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Extended English summary 

Obtaining reliable estimates of extreme flows is of increasing importance, the question of how to 

obtain them is a well-known problem in both applied and scientific hydrology (Okoli et al., 2019). 

Two popular methods of flood estimation are statistical thresholds and impact-based thresholds. 

Statistical thresholds are based on discharge time series, defining floods based on their probability 

of exceedance or recurrence interval (return period). Impact-based thresholds are based on actual 

observed flood impacts in the vicinity of a stream.  

Statistical thresholds are frequently examined and applied in the literature, impact-based thresholds, 

however, have only been sparsely used in research. Moreover, it is unclear how these statistical 

thresholds, based on a certain probability of exceedance, relate to actual flood impacts, observed in 

the area around a stream. The goal of this thesis is, to evaluate, how well statistical thresholds identify 

impact-triggering events of a certain level. 

The US implement impact-based thresholds, classifying the severity of flooding using flood 

categories divided into a minor stage, moderate stage, and major stage. Each stage is assigned a flow 

value, triggering the stage, derived from an impact-based threshold. Since observed impacts are not 

available for all catchments, especially in remote areas, flood stages are assigned return periods 

corresponding to expected impacts. The minor stage corresponds to a recurrence interval of 5 – 10 

years, the moderate stage to a recurrence interval of 15 – 40 years, and the major stage to a recurrence 

interval of 50 – 100 years. 

The relationship between statistical and impact-based thresholds has only been sparsely reported in 

the literature. This thesis aims to examine said relationship by comparing flood stages, derived from 

impact-based thresholds, with assigned recurrence intervals, based on statistical thresholds obtained 

from the discharge time series. Selected catchment characteristics are evaluated, trying to explain the 

spatial variability of the relationship. Further, it is evaluated if a prediction of the relationship using 

catchment characteristics is possible.  

Stations are selected for the analysis based on the availability of gapless discharge data, flood stage 

data, and catchment characteristics. A flood frequency analysis using the peak over threshold 

approach is performed to obtain discharge values (QT) of certain return periods (T) and return periods 

(TStage) of the flood stage triggering flows (QStage). Stations are classified based on the previously 

calculated discharge values of return periods (QT) and the flood stage triggering flows (QStage). Due 

to the range of recurrence intervals assigned to each flood stage, two values of QT are calculated for 

each stage QT_lower and QT_upper. The classification represents the relationship between statistical and 

impact-based thresholds and is divided as follows: below = QStage < QT_lower, in = QT_lower < QStage < 

QT_upper, above = QStage > QT_upper. Selected catchment characteristics are used in correlation and 
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regression analysis. To select regression models that best describe the relationship for each flood 

stage, stepwise model selection is performed. 

The return period range (statistical threshold) assigned to the different flood stages (impact-based 

threshold) could not be confirmed, as the flood stages exhibited a wide range of return periods (TStage). 

Impact-based thresholds were within the assigned range of statistical thresholds for on average only 

8% of stations over all three flood stages. A majority of stations were classified below for the minor 

(71%) and moderate stage (52%) and above for the major stage (62%). The Correlation analysis 

showed only a weak correlation at best between catchment characteristics and the classification, 

meaning no single catchment characteristic could sufficiently explain the spatial variability of the 

relationship. The regression models possessed sufficient prediction accuracy (61% – 73%), showing 

that the relationship can be modeled using catchment characteristics. However, the classification in 

was never correctly predicted by any model. Precipitation is the only parameter included in all final 

models.  

The models tended to over- or underestimate depending towards which classification category the 

data was skewed. A more even distribution across all categories might improve the prediction 

accuracy of the models further. The distribution used for the flood frequency analysis showed a poor 

fit to the tails of the data distribution and with that, poorly estimated high return periods. Despite 

this, the classification of stations is valid. Additionally, daily mean discharge data was used, resulting 

in the highest flood peaks being missed out on and because of that, an underestimation of return 

period flows.  

Based on the results, statistical thresholds are not a good alternative to impact-based flood stages, as 

they do not identify impact-triggering events well. Hydrologists applying statistical thresholds for 

flood warnings and protection measures must be aware of the discrepancy in the relationship, to 

avoid over or underestimating floods and their impacts. 

Keywords: statistical threshold, impact-based threshold, flood categories, flood stage, flood 

frequency analysis, peak over threshold, catchment characteristics, ordinal logistic regression, 

CONUS 
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Zusammenfassung  

Zuverlässige Schätzungen extremer Abflüsse gewinnen zunehmend an Bedeutung, die Frage, wie 

man diese erhält, ist ein bekanntes Problem, sowohl in der angewandten als auch in der 

wissenschaftlichen Hydrologie (Okoli et al., 2019). Zwei gängige Methoden der 

Hochwasserabschätzung sind statistische Schwellenwerte und auswirkungsbasierte Schwellenwerte. 

Statistische Schwellenwerte basieren auf Abflusszeitreihen, sie definieren Hochwasser anhand ihrer 

Überschreitungswahrscheinlichkeit bzw. ihres Wiederkehrintervalls (Jährlichkeit). 

Auswirkungsbasierte Schwellenwerte basieren auf den tatsächlich beobachteten Auswirkungen eines 

Hochwassers auf die Umgebung eines Flusses. 

Statistische Schwellenwerte werden in der Literatur häufig untersucht und angewandt, 

wirkungsbezogene Schwellenwerte jedoch wurden in der Forschung nur selten verwendet. Darüber 

hinaus ist unklar, in welcher Beziehung die statistischen Schwellenwerte, die auf einer bestimmten 

Überschreitungswahrscheinlichkeit basieren, zu den tatsächlichen Hochwasserauswirkungen stehen, 

die in der Umgebung eines Flusses beobachtet wurden. Ziel dieser Arbeit ist es zu bewerten, wie gut 

statistische Schwellenwerte Auswirkungen von Hochwasserereignissen verschiedener Größen 

identifizieren. 

In den USA werden auswirkungsbasierte Schwellenwerte angewendet, das Ausmaß von 

Überflutungen wird anhand von Hochwasserkategorien klassifiziert, welche in minor stage, 

moderate stage und major stage unterteilt werden. Jeder Hochwasserstufe (flood stage) wird ein 

Abflusswert zugewiesen, der die Stufe auslöst, ein auswirkungsbasierter Schwellenwert. Da nicht für 

alle Einzugsgebiete, insbesondere in abgelegenen Gebieten, beobachtete Auswirkungen vorhanden 

sind, werden den Hochwasserstufen Jährlichkeiten zugeordnet, die den erwarteten Auswirkungen 

entsprechen. Die minor stage entspricht einem Wiederkehrintervall von 5 - 10 Jahren, die moderate 

stage einem Wiederkehrintervall von 15 - 40 Jahren und die major stage einem Wiederkehrintervall 

von 50 - 100 Jahren. 

Die Beziehung zwischen statistischen und auswirkungsbasierten Schwellenwerten ist in der Literatur 

nur spärlich beschrieben. In dieser Arbeit soll diese Beziehung untersucht werden, indem 

Überschwemmungskategorien, die von auswirkungsbasierten Schwellenwerten abgeleitet wurden, 

mit zugewiesenen Wiederkehrintervallen verglichen werden. Die Wiederkehrintervalle basieren auf 

statistischen Schwellenwerten, welche anhand von Abflusszeitreihen berechnet wurden. Anhand 

ausgewählte Einzugsgebietseigenschaften wird bewertet, ob diese verwendet werden können, um die 

räumliche Variabilität der Beziehung zu erklären. Des Weiteren wird geprüft, ob eine Vorhersage 

der Beziehung zwischen statistischen und auswirkungsbezogenen Schwellenwerten anhand von 

Einzugsgebietseigenschaften möglich ist. 
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Die Stationen wurden auf Grundlage von Verfügbarkeit lückenlosen Abflussdaten, Abflusswerten 

der Hochwasserkategorien und Einzugsgebietseigenschaften für die Analyse ausgewählt. Es wird 

eine Hochwasserhäufigkeitsanalyse unter Verwendung des Peak-over-Threshold-Ansatzes 

durchgeführt, um Abflusswerte (QT) bestimmter Wiederkehrperioden (T) und Wiederkehrperioden 

(TStage) der stufenauslösenden Abflusswerte (QStage) zu erhalten. Die Stationen werden auf der 

Grundlage der zuvor berechneten Abflusswerte der Wiederkehrintervalle (QT) und der 

stufenauslösenden Abflusswerte (QStage) klassifiziert. Aufgrund des Bereichs der 

Wiederkehrintervalle, die jeder Hochwasserstufe zugeordnet sind, werden für jede Stufe zwei Werte 

für QT berechnet: QT_lower und QT_upper. Die Klassifizierung stellt das Verhältnis zwischen statistischen 

und auswirkungsbezogenen Schwellenwerten dar und ist wie folgt unterteilt: below = QStage < QT_lower, 

in = QT_lower < QStage < QT_upper, above = QStage > QT_upper. Ausgewählte Einzugsgebietseigenschaften 

werden in Korrelations- und Regressionsanalysen verwendet. Um diejenigen Regressionsmodelle 

auszuwählen, die die Beziehung für jede Hochwasserstufe am besten beschreiben, wird eine 

schrittweise Modellauswahl durchgeführt. 

Der Bereich der Wiederkehrperioden (statistischer Schwellenwert), der den verschiedenen 

Hochwasserstufen (auswirkungsbezogener Schwellenwert) zugeordnet wurde, konnte nicht bestätigt 

werden, da die Hochwasserstufen einen große Wertebereich an Wiederkehrperioden (TStage) 

aufwiesen. Die auswirkungsbezogenen Schwellenwerte lagen nur bei durchschnittlich 8 % der 

Stationen innerhalb des zugeordneten Bereichs der statistischen Schwellenwerte. Die Mehrheit der 

Stationen wurde für die minor (71 %) und moderate stage (52 %) als below und für die major stage 

(62 %) als above klassifiziert. Die Korrelationsanalyse zeigte bestenfalls schwache Korrelation 

zwischen den Einzugsgebietseigenschaften und der Klassifizierung, was bedeutet, dass keine 

einzelne Einzugsgebietseigenschaft die räumliche Variabilität der Beziehung ausreichend erklären 

konnte. Die Regressionsmodelle wiesen eine ausreichende Vorhersagegenauigkeit auf (61 % - 73 

%), was zeigt, dass die Beziehung anhand von Einzugsgebietseigenschaft modelliert werden kann. 

Die Klassifizierung in wurde jedoch von keinem Modell korrekt vorhergesagt. Der Niederschlag ist 

der einzige Parameter, der in allen finalen Modellen enthalten war.  

