (2011) which also observed that decrease of
model performance is accompanied by increasing 𝐴𝐼. This might be due to
the interrelation between 𝑃 biases in the forcing and 𝐾𝐺𝐸𝛾𝛽.

Certain Streamflow observations correspond to an area which is about one order
of magnitude smaller than the corresponding grid cell or an area which is greater
than 10000 𝑘𝑚2 (Fig. 2.4). In the latter case, channel routing effects might be
present. Due to this scale mismatch model errors might potentially be controlled
by the catchment area. However, the regression analysis between catchment size
and model errors, proved that there is no systematic error. This is in line with
Gudmundsson et al. (2012a).

Overall, among the informative predictor-predictand pairs, climate-related pre-
dictors were most favored. Additionally, they showed also the strongest relationships
with the model errors (Figs. 4.9 and 4.11). Topography-related, land cover-related,
and geology-related predictors appeared to be important only once, while predictors
related to soils and water use were found to be relatively unimportant (Fig. 4.9).
Generally, low 𝑅2 values were obtained for bivariate relationships (Fig. 4.9), suggest-
ing that multiple predictors have to be used to account adequately for the complex
interplay between climatic and physiographic characteristics. Nonetheless, low 𝑅2

values in Figure 4.9 were found either because the predictor under consideration
has in fact no control or the quality of the dataset describing the predictor is not
sufficient to make a relationship visible. In addition to the missing representation
of the complex interplay between predictors, prevailing nonlinear relationships in
Figure 4.11 corroborate the need for RF.

The obtained 𝑅2 values of RF range from poor to moderate (Table A.2) and
exceeded 𝑅2 values of the regression analysis (Fig. 4.9). Despite those differences
in 𝑅2, relationships described by the partial dependence are in agreement with
the relationships derived by the regression analysis (e.g., Figs. 4.12d and 4.11a).
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However, results of RF are more complex than those of the regression analysis
(Figs. 4.9 and 4.10). The patterns in the entire dataset on 𝐴𝐼, 𝐸𝐿𝐸𝑉 , and 𝑃𝐸𝑅𝑀

additionally underpinned our strategy to partition the catchments into subsets based
on these three dimensions. Through the RF approach the following climatic and
physiographic controls on model errors are discernible:

• (Sub-)Humid plains with very permeable bedrock (HLR 3): Despite different
controls found for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 (Fig. 4.10), 𝑁𝐷𝑉 𝐼 is highly relevant to
both biases. Yet, presumably 𝑁𝐷𝑉 𝐼 is not a causal predictor for high flow
biases. Due to its strong negative correlation with 𝑓𝑆 (Fig. A.1c) it acts as a
surrogate and it is more likely 𝑓𝑆 to be causal. In an analogous manner, this
might also hold for low flow biases. 𝑁𝐷𝑉 𝐼 correlates positively with 𝑃𝐸𝑇

and 𝑇𝐴 and negatively 𝑃𝐸𝑇𝑠𝑖.
The negative relationship derived from partial dependence on 𝑁𝐷𝑉 𝐼 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡

𝑄5 (Fig. 4.12a) reflects the strong correlation between 𝑁𝐷𝑉 𝐼 and 𝑓𝑆 (Fig.
A.1c). Hence, simulated runoff tends to overestimate 𝑄5 in snow-influenced
catchments. Additionally, inter-model disagreement is controled by 𝑓𝑆 and
increases for higher 𝑓𝑆 values (Fig. A.6h). This means that the error is not
systematic (i.e., not all models perform poorly), but the averaging may not
compensate for the increase of scattering. Regarding this, an explaination
may be given by the differences in the snow routine (e.g., energy balance or
degree day scheme, different number of layers; Table 2.1). The overestimation
of 𝑄5 contradicts the findings of Gudmundsson et al. (2012a) and Zaitchik
et al. (2010) which stated that simulated runoff is underestimated in snow-
influenced regions. This contradiction is eventually due to the use of different
metrics and/or the spatial disagreement between the catchment locations of
the studies and HLR 3 (cf. Fig. 4.2). 𝑃𝐸𝑇𝑠𝑖 might also be noncausal since its
strongly positively correlated with 𝑓𝑆 (Fig. A.1c). By contrast, 𝑃𝐸𝑅𝑀 and
𝑆𝐼𝐿𝑇 give evidence for causal relationships. 𝑃𝐸𝑅𝑀 is negatively related to
𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5 (Fig. 4.12a). Conversely, 𝑆𝐼𝐿𝑇 is positively related to 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡

𝑄5 (Fig. 4.12a). Accordingly, simulated runoff has a tendency towards over-
estimation of 𝑄5 for less permeable bedrock and soils. It is conceivable that
infiltration is erroneously parameterised and hence the models generate too
much runoff.
The interaction between 𝑃𝐸𝑅𝑀 and 𝑁𝐷𝑉 𝐼 extends from -13.0 to -12.6
(𝑃𝐸𝑅𝑀) and 120 to 200 (𝑁𝐷𝑉 𝐼) (Fig. 4.13a). Within this rectangular a
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strong interaction occurs. Consequently, greatest overestimation occurs in
combination with lower bedrock permeability and increasing influence of snow.
The positive relationship inferred from partial dependence on 𝑁𝐷𝑉 𝐼 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡

𝑄95 (Fig. 4.12b) manifests the strong correlation of 𝑁𝐷𝑉 𝐼 versus 𝑃𝐸𝑇 ,
𝑁𝐷𝑉 𝐼 versus 𝑇𝐴, and 𝑁𝐷𝑉 𝐼 versus 𝑃𝐸𝑇𝑠𝑖 (Fig. A.1c). This indicates that
especially when energy is limited (low 𝑁𝐷𝑉 𝐼 and high 𝑓𝑆) PET formulations
might be responsible for the greater understimation. This was also reported by
Beck et al. (2017a). Partial dependence on 𝐴𝐼 provides further support that
the estimation of 𝑄95 is worse when energy is limited (Fig. 4.12b). This error
is more systematic since the inter-model disagreement is lower for lower 𝐴𝐼

(Figs. A.6i and A.2b). Another probable reason could be that too much surface
runoff is generated and thus there is a lack of recharge. Partial dependence on
𝐶𝐿𝐴𝑌 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 unveiled a positive relationship, indicating that lower
soil contents of clay amplify the underestimation (Fig. 4.12b). Since 𝐶𝐿𝐴𝑌

and 𝑆𝐴𝑁𝐷 are strongly correlated (Fig. A.1c) the underestimation might be
attributable to the soil storage routine (e.g., parameterisation of soil water
capacity). Partial dependence on 𝑆𝐿𝑂 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 exposes an increase of
underestimation for steeper slopes (Fig. 4.12b). A reason may be that models
drain inclined aquifers too quickly.
The interaction between 𝑆𝐿𝑂 and 𝑁𝐷𝑉 𝐼 restricts to the combination of lower
𝑆𝐿𝑂 and higher 𝑁𝐷𝑉 𝐼 (Fig. 4.13b).

• Subhumid plains/plateaus with permeable bedrock (HLR 8): From the par-
tial dependence on 𝐴𝐼 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5 (Fig. 4.12c) a postive relationship was
obtained. There are two potential explanations for this. First, models can-
not cope with the nonlinear catchment response linked to an increasing 𝐴𝐼.
Second, positive 𝑃 errors cause the overestimation. Concerning this, the neg-
ative relationship illustrated by the partial dependence on 𝐸𝐿𝐸𝑉 (Fig. 4.12c)
presents a counter argument. The positive 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5 decreases for higher
surface elevation. Partial dependence on 𝑃𝐸𝑇𝑠𝑖 shows almost no relationship.
Furthermore, there is no physical reason for the positive relationship exhibited
by the partial dependence on 𝐼𝑅𝑅 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5 (Fig. 4.12c).
A reasonable interpretation of the interaction between 𝐴𝐼 and 𝐼𝑅𝑅 is pre-
vented since there is no physical meaning due to the relationship of 𝐼𝑅𝑅 (Fig.
4.13c).
The negative partial dependence on 𝐸𝐿𝐸𝑉 and the positive partial depen-
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dence on 𝑃𝐸𝑇𝑠𝑖 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (Fig. 4.12d) give evidence for underestima-
tion when energy is limited. Both relations are considered to be noncausal.
𝐸𝐿𝐸𝑉 might act as a proxy for energy availability although there is no corre-
lation with 𝑇𝐴 apparent (Fig. A.1d). 𝑃𝐸𝑇𝑠𝑖 is strongly negatively correlated
to 𝑃𝐸𝑇 (Fig. A.1d). A positive relationship was obtained from the partial
dependence on 𝐶𝑂𝑅𝑅 and a negative relationship is described through the
partial dependence on 𝑃𝐸𝑅𝑀 (Fig. 4.12d). These relationships let assume
that models underestimate runoff release groundwater too quickly and/or evap-
otranspiration routine evaporates too much water. The latter case, may be
even more distinct for energy-limited catchments (e.g., plateaus). Inter-model
disagreement of 𝑄95 is controled by 𝐴𝐼 (Fig. A.3d). Runoff simulations of the
ten models diverge less for lower 𝐴𝐼 suggesting that the error is systematic.
Moreover, 𝑓𝐿𝑖𝑠𝑐 has also control on inter-model disagreement. Runoff estima-
tions agree less if there is a high fraction of carbonate sedimentary rocks. This
means errors are less systematic.
The interaction between 𝐸𝐿𝐸𝑉 and 𝐶𝑂𝑅𝑅 is clearly discernible (Fig. 4.13d).
For 𝐸𝐿𝐸𝑉 lower than 800 m MSL the two-variable partial dependence solely
relies on 𝐶𝑂𝑅𝑅. Consequently, understimation is most pronounced if there are
higher surface elevation and a phase-shifted seasonality of supply and demand
of water.