Die Modelle neigten zu Über- oder Unterschätzungen, je nachdem, zu welcher 

Klassifizierungskategorie die Daten gewichtet waren. Eine gleichmäßigere Verteilung der Daten 

über alle Kategorien könnte die Vorhersagegenauigkeit der Modelle weiter verbessern. Die für die 

Analyse der Überschwemmungshäufigkeit verwendete Verteilung zeigte eine schlechte Anpassung 

am hinteren Ende der Daten und damit eine schlechte Schätzung hoher Wiederkehrperioden. 

Trotzdem ist die Klassifizierung der Stationen gültig. Darüber hinaus wurden tägliche Mittelwerte 

der Abflüsse verwendet, was dazu führte, dass die höchsten Hochwasserspitzen nicht berücksichtigt 

wurden und die Abflüsse der Wiederkehrperioden daher unterschätzt wurden.  
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Auf der Grundlage der Ergebnisse sind statistische Schwellenwerte keine gute Alternative zu 

auswirkungsbasierte Schwellenwerten (flood stages), da sie die Auswirkungen von 

Hochwasserereignissen verschiedener Größen nicht gut identifizieren. Hydrologinnen und 

Hydrologen, die statistische Schwellenwerte für Hochwasserwarnungen und Schutzmaßnahmen 

anwenden, müssen sich der Diskrepanz in der Beziehung bewusst sein, um eine Über- oder 

Unterschätzung von Hochwassern und deren Auswirkungen zu vermeiden. 

Stichworte: statistische Schwellenwerte, auswirkungsbasierte Schwellenwerte, Hochwasserstufe, 

flood stage, Hochwasserhäufigkeitsanalyse, peak over threshold, Einzugsgebietseigenschaften, 

ordinale logistische Regression, CONUS 

 

 



 

  
 

 

 



1 Introduction 

1 

 Introduction 

The number of reported floods has increased by a factor of ten between 1950 and 2010, based on 

data from the international disaster database. Economic loss and insured damages caused by floods 

are increasing, with flood damage causing the highest losses in the US, compared to other natural 

hazards (Gall et al., 2011; Jha et al., 2012; Zhou et al., 2017). 

On one hand, there is an increasing population density in urban settlements and heightened exposure 

to floods (Changnon et al., 2000; Slater and Villarini, 2016). On the other hand, the characteristics 

of floods are changing due to dynamic catchment characteristics like climate variables, land use, land 

cover, and anthropogenic modifications (O’Driscoll et al., 2010; Slater and Villarini, 2016; Saharia 

et al., 2017; Villarini and Slater, 2017; Hounkpè et al., 2019). 

Flow records of catchments in the central US show an increase in flood frequency but not flood 

magnitude (Hirsch and Archfield, 2015; Mallakpour and Villarini, 2015). Regarding the entire 

conterminous US, trends in flood characteristics strongly vary spatially with both increases and 

decreases of flood frequencies, increases of all flood properties, and minimal changes to flood 

properties being observed (Archfield et al., 2016; Slater and Villarini, 2016).  

Because of the variability of catchment characteristics, heightened exposure to flooding, and lack of 

generalization of flood changes, reliable flood estimations are increasingly important, however, 

obtaining them is a well-known challenge of scientific and applied hydrology (Okoli et al., 2019). 

Flooding requires multiple responses on different scales. The construction of buildings and bridges 

adapted to flooding on the local scale as well as damns and retention basins on the catchment scale. 

Land use management in terms of municipal planning to reduce flood exposure and landscape 

changes to reduce surface runoff and increase natural retention. Flood forecasts both short and long 

term, to warn people of coming floods and to implement building restrictions in inundation areas. 

The aforementioned flood risk assessment and the consequent responses are based on the results of 

a flood frequency analysis (Kidson and Richards, 2005). For the analysis, a time series of flow values 

is used to relate discharge magnitudes to their probability of being equaled or exceeded in any year. 

That probability is then converted to a recurrence interval or a return period, which equals the 

estimated average time between events (Archer, 1998). Said probabilities of exceedance and within 

that return periods are called statistical thresholds. They are theoretical, meaning for example in any 

given 50-year period, an event with a return period of 50 years can be exceeded more than once or 

not at all.  

These statistical thresholds are, for example, used for the construction of flood defense structures, as 

those have to provide protection against floods of a specific return period (Kidson and Richards, 

2005). They are also used to restrict development areas, as seen in the German water law (WG) and 
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Water Management Act (WHG). For example, as given in §65 WG, where flood areas are designated, 

where statistically flooding is expected every 100 years and §78 restricts the construction of buildings 

in those areas.  

In Baden-Wuerttemberg, the State Institute for the Environment (LUBW) provides an interactive 

map for many streams, showing areas of potential inundation for floods of different return periods, 

based on statistical flood height estimations and hydraulic calculations (LUBW, 2021). The Flood 

Forecast Centre of the LUBW classifies floods using return periods (HVZ, 2021), the same 

classification is used for example in Austria, France, Luxemburg, and the Netherlands (LfU, LUBW, 

2018).  

An alternative to statistical thresholds based on flow time series are impact-based thresholds, 

classifying flood magnitudes based on the impact of a flood on the area around the stream. All 

German states (except for Rhineland-Palatinate and Baden-Wuerttemberg) apply these impact-based 

flood classifications, as well as countries like Switzerland, Czechia, and the USA (LfU, LUBW, 

2018). 

In the US the impact-based flood categories of the National Weather Service (NWS) are divided into 

four flood stages, based on the severity of expected flood impacts in the stream reach. A stage is the 

water level above an arbitrary reference point, also known as gauge height. Flood stage is an 

established water level, above which rising water will cause inundation to the surrounding areas of a 

stream, impacting the population, property, and commerce. Reach refers to a section of the stream, 

for which the stage measured at a gauge is representative of the conditions  NOAA, 2019).  

The water level assigned to a flood stage is based on specific observed impacts. The severity of 

flooding at a given stage varies throughout the reach, due to differing characteristics of the 

surrounding areas. Because of this, the stage of a flood category is chosen depending on the most 

significant flood impact within the reach (APRFC, 2021).  

The flood categories are divided into action stage, minor stage, moderate stage, and major stage. If 

the action stage is reached, the gauge is monitored closely and preparations for a possible flood are 

made. At the minor stage minimal to no property damage is caused, areas near the stream (e.g. roads, 

trails, yards, campgrounds) may become flooded possibly causing a public threat. Reaching the 

moderate stage some structures and roads near the stream may become flooded, evacuations and 

transfer of property to higher elevations might be necessary, disrupting daily life. If the major stage 

is reached, extensive flooding of structures, roads, and critical infrastructure (e.g. hospitals, schools, 

police, and fire stations) is to be expected, leading to significant evacuations and transfer of property 

to higher elevations (NOAA, 2019). 
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The NWS also provides an interactive map, showing inundation caused by different flood categories 

for several stations, predominately located in the eastern US. Both river gauge observations and 

forecasts are classified into the flood categories named above, data is available for 3823 gauges all 

over the US (NOAA, 2021).  

Statistical thresholds and discharge records have been used for many studies, a small selection is 

named in the following. For analyzing trends in discharge over time, as elaborated above (Hirsch and 

Archfield, 2015; Mallakpour and Villarini, 2015; Archfield et al., 2016; Slater and Villarini, 2016). 

Or for examining of the influence of catchment characteristics on flood magnitude and recurrence: 

Hounkpè et al. (2019) reported an increase in flood characteristics with the expansion of agricultural 

land, O’Driscoll et al. (2010) found urbanization results in an increase in stream stage overall and an 

increase in peak flows and Davenport et al. (2020) named snowpack as a natural reservoir, that 

reduces winter floods, with an increase of rain fraction leading to larger streamflow peaks.  

Flood stage data has been used by Slater and Villarini (2016) to assess trends in inundation 

frequencies. They found regional patterns of both increasing and decreasing flood risk, that are 

overall dependant on wetness and potential water storage of a catchment. Saharia et al. (2017) used 

flood stage exceedances of US catchments to examine how floods vary with climate, topography, 

and geomorphology. They found, that the seasonality of flooding varies greatly over the US. 

Precipitation is named as the primary driver of floods, with the magnitude of floods being highest in 

areas with the greatest precipitation.  

Statistical thresholds are frequently examined and applied in the literature, as the short compilation 

of literature showed, impact-based thresholds, however, have only been sparsely used in research. 

More importantly, it is unclear, how statistical thresholds, derived from a discharge time series, relate 

to actual observed flood impacts.  

For Alaskan remote areas with few specific impacts, flood stage values are determined using 

recurrence intervals, giving each stage a reference range of return periods assumed to cause the 

corresponding amount of flooding. The minor stage corresponds to a recurrence interval of 5 – 10 

years, the moderate stage to a recurrence interval of 15 – 40 years, and the major stage to a recurrence 

interval of 50 – 100 years (APRFC, 2021). Figure 1.1 depicts the relationship between the water level 

(stage) and flood categories at a gauge. A specific flood stage refers to all flows between the stage 

triggering flow up until the next flood stage is triggered. While the minor and moderate stages 

eventually transition into the next higher stage, if the water level keeps rising, the major stage refers 

to all flows above the flood stage triggering flow and has no upper limit. The recurrence intervals 

named above correspond to the triggering flow of a flood stage.  
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Figure 1.1: Meaning of the flood categories (flood stages, left) and assigned recurrence intervals(right). Adapted from 
NOAA (2019) 

This assignation of statistical thresholds (recurrence intervals) to impact-based thresholds (flood 

stages) was used by Anderson (2016). She examined the relationship between flood stages and stages 

associated with the aforementioned recurrence intervals for catchments in Alaska. Her analysis 

showed a strong relationship between statistical and impact-based thresholds, results differing from 

the APRFC pairing especially on the upper end. The moderate stage best fits the 25-year recurrence 

interval and the major stage the 100 – 500-year recurrence interval. She linked the deviation for the 

major stage to the rarity of the events and the limited available data in Alaska. Catchment 

characteristics could not be used to explain the outliers found. 

Anderson´s (2016) analysis was limited to a small number of around 40 catchments in Alaska and 

she only anecdotally analyzed the outliers found in the relationship. The goal of this thesis is to 

analyze the relationship between impact-based flood stages and statistical recurrence intervals on a 

larger scale using catchments of the conterminous United States and a more in-depth examination of 

the catchment characteristics influencing the relationship. 
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 Aim and research questions 

The relationship between statistical flood thresholds and flood stages used to classify inundation 

impacts has not been widely reported. This thesis aims to compare recurrence intervals and impact-

based thresholds, to evaluate to what extend statistical thresholds can identify impact-triggering 

events of a certain level. Additionally, the relationship between statistical thresholds and flood stages 

is to be examined regarding variability in space and by hydro-climatic catchment characteristics. 

Research Questions: 

I What is the relationship between statistically calculated flood thresholds and implemented 
flood stages using gauge height as an indicator for flooding?  

II How does said relationship vary across all catchments and which hydro-climatic 
parameters can be used to explain that variability? 

III Can catchment characteristics be used to predict the relationship between recurrence 
intervals and impact-based thresholds? 

IV To which extend can statistical thresholds be used to classify the impact of flooding? Are 
statistical thresholds a good alternative to impact-based flood stages? 
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 Data and methods  

The methodical approach of this thesis is as follows. First stations providing sufficient data are 

selected for the analysis. A flood frequency analysis is performed, to obtain discharge values for the 

later comparison. Stations are classified based on the relationship between statistical and impact-

based thresholds, derived from values previously calculated. Relevant catchment criteria are selected 

and used in correlation and regression analysis. A stepwise model selection is performed, to choose 

regression models that best describe the relationship between statistical thresholds and flood stages.  

3.1 Study area and available data  

This study focused on gaging stations and catchments in the conterminous United States of America 

(CONUS). CONUS refers to the 48 States and the District of Columbia, excluding Alaska and Hawaii 

(USGS, 2021). They occupy an area of 8,081,866 km2 (U.S. Census Bureau, 2018).  

Annual average state-wide precipitation between 1990 and 2020 ranges from 10,16 inches (258.06 

mm) in Nevada to 59.69 inches (1516.13 mm) in Louisiana, with the national average being 31.34 

inches (796.04 mm). Annual average state-wide temperatures between 1990 and 2020 vary from 5°C 

in North Dakota to 21.94°C in Florida, the national average being 11.78°C (NOAA, 2021a, 2021b).  

 

Figure 3.1: Map of the physiographic divisions of the conterminous US, showing the states. Created with QGIS, adapted 
from Fenneman and Johnson (1946).  

Figure 3.1 depicts the physiographic divisions of CONUS, the Appalachian Highlands in the east, 

separating the Atlantic Plain from the Great Lakes and the Central Lowland. Further west the flat 

Great Plains transition to the mountain ranges of the Rocky Mountains, extending north to south. 

Between the Rocky Mountain System and the Pacific Mountain System in the west lies the 
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Intermontane Plateaus, a large, arid desert consisting of smaller mountain ranges and plateaus. The 

Cascades and Sierra Nevada ranges from the eastern border of the Pacific Mountain System and are 

followed by a series of valleys and low mountain ranges to the west. 

With its large size and high physiographic variability, CONUS exhibits a wide range of climate types 

and consequent ecoregions which leads to greatly varying catchment properties. Figure 3.2 depicts a 

summary of that variability in the form of hydrologic landscape regions (HLR). US watersheds were 

grouped into regions based on similarities in climate variables, land-surface form, and geologic 

texture. The lands-surface form was divided into plains (1-8), plateaus (9-13), playas (14), and 

mountains (15-20). Geologic texture referred to the permeability of soil and bedrock, and climate 

similarities were grouped in very humid, humid, sub-humid, semi-arid, and arid (Wolock, 2003). The 

description of each region can be found in the appendix (Table A-1). 

 
Figure 3.2: Map of the hydrologic landscape regions of the conterminous US. Created with QGIS, using data adapted 

from Wolock (2003) 

The data used within this thesis consisted of  

(1) Daily mean discharge data (ft3/s) for catchments monitored by the United States Geological 

Survey (USGS)  

(2) Rating tables for active USGS stream gauges obtained from the USGS 

(3) Flood stage database from the National Weather Service of the US (NWS), giving flood 

stage corresponding gauge height in ft.  

(4) Catchment characteristics for 9,322 stream gauges maintained by USGS from the GAGES 

II database 

(5) Geodata for the conterminous US, catchment boundaries, gauge locations, and state 

boundaries 
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In (2) tables were given with gauge height in feet and corresponding streamflow in ft3/s. In (3) data 

was given for 10,365 Stations. In (4) Data for 354 catchment characteristics was given including 

basin identification (basin ID, station name, coordinates for the gauge, drainage area, State at gauge 

location), environmental features (e.g. climate, geology, hydrology, soils, topography), and 

anthropogenic influences (e.g. land use, presence of damns/ canals, population density, impervious 

surfaces). This data was compiled only for gauges with 20+ years of complete discharge record since 

1950 or currently active gauges with at least 50 years of discharge data in 2009 (Falcone et al., 2010; 

Falcone, 2017).  

R Studio with R version 3.6.0 was used for the analysis of the data and the creation of graphics and 

maps unless otherwise specified (R Core Team, 2019).  

3.2 Methods 

 Data preparation 

3.2.1.1 Selection of stations 

The USGS collects water-level data at more than 10,000 stream gauges, to determine which of those 

are suitable for this research, the following selection steps were taken. 

First valid station IDs were extracted from the NWS database in (3). Stations without a USGS ID or 

no number IDs were excluded, leaving only IDs consisting of 1-digit to 15-digit numbers. Since 

USGS station IDs have 8-digits, a 0 was added to all IDs with less than 8-digits. Finally, those stations 

that now have an 8-digit ID code were extracted. This left 7,345 gaging stations, with existing flood 

stage levels and streamflow measurements. 

Since the discharge is given in ft3/s, water levels of the flood stages needed to be converted to 

discharge, using the rating curves given in (2). For this, rating curves were obtained for all stations 

extracted from (3) and checked for data availability, furthermore, using only those stations where 

rating data is provided. 5,457 of the selected stations had rating curves available.  

Going back to (3), out of the 5,457 stations with rating curves, only stations with water levels for 

minor, moderate, and major flood stages were selected, resulting in 3,440 stations remaining. 

For later inclusion of catchment characteristics in the analysis, it was checked which of the previously 

selected 3,440 stations were included in (4), leading to 2,840 stations with corresponding 

characteristics available.  

In order to calculate statistical return periods of certain annularity, a long enough time series of 

streamflow was required. The rule of thumb is, to not estimate return periods that are more than 3 

times the streamflow time series length (Meylan et al., 2012). With return periods of the major stage 
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being up to 100 years, at least 30 years of gapless streamflow data were needed. In addition, at least 

500 stations were desired for the analysis, to ensure a sufficient sample size and covering the spatial 

variability mentioned earlier. The data availability information for each station includes record count 

in days of discharge, which was then converted to full years. The goal of selecting stations was to 

have as long a time series as possible, while still having a sample of at least 500 stations. The number 

of stations that had discharge data of a certain number of years of record can be seen in Table 3.1.  

Table 3.1: Evaluation of available data per station: time series length and number of stations 

Years of record Number of stations 

50 1986 

60 1720 

70 1440 

80 1079 

90 624 

100 244 

Table 3.1 shows, that the number of stations with 100 years of record is below the desired sample 

size, however, 90 years of record or less meet our desired number of stations. The discharge data of 

stations with 80 and 90 years of record was then examined more closely, checking for discharge 

below 0, the discharge being NA and, missing days in the time series.  

Table 3.2 shows the number of stations removed due to missing values, resulting in 727 stations with 

80 years and 448 stations with 90 years of gapless discharge data. The stations with 80 years of 

gapless data were chosen as the final stations for the analysis.  

Table 3.2: Results of checking for gaps and missing values in time series of discharge 

 80 years 90 years 

Q < 0 0 0 

NA flow values 
14 Stations 

 
7 Stations 

 

Missing days 340 stations 175 stations 

Before later converting flood stage level in ft to ft3/s using the rating curve, it was verified that the 

logarithmic expansion was the right fit to model the rating data for all stations. This was not the case 

for one station, which was then removed, resulting in the final 727 stations with 80 years of gapless 

data and 448 stations with 90 years of gapless data. The location of the respective stations can be 

seen in Figure 3.3. 
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Figure 3.3: Map depicting the location of the selected USGS stations with 80 (left) and 90 (right) years of gapless data 

The above figure shows, that the 80-year time series adds stations in states, where there had been 

only very few before (e.g. Nebraska, Wyoming, South Dakota, North Dakota). In addition, the station 

count is above 500, therefore, the 727 stations with an 80-year time series will be used for the 

analysis. 

For said 727 stations discharge data was retrieved (01.11.1930 - 31.10.2020) and discharge values 

were converted from ft3/s to mm/d using formula (3.1), where the catchment area A in km2 is 

retrieved from the GAGES II database in (4).  

𝑄 [𝑚𝑚𝑑 ] = 𝑄 [( 𝑙𝑚2)𝑑 ] = (𝑄 [𝑓𝑡3𝑠 ] ∗ 0.02831685 ∗ 1000 ∗ 86400)𝐴 ∗ 1000000  (3.1) 

Climate, elevation, and drainage area of the selected 727 catchments are summarized in Table 3.3, 

the data is taken from the GAGESII database (Falcone et al., 2010; Falcone, 2017). Precipitation and 

Temperature are mean annual values for the entire watershed. The elevation refers to the median 

watershed elevation in meters above sea level. 

Table 3.3: Summary of climate and elevation of the selected 727 catchments 

 
Precipitation 

[cm/a] 

Temperature 

[°C] 

Elevation 

[m] 

Drainage area 

[km2] 

Minimum 32.2 0.16 22 10.6 

Median 106.4 9.7 395 2252.7 

Maximum 320.4 22.5 3299 49264.4 
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3.2.1.2 Calculating flood stage triggering flows  

To convert the flood stage level from ft to ft3/s a log-linear model was fitted (formula (3.2)) for each 

station's rating curve, where y was streamflow in ft3/s and x was gauge height in feet. In R the lm 

function (formula (3.3)) from the stats package (R Core Team, 2019) was used. 

log(𝑦𝑖) =𝛼 + 𝛽 ∙ 𝑥𝑖 (3.2) 

𝑚𝑜𝑑𝑒𝑙 = 𝑙𝑚(log(𝑦)~𝑥) (3.3) 

For each station model, the predict function from the stats package was used with the model 

coefficients obtained from the lm function. Predict used formula (3.2) to calculate flood stage flow 

in ft3/s for all flood stages (action, minor, moderate, major). For the transformation in mm/d formula 

(3.1) was used.  

 Flood frequency analysis 

In previous steps, discharge data and flood stage discharge values for 727 stations were obtained. To 

examine the relationship between those flood stage flows and statistical return periods a flood 

frequency analysis was performed on the extreme values of the time series. Stationarity was assumed. 