• (Sub-)Humid plains with very impermeable bedrock (HLR 9): Partial depen-
dence on 𝑆𝐼𝐿𝑇 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 was found to be positive (Fig. 4.12e) indicat-
ing that soil storages of the models are oversized. This is reasonable since the
catchments under consideration are characterised by a very low bedrock per-
meability highlighting the significance of soil storage. Here, interflow processes
may be dominant. The slight negative partial dependence on 𝐴𝐼 (Fig. 4.12e)
gives evidence that the overestimation may not be attributed to positive 𝑃

errors in the forcing. Partial dependence on 𝑃𝑠𝑖 levelled off around 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡

𝑄75 of 0 for values greater than 0.2 (Fig. 4.12e). For values less than 0.2 there,
clearly, is a tendency towards overestimation. Surprisingly, models perform
better if there is greater seasonality of precipitation. This was also found by
partial dependence on 𝑃𝑠𝑖 for 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (Fig. 4.12f). The diverging partial
dependence of 𝑃𝐸𝑇𝑠𝑖 suggest that simulated runoff is more overestimated for
values ranging from 0.4 to 0.6. However, 𝑃𝐸𝑇𝑠𝑖 is strongly correlated with
𝑃𝐸𝑇 and 𝑇𝐴 (Fig. A.1e). For both 𝑄75 and 𝑄95 inter-model disagreement is
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controled by 𝐴𝐼 and 𝑃𝑠𝑖 (Figs. A.2e and A.2e). Consequently, for lower values
of 𝐴𝐼 and 𝑃𝑠𝑖 errors are more systematic.
The two-variable partial dependence on 𝑃𝑠𝑖 and 𝑆𝐼𝐿𝑇 illustrated that there
is tendency to overestimation if precipitation seasonality is very low and per-
centage of silt soil content is relatively high (Fig. 4.13e). Conversely, there is a
tendency for underestimation if precipitation seasonality is high and percent-
age of silt soil content is relatively low.
Positive relationships were derived by partial dependence on 𝑃 and 𝑆𝐼𝐿𝑇 for
𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (Fig. 4.12e). Apparently, the overestimation of the simulated
runoff may be explained as such that soil storage is oversized and infiltration
is overestimated.
The interaction between 𝑃𝑠𝑖 and 𝑃 was distinctly dominated by 𝑃𝑠𝑖 (Fig. 4.13f).
For values of 𝑃𝑠𝑖 less than 0.2 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 is almost zero. Overestimation is
most distinct for very low precipitation seasonality and 𝑃 greater than 1000
𝑚𝑚 𝑦𝑟−1.

A surprising result is that ranks of permutation importances for 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙

4.10 are not identical although the rank correlation between 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 for
the selected HLRs is greater than 0.95 (Table A.3). There are several possible
reasons for these discrepancies. The mismatch is likely attributable to: (i) collinear
predictor variables (Fig. A.1) and deficiencies of the RF algorithm to decorrelate
them; (ii) distributions of 𝐵𝑟𝑒𝑙 are less bell-shaped than those of 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 (Fig. 4.8,
Table 4.3); (iii) 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 were differently standardised (see Sect. 3.3).

In spite of that fact, we came to the almost same conclusions when interpreting
the partial dependencies of 𝐵𝑟𝑒𝑙 (Fig. A.2).