Flood records are regarded as random samples from a homogeneous population of flows with the 

assumption, that the record provides a reasonable approximation of the “true” probability distribution 

which generated the historic records. This means that the flood discharge magnitude Q is related to 

the exceedance probability of Q and its return period (T) (Archer, 1998). By fitting an appropriate 

distribution function to the record of flows from a gauge, we can estimate Q corresponding to a 

certain return period, but also estimate the return period of a particular Q. 

For this estimation to be accurate, a sufficient number of peaks and a long enough measurement 

period must be included in the dataset, to adequately represent the flood frequency of different 

magnitude events. Since only the extreme values are to be examined, the entire flood record is not 

used. Instead, a number of extreme values have to be selected, using either the annual maximum 

flows (AMF) or peaks over a threshold (POT) (see Figure 3.4). 

AMF (orange) refers to the maximum peak flow of each year and is the most widely used method in 

flood frequency analysis. However, several things have to be kept in mind when using this approach: 

Only a small number of flood peaks are considered, the number of which depends on the length of 

the record. Because of that, the return periods of smaller floods (<10 years) cannot accurately be 

estimated (Edwards et al., 2019). Low discharge values may be an annual maximum, in a year with 

overall smaller discharge values. The second-largest flood of a year can be greater, than another 
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year’s maximum discharge, resulting in high peaks not being taken into consideration, because they 

are not the annual maximum. 

To make up for some of the problems with using only AMF mentioned above an alternative is to use 

the POT (green) approach. Here a partial-duration series composed of peak flows that equal or exceed 

a specified threshold value, is used for the analysis. This approach requires continuous streamflow 

measurements, that allow the identification of individual storm peak flows. If two peaks occur too 

closely, meaning they are not independent (black), only the greater peak flow is included. The two 

major difficulties of this approach are assuring the independence of peaks chosen for the analysis 

and choosing an appropriate threshold value.  

 
Figure 3.4: Possible peaks selected for the flood frequency analysis: Orange being the annual maxima (AMF), the black 

circles the peaks over the threshold, and green independent peaks over the threshold 

The figure above shows an exemplary time series on which both the AMF and POT approach were 

performed. It illustrates the difficulties of both approaches: The AMF (orange) of 1988 is lower than 

the POT (green) in 1989, meaning 4 higher peaks in 1989 would be disregarded when using AMF´s 

only. Additionally using POT, there are 6 more peaks to use for the calculations, allowing a more 

accurate representation of lower frequency floods. Looking at the POT, it can be seen that several 

events have been excluded (black), to ensure independence. In regards to the threshold chosen, 

varying it up or down would change the number of POT events. 

Several distributions are suitable for modeling the relationship between Q and T, based on the 

approximation of the asymptotic behavior of the observed extreme values. Extreme value theory 

states that the AMF follow a generalized extreme value distribution (GEV), while POT follow a 

generalized Pareto distribution (GPD) (Coles, 2001). 

3.2.2.1 Peak over threshold approach 

As our goal was to examine the recurrence of flood stage exceedance, using only one flow per year 

would neglect many relevant peaks, where stage triggering flows were surpassed. This would lead 
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to a probability distribution function that poorly estimates exceedance probability and return periods. 

Moreover, the analysis of return periods was not limited to recurrence intervals above ten years, 

therefore, the peak over threshold approach was used. 

3.2.2.1.1 Independence criterium  

Two peaks were considered independent from each other if they were separated by a certain time 

interval. Of the dependent peaks, only the larger one was used, since only the highest flow of an 

event was of interest. The purpose of the time interval was to ensure, that the flow had receded 

enough, for the subsequent flood peak not to occur on the recession curve of the previous flood peak. 

For the determination of the time interval or time lag, the catchment size was included. Saharia et al. 

(2017) showed for CONUS catchments, that the flooding rise time increases with catchment size. 

The following independence criterium was chosen and calculated for each catchment separately: 

𝜃 < 5 + log(𝐴) (3.4) 

Where A is the catchment area in square miles and θ is the number of days passed between two 

events for them to be considered independent. This formula was suggested by Beard (see Cunnane 

(1989) ) and recommended by the Water Resources Council (US Interagency Advisory Committee 

on Water Data (USWRC), 1982), as well as used by Bezak et al. (2014). Svensson et al. (2005) also 

used the catchment size to determine how many days are used as an independence criterium, though 

here no formula was given.  

3.2.2.1.2 Choice of threshold 

Choosing a threshold means finding a balance between bias and variance. The threshold should be 

sufficiently high to ensure that the distribution of exceedances is approximated by our chosen 

probability value distribution. This reduces the bias, but increases the variance for the parameter 

estimators of the distribution, as there are fewer data to estimate them from. Lowering the threshold 

decreased the variance, as there is more data with which to estimate the parameters. The challenge 

lies in finding a threshold high enough to fulfill model assumptions and low enough to include 

sufficient data to get reliable parameter estimates (Scarrott and MacDonald, 2012). 

One way of selecting a threshold is by using the minimum instantaneous peak flow value of the AMF 

series. The discharge record must be sufficiently long (>10 years) to ensure the robustness of the 

minimum annual peak flow estimate (Edwards et al., 2019). Another frequently used threshold is 

fixed quantiles of the discharge values, for example, the upper 10% rule. (DuMouchel, 1983), which 

is inappropriate from a theoretical viewpoint (Scarrott and MacDonald, 2012). Cunnane (1973) 

reported, that on average at least 1.65 events per year should be selected to achieve an advantage 

over the AMP approach. Tavares and Da Silva (1983) found that the POT approach had a lower 

variance compared to the AMF approach if at least two events per year were selected. Robson and 
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Reed (1999) defined their threshold value so that on average one, three, or five events per year were 

selected. Bačová-Mitková and Onderka (2010) selected four events per year on average for their 

analysis.  

For this analysis, the goal was to have two events per year on average overall catchments. For each 

station selected above, the following quantiles of the discharge values were calculated: 0.8, 0.9, 0.95, 

0.96, 0.97, 0.975, 0.98, 0.995. The average number of events per year for each station and from that 

the mean overall station was calculated. The quantile chosen as a threshold for all stations had an 

average number of events per year overall stations closest to two.  

3.2.2.1.3 Fitting the generalized Pareto distribution 

The selected POT are the upper tail of the underlying distribution function that generated the 

historical record of discharge values. Following Coles (2001), the generalized Pareto distribution 

(GDP) was used to approximate those asymptotically distributed values of flow. The GDP model has 

three continuous parameters and is expressed as:  

𝐹𝑋(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥) = {  
      1 − (1 + 𝜉 (𝑥 − 𝜇𝑙)𝜎 )−1𝜉      𝜉 ≠ 0     1 − 𝑒(−𝑥−𝜇𝑙𝜎 )                           𝜉 = 0 (3.5) 

Defined on [𝑥 − 𝜇𝑙: {𝑥 − 𝜇𝑙} > 0 𝑎𝑛𝑑 {1 + 𝜉 (𝑥−𝜇𝑙𝜎 )}, where  

F(x) cumulative distribution function, non-exceedance 
probability of x 

x Flood peak in mm/d 

X Random variable 

ξ Shape parameter 

μl Location parameter 

σ Scale parameter 

 
After selecting a distribution to fit to the POT, a method needs to be chosen for estimating the 

distribution parameters. Here the L-moments method was used, as introduced by Hosking (1990) and 

compared to other methods by Zea Bermudez and Kotz (2010a), who also stated the wide use of this 

method in hydrology. L-moments are linear combinations of order statistics, the elements of an 

ordered sample of values. Sankarasubramanian and Srinivasan (1999) found L-moments to be 

superior when estimating GPD parameters. According to Hosking (1990), they are less sensitive to 

outliers in the data, give better parameter estimates for small samples, and are less biased in their 

estimation.  
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The following functions from the package lmomco (Asquith, 2021) were used: lmom.ub was used to 

calculate the following L-moments (λ) and L-moments ratios (τ) from a vector of POT values. In an 

ordered sample of size n, values (X1:n ≤ X2:n ≤… ≤ Xn:n) are drawn from the distribution of X. The 

first four L-moments are shown below, with the nth L-moment λn being a linear combination of the 

expected value of the order statistics E[X1:n] (Hosking and Wallis, 1997). 

𝜆1 = 𝐸[𝑋1:1];   𝜆2 = 12𝐸[𝑋2:2 − 𝑋1:2]; 
(3.6) 𝜆3 = 13𝐸[𝑋3:3 − 2𝑋2:3 + 𝑋1:3];   𝜆2 = 14𝐸[𝑋4:4 − 𝑋3:4 + 𝑋2:4 − 𝑋1:4] 

𝜏3 = 𝜆3𝜆2 ;  𝜏4 = 𝜆4𝜆2   (3.7) 

The first L-moment expresses the mean, the second L-moment the L-scale, measuring the dispersion 

of the random variable X. The skewness of the distribution of X is measured by τ3, with τ3 > 0 

indicating a skewness to the right and τ3 < 0 indicating a skewness to the left. Kurtosis of the 

distribution is evaluated using τ4, with τ4 > 0 indicating broader tails (Hosking and Wallis, 1997; 

Ulrych et al., 2000). 

pargpa was used to estimate the parameters of the Generalized Pareto Distribution, given the 

previously calculated L-moments. quagpa (inverse cdf, formula (3.8)) was used to compute the 

quantiles corresponding to non-exceedance probabilities.  

𝑥(𝑃𝑈) = { μ𝑙 + 𝜎𝜉 (1 − (1 − 𝑃𝑈)ξ)     𝜉 ≠ 0 μ𝑙 − 𝜎 log(1 − 𝑃𝑈)             𝜉 = 0 (3.8) 

With 

x(PU) quantile function, giving the quantile for a non-exceedance 
probability Pu  

x Flood peak in mm/d 

ξ Shape parameter 

μl Location parameter 

σ Scale parameter 

Figure 3.5 shows the POT data for one exemplary station, sorted by magnitude, and the fitted GPD. 

The cumulative non-exceedance probability PU of a POT observation was calculated using formula 

(3.9). The observations were arranged in ascending order, Ri was the rank of an observation, and n 
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the total number of observations. The term (𝑛 + 1) takes into account, that the maximum observed 

value can be exceeded.  

𝑃𝑈 = 𝑅𝑖(𝑛 + 1) (3.9) 

Inserting the previously estimated parameters into the quantile function of the GPD, flow values Q 

corresponding to non-exceedance probabilities (Pu) were estimated. The vector of Pu values was 

calculated using formula (3.9) with n = 1000, to obtain enough values for a good fit.  

 

Figure 3.5: Exemplary plot of POT data (black) with fitted GPD (red) 

3.2.2.1.3.1 Goodness-of-fit tests 

To ensure that the GPD was a good fit to our POT data, three goodness-of-fit tests were performed: 

the Kolmogorov-Smirnow-test (KS test), the Cramér–von Mises test (CvM test), and the Anderson–

Darling test (AD test). A one-sample test compares a sample with a reference distribution function, 

a two-sample test compares the distributions of two samples. 

Using the Kolmogorov–Smirnov statistic (D) the distance between the empirical distribution 

function (edf) of two samples (two-sample) was calculated (Razali and Wah, 2011). A two-sample 

test was performed on the sorted POT data and calculated flow values for a vector of non-exceedance 

probabilities, using the quantile function with the estimated parameters of the GPD. D is defined in 

Formula (3.10), where in the two-sided case Fx and Fy are the edfs of the two samples. (R Core Team, 

2019). 

𝐷 = 𝑚𝑎𝑥|𝐹𝑥(𝑢) − 𝐹𝑦(𝑢)| (3.10) 

The Cramér–von Mises test determines the goodness-of-fit of a cumulative distribution function (cdf) 

compared to a given empirical distribution function of a sample, using the Cramér–von Mises 
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criterion (ω2). It is based on the square difference of edf and cdf (Anderson and Darling, 1954; Razali 

and Wah, 2011). The one-sample test was performed, using the sorted POT data, the cdf of the GPD, 

and the estimated GPD parameters. ω2 is given in formula (3.11), with F(xi) being the cdf, n the 

sample size, and xi the ordered POT data. 

𝜔2 = 112𝑛∑(𝐹(𝑥𝑖) − 2𝑖 − 12𝑛 )2𝑛
𝑖=1  (3.11) 

The Anderson-Darling test is a modification of the CvM test, giving more weight to the tails of the 

distribution. The Anderson-Darling statistic (Wn
2) is also based on the square difference of edf and 

cdf (Anderson and Darling, 1954). A one-sample test was performed using the sorted POT data and 

the parameters of the GPD. The method of Braun (1980) was used to adjust for the effect of 

estimating the distribution parameters from the data. The computation (formula (3.12)) requires the 

sample size n, the specified cdf F0(xi), and the ordered POT data xi. 

𝑊𝑛2 = −𝑛 − 1𝑛∑(2𝑖 − 1)[log (𝐹(𝑥𝑖)) + log(1 − 𝐹(𝑥𝑛+1−𝑖))]𝑛
𝑖=1  (3.12) 

In R the test was performed using ks.test from the stats package (R Core Team, 2019), ad.test from 

the goftest package (Faraway et al., 2019), and cvm.test.lmomco from the lmomco package (Asquith, 

2021). 

The null hypothesis for all tests was, that the sample is drawn from the reference distribution (cdf) 

(one-sample) or that both samples are drawn from the same distribution (two-sample). The p-value 

is the probability that the null hypothesis is correct. A good fit is indicated by a p-value above the 

significance level α = 0.05, thereby accepting the null hypothesis.  

3.2.2.1.3.2 Calculating return period of flood stages 

After confirming the goodness-of-fit of the GPD to our POT data, the fitted distribution was used to 

estimate the return periods (T) of the flood stage triggering flows (QStage) we calculated in 0. For this 

the non-exceedance probability Pu was calculated for QStage, stage using the cdf function with the 

previously estimated GPD parameters. The mean time between two successive POT events (μ), was 

calculated for each station, using the mean number of flood events per year (formula (3.13)). The 

return period T of each QStage was then calculated for each station, using formula (3.14), inserting Pu 

and μ. Both formulas were adapted from Brunner et al. (2016). 

𝜇 = 1𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑜𝑑 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 (3.13) 
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𝑇(𝑄𝑆𝑡𝑎𝑔𝑒) = 𝜇1 − 𝑃𝑈 (3.14) 

3.2.2.1.3.3 Calculating flow level of return periods 

As mentioned before, the minor, moderate, and major flood stages are assigned theoretical statistical 

return periods. Table 3.4 shows the return period range corresponding to each flood stage. For later 

comparison of statistical and flood stage water levels, discharge (QT) for the following annual 

recurrence intervals (T) was calculated: 5, 10, 15, 40, 50, 100. 

Table 3.4: Return periods assumed to cause flooding corresponding to the flood stages 

Flood Stage Return period T [a] 

 Tlower Tupper 

Minor  5 10 

Moderate  15 40 

Major  50 100 

The non-exceedance probability PU was computed, using formula (3.15) and the return periods (T) 

named above. PU was then used in the quantile function of the GPD (formula (3.8)), along with 

previously calculated GPD parameters, resulting in values for QT.  

𝑃𝑈 = 1 − 𝜇𝑇 (3.15) 

 Classifying stations 

The previously calculated flow for each return period QT was in the next step compared to the flow 

triggering the flood stages (QStage). For each flood stage (minor, moderate, major) the relationship 

between QT and QStage was examined following formula (3.16), (3.17), and (3.18). QT_lower refers to 

the flow value of Tlower and QT_upper to flow value of Tupper for each flood stage. Exemplary for the 

minor stage, if QStage was lower than QT=5, it would be classified as Below, if QStage was higher than 

QT=10, as Above and if QStage was within the range of QT=5 to QT=10, it was classified as In. At the end 

of this step, we have a table, where each station is assigned an indicator for each flood stage, 

classifying if QStage is below, above, or within the flow of the given recurrence interval range.  

𝐵𝑒𝑙𝑜𝑤 = 𝑄𝑠𝑡𝑎𝑔𝑒 < 𝑄𝑇_𝑙𝑜𝑤𝑒𝑟  (3.16) 

𝐴𝑏𝑜𝑣𝑒 = 𝑄𝑠𝑡𝑎𝑔𝑒 > 𝑄𝑇_𝑢𝑝𝑝𝑒𝑟 (3.17) 

𝐼𝑛 = 𝑄𝑠𝑡𝑎𝑔𝑒 > 𝑄𝑇_𝑙𝑜𝑤𝑒𝑟  & 𝑄𝑠𝑡𝑎𝑔𝑒 < 𝑄𝑇_𝑢𝑝𝑝𝑒𝑟  (3.18) 
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Figure 3.6 illustrates the classification. The meaning of the categories (above, in, below) can be best 

explained using the return periods, where TStage is the return period of the flood stage triggering flow 

QStage. If a station is classified below, it means that QStage has a lower return period than Tlower. This 

results in the stage being triggered statistically more often, than we would expect given the return 

periods assigned to the flood stage. Is the station classified above, the stage is triggered statistically 

less often than expected, as TStage is higher than Tupper. Lastly, if the station is classified as in, the 

return period of QStage is within the expected range between Tlower and Tupper, therefore, the statistical 

exceedance is as expected. The implication of the classification is also reflected by the chosen color 

code, as above is marked as green, in is colored blue, and below is red.   

   
Figure 3.6: Illustration of the classification in Below/In/Above. On the left the used discharge values are depicted, QT 

being the discharge of the return periods. The right shows the meaning of the classifications for the return 
periods. QStage and with that also TStage lies in one of the categories, depending on the relationship of the 
value of QStage and QT. 

To summarise: below means the given return period range (Tlower to Tupper) overestimates the actual 

return period of QStage (TStage < Tlower), while above means TStage is underestimated (TStage > Tupper). 

 Selection of relevant catchment characteristics 

To answer the question, whether catchment characteristics influence the classification made in 3.2.3, 

from the 354 available parameters, those relevant had to be chosen. The selection was based on 

parameters directly influencing hydrological processes, like climate and geological properties, but 

also anthropogenic influences. On one hand, a wide range of criteria was desired, to cover many 

different catchment characteristics. On the other hand, a redundancy of similar characteristics was to 

be avoided. As mentioned above the focus was on those characteristics directly influencing 

hydrological processes, in particular formation and occurrence of floods. As such the ability of a 

catchment to absorb precipitation before it gets to the stream and the ability to transport runoff out 

of the catchment quickly are important. Natural runoff formation processes were equally considered, 

as well as anthropogenic impacts on the catchments since the flood stages characterize damages to 

anthropogenic infrastructure and population.  
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For the previously selected 727 stations, the chosen parameters were extracted from the GAGES II 

database and saved in two files. One file contains the unmodified parameter data, the other contains 

the normalized parameter data xnorm, ranged 0 to 1 using formula (3.19). 

𝑥𝑛𝑜𝑟𝑚 = 𝑥 −min (𝑥)max(𝑥) − min (𝑥) (3.19) 
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Table 3.5: Selected Catchment characteristics for later correlation and regression. Adapted from (Falcone et al., 2010; Falcone, 2017)  

Characteristic Abbreviation Description Unit 

CLASS CLASS 
REF = reference (least-disturbed hydrologic condition); 
NON-REF = not reference. 

[-] 

DRAIN_SQKM DRAIN Watershed drainage area [km2] 

RRMEDIAN RRMEDIAN 
Elevation - relief ratio, calculated as 
(ELEVMEDIAN - ELEVMIN)/(ELEVMAX - ELEVMIN) 

[-] 

RUNAVE7100 RUNAVE Estimated watershed annual runoff, mean for the period 1971-2000 [mm/year] 

STREAMS_KM_SQ_KM STREAMS Stream density [km/km2] 

HIRES_LENTIC_PCT LENTIC Watershed surface area covered by "Lakes/Ponds" + "Reservoirs" [%] 

PPTAVG_BASIN PPTAVG Mean annual precipitation, calculated from 30 years period of record 1971-2000. [cm] 

PRECIP_SEAS_IND PRECIP_SEAS 
Precipitation seasonality index, based on monthly precipitation values from 30-year 
(1971-2000) PRISM: 0 (precipitation spread out exactly evenly in each month) to 1 
(all precipitation falls in a single month). 

[-] 

SNOW_PCT_PRECIP SNOW Snow percent of total precipitation estimate, mean for period 1901-2000 [%] 

DEVNLCD06 DEVLP Watershed percent "developed" (urban), 2006 [%] 

PLANTNLCD06 PLANT Watershed percent "planted/cultivated" (agriculture), 200 [%] 

FORESTNLCD06 FOREST Watershed percent "forest", 2006 [%] 

RIP800_DEV RIP_DEV 
Riparian 800m buffer "developed" (urban), 2006: 
area 800m each side of stream centreline, for all streams in the watershed 

[%] 

HLR_BAS_DOM_100M HLR Dominant Hydrologic Landscape Region within the watershed. 
HLR region 

(1 - 20) 
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 Relationship examination 

3.2.5.1 Correlation 

Correlation analysis evaluates if there exist mutual patterns between two random variables x1 and x2. 