Overall, similar to the outcomes of the regression analysis the RF approach iden-
tified, too, climate-related predictors more frequently to be important. Nonetheless,
the interplay with less frequent important predictors such as land cover, geology,
and soils was essential to figure out how the model error is controlled by the cli-
matic and physiographic characteristics. The links from evapotranspiration, geology
and soils to the erroneous 𝑄95 estimates for two HLRs (HLR 3 and HLR 8) give
evidence that deficiencies in the evapotranspiration routine and storage routine of
the state-of-the-art LHMs exist. Model errors found for 𝑄5 could be linked to a sen-
sitivity for 𝑃 errors and shortcomings in the snow routine. For one HLR (HLR 9) we
demonstrated that errors have their origin in the soil routine. For all these reasons,
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our recommendations to large-scale modellers are that they should examine these
deficiencies and possibly make the necessary adjustments. Remedial actions could
be: (i) models which do not implement a groundwater routine (e.g., JULES; Table
2.1) might add a routine to their model; (ii) existing groundwater routine have to be
improved. The current approaches might not be sufficient to drain aquifers correctly.
(iii) only 4 models (HBV-SIMREG, SWBM, LISFLOOD and WaterGAP3) incor-
porate calibration into the model setup. A calibration of the uncalibrated models
may solve false parameterisation, though structural problems may persist. Beck et
al. (2017a) proved that HBV-SIMREG, SWBM, LISFLOOD and WaterGAP3 ben-
efited from the calibration procedure and outperformed their a priori parameters.
Moreover, a priori parameters do not fulfill flux-matching (e.g., evapotranspiration)
across spatial scales (Samaniego et al. 2017). A multiscale parameter regionalisa-
tion technique may therefore enhance model performance and reduce inter-model
disagreement simultaneously (Samaniego et al. 2017).

5.3 Statistical Analysis: Critical Appraisal

The HLRs resulting from the 𝐾-means clustering showed that three simple indices
𝐸𝐿𝐸𝑉 , 𝑃𝐸𝑅𝑀 , and 𝐴𝐼, describing the three dimensions topography, geology, and
climate, are good indicators for finding similar hydrologic landscapes. To further
illustrate this, Figure 4.2 exhibits the spatial locations of the HLRs. Clearly, 𝐾-
means clustering was capable of correct classification, for example, the Himalaya
and the chalk catchments in southeastern UK (Fig. 4.2, Table 4.1). Despite the
satisfactory partitioning of the catchments into subsets a few things might be criti-
cised or improved. The three indices represent averaged catchment values and thus
potential heterogeneity might be missed. Instead of using the catchment mean sur-
face elevation, using the range of altitude may be a better indice to represent the
catchment topography. This would have required further data assimilation which
was not feasible within the given time period. One could also argue to use 𝑆𝐿𝑂

instead of 𝐸𝐿𝐸𝑉 but there was a strong correlation between these two variables
(Fig. A.1a) and classification on 𝐸𝐿𝐸𝑉 is easier to apply. Since the elbow and the
number of selected clusters (Fig. 4.1) disagree, a sensitivity analysis could provide
further insights on the stability of the analysis.

Notwithstanding a rather complex picture in terms of linkage between climatic
and physiographic characteristics and model errors, the chosen methodology proved
to be appropriate for evaluating the model error. However, regression analysis often
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yielded too weak or no relationships (Fig. 4.9). This might be due to a high variance
of the biases because positive and negative values are alternating. Analysing the
variance of biases instead of analysing absolute biases was necessary to make the
correct conclusions. Moreover, decomposing the biases into positive and negative
biases was no alternative. The distributions would then have lost the bell-shape.
This holds also true for absolute biases. Decomposed biases and absolute biases
would have required transformation (e.g., logarithmic transformation). As a conse-
quence, results would become less interpretable. Given the minor differences in the
outcomes of the regression analysis and the RF analysis for HLR 8, both methods
are recommendable. In general, an asset of the RF algorithm is that it accounts
for interactions and nonlinearities among variables (Hastie et al. 2017). This al-
lowed for a detection of complex patterns. Furthermore, RF is robust to noise and
the bootstrap sampling reduces the uncertainty of the data (Bachmair et al. 2016;
Hastie et al. 2017). Although we set the size of subsamples of predictors at each
split 𝑚 very small (see Sect. 3.5), RF could not fully decorrelate the predictors and
showed a bias towards correlated variables (Strobl et al. 2008). In this respect,
further model tuning (e.g., excluding collinear predictors, including only important
predictors) might improve the RF performance. Generally, the obtained model ac-
curacies of RF (Table A.2) might be more pessimistic than accuracies derived from
cross-validation (Hastie et al. 2017). With the calculation of the partial dependence
we could make the results of the RF analysis interpretable in a smiliar way as the
regression analysis. A strenght of partial dependence was that interaction between
important predictors could be illustrated. Nonetheless, the partly uneven shape of
the partial dependence (e.g., non-monotony) was not always intuitive. Regarding
this, a denser grid or a grid following the data density (e.g., individual grids for
each decile) might be a remedy. Yet, this would further prolong the already high
computation time.

5.4 Study Limitations

This study has several limitations, which can be improved in later research. First,
we looked into model errors at a long-term. The results shown in this work form
a good basis to delve for error patterns of simulated runoff in reproducing sea-
sonal or inter-annual variability. Second, the results are limited to catchments with
(sub-)humid climate. This is because of the lack of streamflow observations in
(semi-)arid climates. Third, streamflow observations were not spatially uniform
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available. Consequently, the evaluation was restricted to those catchments with
available streamflow observations. Moreover, the (streamflow) datasets available for
the model evaluation vary considerably in terms of accuracy and reliability (Sperna
Weiland et al. 2015). Particularly, datasets do not provide any information on data
quality. It may be worth striving for meta information describing data quality (e.g.,
distinction between poor and good quality). Fourth, average values for climatic
and physiographic characteristics neglect potential heterogeneity. Future evaluation
efforts should include this heterogeneity.
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6 Conclusion

The main goal of this study was to unravel the link between climatic and phys-
iographic characteristics and the origin of errors affecting large-scale hydrological
models. By clustering the catchments into groups of hydrologic landscapes we iden-
tified three landscape settings for which errors could be ascribed to the model struc-
ture/parameterisation. Within these landscape settings the following controls and
model deficiencies were found:

1. (Sub-)Humid plains with very permeable bedrock: The linkage of positive
high flow biases and the fraction of snow cover pointed towards deficiencies
in the snow routine while the linkage to geology and soils suggest deficiencies
in the storage routine. Negatively biased low flow estimations correlated with
the aridity index and the normalized difference vegetation index. Particularly,
when energy is limited inadequacies in the evapotranspiration schemes were
here found to be responsible.

2. Subhumid plains/plateaus with permeable bedrock: Due to the interrelation of
high flow biases and aridity index 𝑃 forcing errors could not be ruled out since
aridity index 𝑃 forcing errors may also be related. The snow routine was also
found to be insufficient due to the negative correlation of high flow biases and
the fraction of snow cover. Regarding the low flow biases, we identified two
deficiencies. First, evapotranspiration routine behaves wrongly when energy is
limited. Second, inadequacies in the storage routine cause errors when bedrock
permeability is high and when seasonal correlation between water supply and
demand is phase shifted.

3. (Sub-)humid plains with very impermeable bedrock: Overestimation of mod-
erate low flow biases and low flow biases were likely induced by wrong param-
eterisation of soil storage and infiltration processes. Relations between soils
and the biases indicate this.

Moreover, the clustering approach allowed us to reduce the likelihood that the error
was caused by the forcing. Thereby, we identified the “climatic” control of biased
𝑃 forcing on model errors for landscapes with complex topography while 𝑃 biases
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were less likely for landscapes with rather flat topography
We anticipate our study as a starting point for a more process-based model eval-

uation. In this respect, our approach might be employed on hyperresolution models
and track the progress in model performance. Since we determined deficiencies in
the snow, evapotranspiration, and storage routines a more tailored evaluation is nec-
essary on this. Instead of solely focusing on long-term metrics, metrics on seasonal
or inter-annual variability might provide useful insights.
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Figure A.1: Rank correlation coefficients (𝜌) of climatic and physiographic char-
acteristics for the entire dataset set (a) and for selected HLRs (b-f). Blue (red)
indicates a positive correlation (negative correlation). 𝑜 displays significant correla-
tion at the 5% level.
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Figure A.2: Single-variable partial dependence (PD) plots of climatic and physio-
graphic characteristics (along the 𝑥-axis) versus partial dependence of 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5,
𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75, and 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (along the 𝑦-axis), respectively. Plots are shown
for HLR 3 (a, b), HLR 8 (c, d), and HLR 9 (e, f). The hash marks at the base
of the plots delineate deciles of the corresponding predictor variable. 𝑅2 exhibits
the out-of-bag accuracy. The hat (^) denotes the predicted metric by the RF. For
abbreviations on 𝑥-axis and 𝑦-axis see Table 2.2.
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Figure A.3: Two-variable partial dependence (PD) plots of climatic and physio-
graphic characteristics (along the 𝑥-axis and 𝑦-axis) versus partial dependence of
𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5, 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75, and 𝐵̂𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 (along the 𝑧-axis), respectively. Plots
are shown for HLR 3 (a, b), HLR 8 (c, d), and HLR 9 (e, f). Predictors are sorted
descendingly by ranks of importance from left to right. 𝑅2 exhibits the out-of-bag
accuracy. The hat (^) denotes the predicted metric by the RF. For abbreviations
on 𝑥-axis and 𝑦-axis see Table 2.2 and for descriptions of HLRs see Table 4.1.
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Table A.1: Coefficients of determination (𝑅2) of bivariate regression between eval-
uation metrics and catchment size