Correlation only measures the similarity of variation, it does not imply a cause-effect relationship 

between the variables. Covariance sx1x2 is the totalized product of the variance of each variable value 

(x1i, x2i) from the variables mean (𝑥̅1, 𝑥̅2). The higher the absolute value of the covariance (formula 

(3.20)), the stronger the correlation between x1 and x2. A positive covariance means both variables 

vary in the same direction, while a negative covariance means one variable increases the more the 

other variable decreases. If the covariance is 0, there is no correlation between the variables 

(Dormann, 2017).  

𝑐𝑜𝑣(𝑥1𝑥2) =  𝑠𝑥1𝑥2 = 1𝑛∑(𝑥1𝑖 − 𝑥̅1)(𝑥2𝑖 − 𝑥̅2)𝑛
𝑖=1  (3.20) 

The absolute value of the covariance is dependent on the absolute values of x1 and x2, so in order to 

be able to compare results, we need to normalize the value of the covariance. One way of 

normalization is to use Pearson’s correlation coefficient ρ, ranging from -1 ≤ ρ ≤: 

𝑐𝑜𝑣(𝑥1𝑥2) = 𝜌 = ∑ (𝑥1𝑖 − 𝑥̅1)(𝑥2𝑖 − 𝑥̅2)𝑛𝑖=1√∑ (𝑥1𝑖 − 𝑥̅1)2𝑛𝑖=1 ∑ (𝑥2𝑖 − 𝑥̅2)2𝑛𝑖=1  (3.21) 

Values of ρ close to 1 (positive) or -1 (negative) show a strong correlation, values close to 0 show 

no correlation between the two variables. Pearson’s ρ is based on the assumption that the two 

variables are normally distributed. For not normally distributed data, an alternative correlation 

coefficient is Spearman’s ρ, calculated as Pearson’s ρ of rank transformed data. For this, the actual 

values of the variables are replaced by their position in the sorted dataset, herby calculating the 

correlation between the ranks of data points in x1 and x2. This reduced the influence of outliers in 

the data on the resulting correlation (Dormann, 2017).  

Depending on the variable type, different correlation coefficients needed to be calculated. A 

distinction is made between continuous and discrete variables, discrete variables being separated in 

dichotomous (two possible values) and polytomous (more than two possible values) (Dormann, 

2017). 

• Biserial correlation: between a continuous and a dichotomous variable 

• Polyserial correlation: between a continuous and polytomous variables 

• Polychoric correlation: between two polytomous variables 

• Tetrachoric correlation: between two dichotomous variables 
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mixedCor from the package psych was used on the not-normalized parameter data, to determine the 

correlation in R (Revelle, 2020). This function was able to compute correlations between different 

types of variables, by manually specifying continuous, polytomous, and dichotomous parameters (as 

seen in Table 3.6). All parameters needed to be in a numeric format, for this, non-numeric variables 

were first transformed to characters and then to numeric values. The HLR parameter had too many 

categories and was, therefore, considered a continuous variable. For continuous variables, the 

spearman’s ρ was calculated, the correlation for the other variable combinations was calculated as 

listed above. By rank-transforming, the continuous variables when calculating correlation with 

discrete variables, the spearman-version of the correlation coefficients was calculated (Dormann, 

2017).  

Table 3.6: variable type of the variables selected in 3.2.4, used for examination of the correlation 

Variable type Variable name 

Continuous 

DRAIN, RRMEDIAN, RUNAVE, STREAMS, LENTIC, 

PPTAVG, PRECIP_SEAS, SNOW, DEVNLP, PLANT, 

FOREST, RIP800_DEV 

Dichotomous CLASS 

Polytomous indicator 

To determine the significance of the correlation found, a p-value was calculated. The null hypothesis 

being, that there was no linear correlation between x1 and x2 (ρ = 0). The correlation values (ρ) found 

were significant if p < α = 0.05, thereby rejecting the null hypothesis. In R the p-values of the 

continuous and dichotomous variables were calculated using a modified version of cor.ci from the 

psych package (Revelle, 2020) and verified using cor.test from the stats package (R Core Team, 

2019). The p-values of the polychoric and polyserial correlation were calculated using cor_to_p from 

the correlation package (Makowski et al., 2020). 

There was no uniform classification of the correlation coefficients, outside of 1 being a perfect 

correlation and 0 showing no correlation. Therefore, the coefficient was evaluated following Table 

3.7, which was adapted from Akoglu (2018) and Yan et al. (2019). 
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Table 3.7: Interpretation of the spearman correlation coefficient (ρ): grading table. 

Coefficient ρ Strength of correlation 

ρ = 0 None 

     0 <|ρ| < 0.2 Very weak 

0.2 ≤ |ρ| < 0.4 Weak 

0.4 ≤ |ρ| < 0.6 Moderate 

0.6 ≤ |ρ| < .0.8 Strong 

0.8 ≤ |ρ| ≤ 1 Very strong 

1 Monotonic/ perfect 

3.2.5.2 Regression 

Regression analysis examines and models the relation between variables. Regression implies a 

directional dependence between one dependent variable (y = response) and one or multiple 

independent variables (x = predictors). This means that y is a function of x, denoted as y~x or y = 

f(x), so that x influences y, but not the other way around (Dormann, 2017). Formula (3.22) expresses 

a simple linear regression model, while formula (3.23) shows a multiple regression model. x1, …, xn 

being the predictors, β0 the intercept, and β1, …, βn the regression coefficients. In a linear model, the 

regression coefficients express the change in y for a unit change in xi, when the other xn are kept 

constant (Naghettini, 2017).  

𝑦 = 𝛽𝑜 + 𝛽1 ∙ 𝑥1 (3.22) 

𝑦 = 𝛽𝑜 + 𝛽1 ∙ 𝑥1 +⋯+ 𝛽𝑛 ∙ 𝑥𝑛 (3.23) 

Before fitting a model, we have to decide, which distribution function f(x) the response is drawn 

from. The link function g(y) is used to ensure that the response values predicted with the calculated 

linear model still conform to the selected distribution, meaning the values fall within the possible 

range of the distribution.  

For later reference, the binomial regression model or logistic regression is examined more closely. 

Here the response (y) is binary data, meaning it can be in one of two categories (0, 1). The link 

function of the binomial distribution is the logit (formula (3.24)), used to keep the predictions 

between 0 and 1 (Dormann, 2017). The model follows formula (3.25) and estimates the probability 

P(y = 1|x), of y to be in one of the two categories, depending on the values of x. To get back to the 

simple structure of a linear model with a possible value range from -∞ to +∞, formula (3.25) is 

transposed to formula (3.26). The term on the left-hand side is called log-odds or logit. It is important 

to remember, that here a unit change of x changes the log-odds by β1 and not P(𝑦 = 1|𝑥) (James et 

al., 2021). 
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𝑦′ = ln ( 𝑦1 − 𝑦) (3.24) 

𝐹(𝑥) = P(𝑦 = 1|𝑥) = 𝑒𝛽𝑜+𝛽1∙𝑥11 + 𝑒𝛽𝑜+𝛽1∙𝑥1 (3.25) 

log ( P(𝑦 = 1|𝑥)1 − P(𝑦 = 1|𝑥)) = 𝛽𝑜 + 𝛽1 ∙ 𝑥1 (3.26) 

For estimating the regression coefficients, the maximum likelihood method is preferred. The 

likelihood measures, how plausible the distribution parameters are, given the data. In the case of the 

regression, we seek βn estimates so that the predicted probability for the categories is closest to the 

observed probability (James et al., 2021). The likelihood is defined in formula (3.27) and quantifies 

the total probability density of the dataset. X is a vector of observations, n is the number of 

observations in X and θ the parameters of the distribution, so that P(X|θ) is the product of the 

likelihood of the single data points in X. Since the likelihood values of the singular observations are 

very small, the log-likelihood is calculated using formula (3.28). A high log-likelihood means, that 

the probability 𝑃(𝑋|𝜃) to obtain the observations in X with given parameters 𝜃 is high. The parameter 

combination with the maximized log-likelihood is chosen for the regression model (Dormann, 2017).  

𝐿 = 𝑃(𝑋|𝜃) =∏𝑃(𝑋𝑖|𝜃)𝑛
𝑖=1  (3.27) 

𝑙 = log(𝐿) = ln (∏𝑃(𝑋𝑖|𝜃)𝑛
𝑖=1 ) =∑ln(𝑃(𝑋𝑖|𝜃))𝑛

𝑖=1  (3.28) 

Knowing the correlation of the parameters calculated before is important for the regression. 

Correlation between two predictors is called collinearity and can cause problems for finding the 

optimal regression model. If two predictors are very similar, deciding on which one is important can 

be difficult. Additionally, when trying to find the optimal regression model similar predictors cause 

difficulties in finding the optimum, as there is an infinite number of parameter variations of those 

correlated predictors. Hence, the goal was to have little correlation between the parameters used as 

predictors in the regression model.  

In the case of this analysis, the catchment parameters were the predictors (x), while the indicator 

categorized in 3.2.3 was the response (y), therefore a multinomial logistic regression model needed 

to be fit. With the response variable being a categorical variable of 3 ordered categories (k = below, 

in, above), an ordered categorical regression (ordinal) logistic regression model was used.  
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Ordinal logistic regression is very similar to the previously explained logistic regression, with the 

difference that the response has more than two categories that have a set order. Here that order is 

below < in < above. The analysis was done using polr from the MASS package (Venables and Ripley, 

2002), by means of a cumulative link model. Cumulative models (CM) are based on the assumption 

of an underlying latent variable y* with a continuous distribution function F(.), of which the 

categorial version is observed (formula (3.29)). The proportional odds model is the most widely used 

CM, using the logistic distribution function, as seen in formula (3.30) (Agresti, 2007; Tutz, 2021). 

In R, polr follows formula (3.31), where r is the categories,  𝜁𝑘 are the intercepts for the class 

boundaries and η coefficients of the linear predictors (Venables and Ripley, 2002).  

𝑃(𝑦 ≤ 𝑟|𝑥) = 𝐹(𝛽𝑜 + 𝛽1 ∙ 𝑥1),    𝑟 = 1,… , 𝑘 (3.29) 

log (𝑃(𝑦 ≤ 𝑟)P (𝑦 > 𝑟)) =  𝑙𝑜𝑔𝑖𝑡(P(𝑦 ≤ 𝑟|𝑥)) =  𝛽𝑜 + 𝛽1 ∙ 𝑥1 (3.30) 

 𝑙𝑜𝑔𝑖𝑡(P(𝑦 ≤ 𝑟|𝑥)) =  𝜁𝑘 − 𝜂1 ∙ 𝑥1 −⋯− 𝜂𝑛 ∙ 𝑥𝑛 (3.31) 

For a proportional odds model to be applicable, the proportional odds assumption needed to be 

validated. To uphold this assumption, the slope estimates β or η have to be the same across all 

outcomes, meaning that a variable has an identical effect at each cumulative split of the response. In 

R we checked the proportional odds assumption using the brant test (Brant, 1990) from the brant 

package (Schlegel and Steenbergen, 2020). With a p-value > 0.05 for every predictor, the 

proportional odds assumption would be satisfied.  