Metric All HLR 1 HLR 2 HLR 3 HLR 4 HLR 5 HLR 6 HLR 7 HLR 8 HLR 9 HLR 10 HLR 11 HLR 12
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5 0.02 0.16 0.01 0.03 0.02 0.09 0.03 0.25 0.09 0.01 0.13 0.03 0.11
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄25 0 0.04 0 0.01 0.01 0 0.01 0.19 0.08 0 0.08 0.04 0.03
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50 0 0.01 0 0.02 0.01 0 0 0.01 0.05 0.01 0 0.02 0.01
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 0 0 0.02 0.01 0 0.01 0.01 0.13 0.03 0.03 0.04 0.01 0.01
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 0.01 0.01 0.04 0.01 0 0.03 0 0.15 0.05 0.06 0.04 0 0.02

𝐵𝑟𝑒𝑙 𝑄5 0.04 0.01 0.01 0.02 0.04 0.1 0.04 0.2 0.08 0.02 0.08 0.03 0.01
𝐵𝑟𝑒𝑙 𝑄25 0.02 0.01 0.01 0 0.01 0.02 0.02 0.33 0.04 0.01 0.02 0.08 0.01
𝐵𝑟𝑒𝑙 𝑄50 0 0.03 0 0.01 0 0.01 0 0 0.02 0.01 0 0.06 0.02
𝐵𝑟𝑒𝑙 𝑄75 0.01 0.05 0.02 0.02 0.01 0.03 0 0.06 0 0.02 0.03 0.02 0.01
𝐵𝑟𝑒𝑙 𝑄95 0.02 0.05 0.05 0.01 0.02 0.05 0.01 0.02 0 0.06 0.03 0 0.02

𝐾𝐺𝐸𝛾𝛽 0 0.01 0 0 0.01 0 0 0.3 0.01 0.02 0.17 0.03 0.03

𝐶𝑉 𝑄5 0.02 0.01 0 0.1 0.03 0.07 0.06 0.09 0.01 0.03 0.04 0 0.01
𝐶𝑉 𝑄25 0.01 0.01 0 0.04 0.02 0.03 0.02 0 0 0.01 0 0 0.02
𝐶𝑉 𝑄50 0.01 0.01 0.01 0.07 0.01 0 0.02 0.02 0 0.01 0.14 0 0
𝐶𝑉 𝑄75 0 0.06 0 0 0 0.01 0.03 0.23 0 0.01 0.05 0.02 0.05
𝐶𝑉 𝑄95 0 0.02 0 0 0.01 0.01 0.01 0 0.01 0 0.02 0.04 0.01

Table A.2: Out-of-bag accuracy (𝑅2) of random forest for entire data and HLRs
for all evaluation metrics

Metric All HLR 1 HLR 2 HLR 3 HLR 4 HLR 5 HLR 6 HLR 7 HLR 8 HLR 9 HLR 10 HLR 11 HLR 12
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄5 0.44 0.38 0.16 0.22 0.47 0.38 0.17 0.47 0.35 0.25 0.43 0.06 0.19
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄25 0.35 0.19 0.03 0.18 0.38 0.22 0.06 0.28 0.23 0.34 0.35 0.03 0.4
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄50 0.28 0.2 0.04 0.15 0.14 0.32 0.09 0.07 0.25 0.34 0.48 0.04 0.38
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄75 0.44 0.35 0.28 0.18 0.4 0.47 0.11 0.27 0.34 0.42 0.54 0.12 0.45
𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 𝑄95 0.51 0.41 0.39 0.28 0.5 0.49 0.11 0.33 0.33 0.54 0.55 0.2 0.43

𝐵𝑟𝑒𝑙 𝑄5 0.46 0.31 0.3 0.25 0.49 0.38 0.06 0.36 0.48 0.39 0.43 0.4 0.2
𝐵𝑟𝑒𝑙 𝑄25 0.39 0.11 0.29 0.31 0.35 0.18 0.02 0.38 0.23 0.44 0.37 0.34 0.33
𝐵𝑟𝑒𝑙 𝑄50 0.33 0.07 0.24 0.18 0.24 0.25 0.16 0.17 0.2 0.33 0.35 0.39 0.33
𝐵𝑟𝑒𝑙 𝑄75 0.4 0.28 0.25 0.24 0.35 0.44 0.23 0.2 0.28 0.4 0.45 0.33 0.31
𝐵𝑟𝑒𝑙 𝑄95 0.42 0.24 0.36 0.28 0.37 0.43 0.09 0.24 0.25 0.47 0.35 0.12 0.26

𝐾𝐺𝐸𝛾𝛽 0.46 0.24 0.37 0.32 0.37 0.45 -0.14 0.4 0.18 0.48 0.18 0.39 0.21

𝐶𝑉 𝑄5 0.45 0.31 0.4 0.48 0.44 0.51 -0.08 0.21 0.33 0.37 0.27 0.26 0.21
𝐶𝑉 𝑄25 0.46 0.21 0.24 0.43 0.3 0.25 -0.19 0.29 0.46 0.38 0.24 0.34 0.22
𝐶𝑉 𝑄50 0.56 0.2 0.29 0.39 0.35 0.21 0.17 0.16 0.35 0.49 0.15 0.49 0.28
𝐶𝑉 𝑄75 0.65 0.41 0.33 0.45 0.43 0.42 0.23 0.31 0.28 0.5 0.48 0.6 0.3
𝐶𝑉 𝑄95 0.69 0.55 0.56 0.53 0.55 0.51 0.27 0.28 0.46 0.59 0.45 0.62 0.4
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Figure A.4: Coefficients of determination (𝑅2) of bivariate (non-)linear regres-
sion for 𝐶𝑉 . Heatmaps of the 𝑅2 are depicted for the entire dataset (a) and for
selected HLRs (b-f). Purple (white) indicates fair relationship (no relationship).
Abbreviations referring to: T, Topography; So, Soils; WU, Water use.
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Figure A.5: Ranks of permutation importance of random forest for 𝐶𝑉 . Heatmaps
of the ranks are depicted for the entire dataset (a) and for selected HLRs (b-f). Red
(yellow) displays high (low) ranks. Abbreviations referring to: T, Topography; So,
Soils; WU, Water use.

75



1000 2000
P [mm yr 1]

1

2

C
V 

Q
5 

[-]

(a) HLR 2 (POW, R2: 0.36)

1000 2000
PET [mm yr 1]

1

2
C

V 
Q

5 
[-]

(b) HLR 2 (POW, R2: 0.34)

0.0 0.5 1.0
PETsi [-]

1

2

C
V 

Q
5 

[-]

(c) HLR 2 (POW, R2: 0.42)

0 20
TA [K]

1

2

C
V 

Q
5 

[-]

(d) HLR 2 (EXP, R2: 0.4)

0.0 0.5
fS [-]

1

2

C
V 

Q
5 

[-]

(e) HLR 2 (POW, R2: 0.39)

0.0 0.5 1.0
PETsi [-]

1

2

C
V 

Q
5 

[-]

(e) HLR 3 (POW, R2: 0.41)

0 20
TA [K]

1

2
C

V 
Q

5 
[-]

(f) HLR 3 (EXP, R2: 0.42)

100 200
NDVI [-]

1

2

C
V 

Q
5 

[-]

(g) HLR 3 (POW, R2: 0.36)

0.0 0.5
fS [-]

1

2

C
V 

Q
5 

[-]

(h) HLR 3 (EXP, R2: 0.41)

0.5 0.0 0.5
AI [-]

1

2

C
V 

Q
95

 [-
]

(i) HLR 3 (EXP, R2: 0.35)

0.0 0.5 1.0
PETsi [-]

1

2

3

C
V 

Q
5 

[-]

(j) HLR 8 (POW, R2: 0.32)

0 20
TA [K]

1

2

3

C
V 

Q
5 

[-]

(k) HLR 8 (EXP, R2: 0.31)

1000 2000
P [mm yr 1]

1

2

C
V 

Q
25

 [-
]

(l) HLR 8 (LIN, R2: 0.42)

0.0 0.5 1.0
PETsi [-]

1

2

C
V 

Q
25

 [-
]

(m) HLR 8 (POW, R2: 0.31)

0.0 0.5 1.0
PETsi [-]

1

2

C
V 

Q
5 

[-]

(n) HLR 9 (POW, R2: 0.32)

0 20
TA [K]

1

2

C
V 

Q
5 

[-]

(o) HLR 9 (EXP, R2: 0.32)

0.0 0.5
AI [-]

1

2

C
V 

Q
75

 [-
]

(p) HLR 9 (EXP, R2: 0.33)

0.0 0.5
AI [-]

1

2

C
V 

Q
95

 [-
]

(q) HLR 9 (EXP, R2: 0.35)