To obtain the outcome probabilities of the different response values for a parameter combination, the 

odds have to be calculated (formula (3.32)) and from that the probability for each possible outcome 

(formulas (3.33)). Since the probability is described as P(y≤r|x), the calculated probability will 

always be that y is in category r or less. Given the cumulative model, the probability Pr of each 

category can be calculated according to formula (3.34). 

 𝑜𝑑𝑑𝑠 = 𝑒𝑙𝑜𝑔𝑖𝑡(P(𝑦≤𝑟|𝑥)) (3.32) 

P(𝑦 ≤ 𝑟|𝑥) = 𝑜𝑑𝑑𝑠1 + 𝑜𝑑𝑑𝑠 (3.33) 

𝑃𝑏𝑒𝑙𝑜𝑤 = P(𝑦 ≤ 𝑏𝑒𝑙𝑜𝑤|𝑥) 𝑃𝑖𝑛 = P(𝑦 ≤ 𝑖𝑛|𝑥) − 𝑃𝑏𝑒𝑙𝑜𝑤 𝑃𝑎𝑏𝑜𝑣𝑒(𝑥) = 1 − 𝑃𝑖𝑛 

(3.34) 
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In R the predict function computed the probabilities of each response category (below, in, above) 

and from that the predicted class for each parameter combination. In order to be able to compare the 

η values of the predictors, the normalized parameter data, created in 3.2.4, was used. Standardizing 

allows using the coefficients to evaluate the importance of each predictor to the outcome of the 

model, without having to keep the original units in mind. 

Looking at formula (3.31), the obtained parameters of the polr model will have an inverse effect on 

the outcome probability. In logistic regression (formula (3.26)) positive coefficients (β) will have an 

increasing effect on the logit of the probability. In the ordinal logistic regression applied here, 

positive coefficients will have a decreasing effect on the logit, caused by the minus-sign in front of 

the coefficients η. For interpretation purposes − η𝑖  =  β𝑖. 
Using polr, the response was coded as an ordered factor, the continuous predictors were numeric, the 

discrete parameters were transformed from character strings to factors. For categorical predictors 

with more than 2 categories, polr creates dummy variables, turning each category into a new 

predictor, coded 0 or 1. So instead of 14 predictors, there were 31, with each of the 19 HLR classes 

being their own predictor. However, to avoid multicollinearity, one of the dummy variables has to 

be dropped, which resulted in 30 predictors. Polr does this automatically. For the latter interpretation 

of the coefficients of the dummy variables, their structure was important. If dummy variable A was 

1, then all the other dummy variables were 0. 

3.2.5.3 Stepwise model selection 

In 3.2.4 14 catchment parameters were selected under the assumption, that they influence the 

classification of the indicator. The goal of the last step of the analysis was to determine which of 

those catchment parameters can be used to predict the category of the indicator for any catchment. 

Only the most suitable predicts were to be included in the regression model, keeping the number of 

predictors as low as possible. Prior a regression model was built with all 14 selected parameters, 

which was then used in the stepwise model selection. 

In each step of a stepwise model selection, one of the predictors is iteratively be added or subtracted 

from the model, depending on the selected measure of performance (MOP). There are three main 

approaches: forward selection, backward selection, and bidirectional selection. In forward selection, 

the initial model has no predictors (null model), they are added one at a time until all predictors are 

included. At each step, the predictor with the greatest improvement of the MOP is added to the model 

until the MOP no longer improves. Once a predictor is added to the model it cannot be removed. The 

backwards selection starts with the full model, including all predictors and one at a time removes one 

predictor, that least improves the MOP. The Bidirectional selection is a combination of backwards 

and forward selection and can start with the full or null model. At each step, predictors can be added 
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or removed to the model depending on the MOP. Previously selected/removed predictors can be 

removed/selected in later steps (James et al., 2021). 

The measures of performance used, were the Akaike’s Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC), where p is the number of fitted parameters, n the number of 

observations, and l the log-likelihood (Dormann, 2017). The lower the value of AIC and BIC, the 

better the fit.  

𝐴𝐼𝐶 = −2𝑙 + 2𝑝 (3.35) 

𝐵𝐼𝐶 = −2𝑙 + 𝑝 ∙ 𝑙𝑜𝑔(𝑛) (3.36) 

Two MOPs were chosen because they each select the best model differently. With the AIC the left 

term (-2l) decreases, as more parameters are added, while the right term (2p) increases. Despite this 

trade-off between under and overfitting, the AIC is more likely to overfit, creating models with many 

parameters. BIC on the other hand punishes additional parameters more (log(727) >2), leading to 

models with fewer parameters that might be underfitted (Burnham and Anderson, 2002). 

In R stepAIC from the MASS package (Venables and Ripley, 2002) was used to perform the stepwise 

selection. The bidirectional selection approach was chosen as it can both add and remove parameters 

(direction = "both"). The default MOP was the AIC (k=2), modifying k = log(nrow(data)) computed 

the BIC instead. 

First, a full model with all parameters was fit using the polr function. This model was input into 

stepAIC, selecting the model parameters based on the AIC or BIC, depending on the specifications 

of k. To assess the goodness-of-fit of the model, a k-fold cross-validation was applied. For this, the 

727 observations were randomly divided into k groups (folds) of approximately equal size. The first 

fold was used to validate the model, that had been fit on the remaining 𝑘 − 1 folds. The root-mean-

square error (RMSE, formula (3.37)) was calculated on the observations and model predictions from 

the first fold, with nfold being the number of observations. This is repeated k times, using a different 

fold for validation each time. Here k = 10 is used. 

𝑅𝑀𝑆𝐸 = √ 1𝑛𝑓𝑜𝑙𝑑∑(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 𝑛
𝑖=1  (3.37) 

The k-fold cross-validation was repeated ten times, resulting in 100 computed best models for each 

MOP. The chosen parameters of those 100 models were extracted, together with the calculated 

RMSE. The final selection of the model was done by visually assessing the obtained AIC and BIC 

values and model parameters, keeping the calculated RMSE in mind. This process was done for each 
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flood stage, resulting in six final models in total, 2 per flood stage (one AIC and one BIC-based best 

model). 

3.2.5.4 Model evaluation  

To evaluate the six models created, they were used to predict the response (indicator), in another k-

fold cross-validation procedure, similar to 3.2.5.3. For this, the models were fitted using the 

previously selected parameters of the best AIC and BIC model for each flood stage. Unlike in 3.2.5.3, 

data from all 727 stations was used to determine the model coefficients, only for determining the 

prediction accuracy, the data was divided into k = 10 subsets.  

The prediction results for each of the k = 10 folds were compared to the classification of the indicator 

done in 3.2.3. Results of the comparison were given in percent of stations correctly estimated, 

underestimated, and overestimated. Additionally, it was examined how often which category was 

underestimated, overestimated, and correctly guessed, using the count function (Wickham, 2011).  

For each of the six models mean results over all ten folds were calculated and from that, the best 

model for each flood stage was selected. A balance between model accuracy and number of 

parameters was crucial to the selection. In case the prediction accuracy between models of different 

MOPs was small, the model with less parameters was preferred. Smaller models are both easier to 

understand and have less estimation uncertainty in their reduced number of parameters. 

Of the three selected models, the coefficients of the predictors were compared in their size, both 

within each model and between the three final models fitted. This allowed an assessment of the 

importance of the different predictors for modeling the indicator. The p-values of the parameter 

coefficients were calculated using coeftest from the package lmtest (Zeileis and Hothorn, 2002). The 

null hypothesis was β = 0, meaning there was no relationship between the response and the predictor. 
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 Results 

4.1 Data preparation 

In 3.2.1, a selection of gauges was made for further analysis, and the flood stage triggering flow of 

each flood stage was calculated for every gauge. The results were evaluated using the flow time 

series, in regards to the exceedance of the different flood stages, this is shown in Figure 4.1. The 

hydrological year (October 1st to September 31st) was used, with the following seasonal division: 

spring (March, April, May), summer (June, July, August), fall (September, October, November), 

winter (December, January, February). This summary was calculated from all 727 stations, it does 

not reflect the varying seasonality depending on climate and catchment characteristics. It is merely 

the sum of the exceedances of all events per season over all catchments, showing the median 

seasonality over CONUS.  

 

Figure 4.1: Seasonality of the triggering of the minor, moderate, and major flood stage viewed over the selected 727 
gauges  

Looking at the seasonality of flood stage triggering it was shown, that over all three stages, most 

flood stage triggering flows (events) occur in spring, followed by winter. While the difference 

between median events in spring and winter is relatively high (107 events) for the minor stage, it 

decreases with increasing flood stage to 8.5 for the moderate and 0.5 for the major stage. Summer 

and fall have a similar mean number of flood stage activations, differing only in ten (minor), four 

(moderate), and one (major) events. Figure 4.1 also shows a decrease in triggering overall with 

increasing flood stage. Table 4.1 shows the number of stations, where a flood stage is never triggered, 

during the given time series.  

Table 4.1: Number of stations where the discharge of respective flood stage is not reached or exceeded 

Minor stage Moderate stage Major stage 

100 233 426 
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If the flood stage flow of a stage is not reached or exceeded, neither is the flow of any higher flood 

stage. For more than half of the 727 gauges analyzed, the major flood stage flow was never reached 

or exceeded. The moderate stage and above was not reached for 233 gauges, but for 133 stations out 

of the 233, the minor stage flow was reached. For 100 gauges neither flood stage flow was reached. 

4.2 Flood frequency analysis  

 Independence criteria 

Table 4.2 shows the mean, minimum and maximum days passed between peaks, for them to be 

considered independent. The larger the catchment area, the higher the time interval θ between flood 

peaks included in the POT time series.  

Table 4.2: Summary of days between flood peaks for them to be assumed independent events 

Mean Min Max 

11.8 6.4 14.9 

 Choice of threshold 

The table below shows the results of the discharge quantile calculation, that the choice of threshold 

was based on. With the goal of having around two events per year in mind, the 0.98 and 0.995 

quantile were excluded, due to a too low number of events. The 0.975 quantile came closest to our 

desired mean of 2´two years, while the rest was higher. Despite not resulting in exactly two POT 

events per year, 0.975 was chosen as the threshold for the extreme value analysis. 