Figure A.6: Scatterplots of climatic and physiographic characteristics (along the
𝑥-axis) versus 𝐶𝑉 (along the 𝑦-axis), including the best-fit regression. Scatterplots
are shown for 𝑅2 > 0.3. Each data point represents a catchment. Abbreviations
referring to the HLR (for description see Table 4.3) and to the type of the best-fit
regression function: EXP, exponential; LIN, linear; LOG, logarithmic; and POW,
power.
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Figure A.7: Single-variable partial dependence (PD) plots of climatic and physio-
graphic characteristics (along the 𝑥-axis) versus partial dependence of 𝐶𝑉 𝑄5, 𝐶𝑉
𝑄75, and 𝐶𝑉 𝑄95 (along the 𝑦-axis), respectively. Plots are shown for HLR 3 (a, b),
HLR 8 (c, d), and HLR 9 (e, f). The hash marks at the base of the plots delineate
deciles of the corresponding predictor variable. 𝑅2 exhibits the out-of-bag accuracy.
The hat (^) denotes the predicted metric by the RF. For abbreviations on 𝑥-axis
and 𝑦-axis see Table 2.2.
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Figure A.8: Two-variable partial dependence (PD) plots of climatic and physio-
graphic characteristics (along the 𝑥-axis and 𝑦-axis) versus partial dependence of
𝐶𝑉 𝑄5, 𝐶𝑉 𝑄75, and 𝐶𝑉 𝑄95 (along the 𝑧-axis), respectively. Plots are shown for
HLR 3 (a, b), HLR 8 (c, d), and HLR 9 (e, f). Predictors are sorted descendingly
by ranks of importance from left to right. 𝑅2 exhibits the out-of-bag accuracy. The
hat (^) denotes the predicted metric by the RF. For abbreviations on 𝑥-axis and
𝑦-axis see Table 2.2 and for descriptions of HLRs see Table 4.1.
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Table A.3: Rank correlation between 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 and 𝐵𝑟𝑒𝑙 for all five flow percentiles
in the entire dataset and HLRs

𝑄5 𝑄25 𝑄50 𝑄75 𝑄95

All 0.98 0.97 0.97 0.96 0.96
HLR 1 0.99 0.98 0.97 0.98 0.97
HLR 2 0.98 0.99 0.98 0.98 0.98
HLR 3 0.98 0.97 0.98 0.99 0.98
HLR 4 0.98 0.98 0.97 0.97 0.96
HLR 5 0.99 0.99 0.99 0.98 0.98
HLR 6 0.98 0.98 0.98 0.98 0.98
HLR 7 0.98 0.98 0.97 0.96 0.95
HLR 8 0.95 0.96 0.98 0.97 0.96
HLR 9 0.99 0.98 0.96 0.97 0.97
HLR 10 0.95 0.91 0.93 0.9 0.89
HLR 11 0.97 0.97 0.97 0.96 0.95
HLR 12 0.97 0.99 0.98 0.98 0.98
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Figure A.9: Distributions of catchment area (a), temporal coverage (b), and cli-
matic and physiographic characteristics (c-w) for the entire dataset and selected
HLRs. The box plot whiskers range from the minimum to the maximum of the
distribution, the box represents the inter-quartile range, and the solid line depicts
the median.
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Figure A.10: Distributions of catchment area (a), temporal coverage (b), and
climatic and physiographic characteristics (c-w) for the entire dataset and non-
selected HLRs. Box plots as Fig. A.9.
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Figure A.11: Distributions of 𝐵𝑟𝑒𝑙 (a-g), 𝐵𝑠𝑡𝑑−𝑠𝑞𝑟𝑡 (h-n), and 𝐶𝑉 (o-u) on all five
flow percentiles for the entire dataset and non-selected HLRs. 𝑛 refers to the number
of data points. The box plot whiskers range from the 10% to the 90% percentile of
the distribution, the box represents the inter-quartile range, solid line depicts the
median, and dashed line displays the mean. The dark grey boxes in the background
represent the boxes of the entire dataset (𝑛 = 3635). For catchments locations see
Fig. 4.2.
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Figure A.12: Distributions of 𝐾𝐺𝐸𝛾𝛽 for the entire dataset and selected HLRs.
The box plot whiskers range from the 10% to the 90% percentile of the distribution,
the box represents the inter-quartile range, solid line depicts the median, and dashed
line displays the mean. The dark grey boxes in the background represent the boxes
of the the entire dataset. For catchments locations see Fig. 4.2.

Figure A.13: Distributions of 𝐾𝐺𝐸𝛾𝛽 for the entire dataset and non-selected
HLRs. Box plots as Fig. A.12.
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