Table 4.3: Summary of different quantiles examined to choose threshold from: mean, median, minimum, and maximum 
events per year over all stations 

 0.8 0.9 0.95 0.96 0.97 0.975 0.98 0.995 

Mean 4.40 3.95 3.12 2.82 2.44 2.21 1.94 0.75 

Median 4.47 3.96 3.10 2.81 2.41 2.18 1.92 0.74 

Min 0.81 0.61 0.44 0.34 0.23 0.20 0.19 0.07 

Max 12.92 11.88 9.11 7.92 6.43 5.72 4.88 1.55 

 Goodness of fit 

The results of the goodness-of-fit tests are shown in Figure 4.2. Results of the KS-tests, confirm 

matching sample distributions (two-sided test) for 711 stations. The CvM-test matches the previous 

findings, rating 720 stations as matching the reference distribution (GPD). The results of the AD-

test, however, show, that giving more weight to the tails results in only 487 stations with a p-value 

above 0.05. Looking at the stations with p-values ≤ 0.05, there were no matching stations between 

the AD-test and the KS-test or CvM-test. However, for 7 stations both the KS-test and the CvM-test 
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rejected the null hypothesis. For the AD-test 220 stations had a p-value below α and an infinite value 

for Wn
2. 

 

Figure 4.2: Results of the goodness-of-fit tests: KS-test (A), AD-test (B), CvM-test (C). the significance level α = 0.05 is 
marked by the dotted line in each plot  

While there were stations, where the null hypothesis was rejected, for the majority of stations the 

GPD distribution was considered a good fit for the POT data. This confirmed the selection of the 

GPD to estimate the return periods of flood stage triggering flows.  

 Return periods of flood stage triggering flows  

The figure below shows a summary of the calculated return periods of flood stage triggering 

discharge for all flood stages. A violin plot, representing the density of the values, was combined 

with a boxplot, to depict the quartiles. While the violin plot shows a clear high density at a return 

period of just below one year for the minor stage, it is much more drawn out for the moderate stage 

and major stage. Looking at the boxplots, an increase in the median return period can be seen with 

increasing flood stage. Likewise, the interquartile range increases with increasing flood stage.  

 

Figure 4.3: Summary of the recurrence intervals for all 4 flood stages: Plots showing the density of the calculated return 
periods, excluding infinite values 
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While the median of return periods ranges from 1.21 years (minor stage) up to 183.85 years (major 

stage), the large outliers lead to mean return periods of more than 1012 years (Table 4.4). Both the 

minimum return periods and the maximum return periods of all flood stages are within the same 

respective order of magnitude.  

Table 4.4: Summary of the recurrence intervals for all 4 flood stages, excluding infinite values 

 Minor Moderate Major 

Mean 2.9·1012 9.9·1012 1.2·1013 

Median 1.21 9.25 184 

Min 0.24 0.25 0.4 

Max 1.7·1015 3.2·1015 3·1015 

  

For some stations, calculating the return periods resulted in infinite values (Inf), the location of those 

gauges is shown in Figure 4.4. For 35 stations, the calculated return period of all flood stages was 

Inf. For 30 stations, the return periods of the moderate and major flood stage were Inf and for 48 

stations the calculated return period for just the major stage was Inf.  

 

Figure 4.4: Gages with calculated infinite (Inf) return periods of flood stages. Differentiated between stations where the 
return periods of all flood stages were infinite, those where they were infinite for the moderate and major 
stage, and infinite return periods for the major stage. 

 Flow level of given return periods 

Figure 4.5 shows the summary of the flow level corresponding to our selected return periods. Since 

the flow was normalized to mm/d using the catchment size, the obtained values can be compared. 

For a return period T of 5, 10, and 15 years, two peaks can be seen in the density of the flow values, 

the first one below the interquartile range, the second one within. While the peaks are well-formed 

for T = 5, they get less prominent with increasing T. For T = 40, 50, and 100, one peak can be seen 

at around 8 mm/d, after which the density decreases. For T = 40 a second small peak can be seen at 

around 68 mm/d and for and T = 50 at 75 mm/d. Over all the higher the return period, the higher the 

interquartile range (IQR) and the higher the range of values outside the IQR.  
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Figure 4.5: Summary of the calculated discharge of return periods 5, 10, 15, 40, 50, and 100 years. The plot shows the 
density and quartiles of the calculated flow  

Table 4.5 contains the summary statistics of the calculated flow values for each return period. It 

shows a great overall difference between the minimum and maximum flow computed for each return 

period. This min-max difference increases with an increasing return period, from 124.94 mm/d for T 

= 5 to 237.03 mm/d for T = 100. The median flow of T = 100 is about twice as high as the flow of T 

= 5. The difference in the median between T = 40 and T= 50, is relatively small with only 1.27 mm/d. 

Unlike the results of the return periods of the flood stages shown in 4.2.4, here mean and median are 

quite similar, differing only in a range of 2.33 mm/d (T = 5) to 8.82 mm/d (T = 100). 

Table 4.5: Summary of flow level [mm/d] for the recurrence intervals used in the later comparison (return periods of 5, 
10, 15, 40, 50, and 100 years) 

 5 10 15 40 50 100 

Mean 17.0 21.2 23.9 31.5 33.5 40.3 

Median 14.7 18.1 20.3 25.6 26.9 31.4 

Min 0.22 0.28 0.32 0.45 0.48 0.60 

Max 125.2 148.8 162.4 194.3 201.5 237.6 

 

4.3 Classifying stations 

The previously calculated flow corresponding to flood stages and selected return periods were then 

compared as described in 3.2.3. Figure 4.6 shows the results in percent, Table 4.6 in number of 

stations. For all flood stages, the number of stations classified as in was the lowest, compared to the 

other classifications. While for the minor stage there were more than three times as many stations 

below as above, for the moderate stage it is only 1.3 times as many. For the major stage, the 

below/above ratio is the opposite, with there being around twice as many stations above as below. 
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Figure 4.6: Classification of stations: placement in categories below, in, above based on the relationship between flood 

stage flows and return period flows 

Table 4.6: Count of stations per indicator for every flood stage 

Indicator Minor Moderate Major 

below 515 379 225 

in 47 65 53 

above 165 283 449 

The most common indicator combinations over all flood stages were below/below/below with 220 

stations and above/above/above with 163 stations. Only two stations were classified as in for all flood 

stages. The counts of all combinations can be found in Table A-2, in the appendix. Table A-3 and 

Table A-4 in the appendix show the number and percent of stations of each combination sequence, 

starting at the minor and major stage. The tables show, that of the 515 stations classified as below 

for the minor stage, 73% (377 stations) were also classified as below for the moderate stage and of 

that another 58% (220 stations) for the major stage. When the minor stage was classified as above 

(165 stations), 99% (163 stations) of those stations would also be classified above for the moderate 

stage, and of those 100% would be above for the major stage as well. Of the 449 stations classified 

as above for the major stage, 62% (282) were also above for the moderate stage.  

Figure 4.7 shows the spatial distribution of the classifications for all stages, Figure 4.8 shows the 

location of stations that had the same classification over all flood stages. For the minor stage (Figure 

4.7 (A)) a majority of stations in the Appalachian Highlands, along the Atlantic Plain, and in the 

Central Lowlands are classified as below. Additionally at the north-western end of CONUS, in the 

states of Washington, Oregon, Idaho, and Montana, stations are mainly classified as below or in. 

Stations located where the southern end of the Rocky Mountain System transitions into the Great 

Plains to the east and the Intermontane Plateaus to the west are mostly classified as above (Colorado, 

Utah, New Mexico, Wyoming).  

Looking at the moderate stage in Figure 4.7 (B), the number of stations above increased. We still see 

the same patterns of below classifications in the East and a diagonal zone from Illinois to Texas, 
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though now less prominent. In the southwest, most stations are, like for the minor stage, also 

classified above for the moderate stage. Figure 4.7 (C) depicts the classification of the major stage 

and a clear increase in stations classified above. Areas, where stations were predominantly below 

before, are now marked as above. The diagonal zone from Illinois to Texas is barely visible, only in 

the north, where Illinois, Indiana, and Wisconsin meet, are a majority of stations marked below or 

in. Examining the West, only where the borders of New York, Pennsylvania, and New Jersey meet, 

is an area primarily classified as below or in visible. 

 

 

 
Figure 4.7: Maps of the classification of gauges made in 3.4: (A) minor stage, (B) moderate stage (C) major stage 
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Examining Figure 4.8, we see that the patterns described above for the minor stage (Figure 4.7 (A)) 

can also be seen here. There is an area of stations predominantly classified as above at the southern 

half of the Rocky Mountain System and transitioning to the Great Plain and the southern 

Intermontane Plateaus. The diagonal zone from Illinois to Texas and the areas in the north and on 

the eastern side of the Appalachian Highlands are mostly classified below over all stations. 

 
Figure 4.8: Stations where the relationship between flood stages and statistical thresholds was the same over all flood 

stages 

4.4 Relationship examination 

  Correlation 

Figure 4.9 and Figure 4.10 show the correlation heatmaps calculated using the selected catchment 

criteria and the classification of the indicator for all stages. Exact values of the correlation coefficients 

are only given for significant correlations.  

As shown in Figure 4.9, the coefficients of 18 correlations were rated as moderate or above. Very 

strong correlations were found between DEVLP – RIP_DEP (0.99) and RUNAVE – PPTAVG 

(0.82). With ρ = 0.99, DEVLP – RIP_DEP had the overall highest correlation, almost reaching a 

perfect Spearman correlation. A strong correlation was found between FOREST – RUNAVE (0.68) 

and PLANT – HLR (-0.64). In addition to the strong and very strong correlations mentioned above, 

of the 14 moderate correlations found, the following were discussed later: DEVLP – PLANT, HLR 

– FOREST, FOREST – PLANT, HLR – SNOW.  



4 Results 
 

38 

 

Figure 4.9: Heatmap of the calculated Spearman correlations between the selected catchment characteristics. The color 
indicates the size of correlation, red being above 0, blue being below 0. For significant correlations (p < α = 
0.05) the values of the correlation coefficients were printed in the corresponding box.  

Looking at the correlation in Figure 4.10, a very strong correlation was found between the indicator 

values of all of the flood stages. The correlation coefficients between the minor and moderate stage 

and the moderate and major stage were almost equal, while it was smaller for the minor and major 

stage. The correlation between each of the flood stages and the catchment characteristics was found 

to be weak at most, with values of |ρ| not exceeding 0.3. 

 

Figure 4.10: Heatmap of the calculated Spearman correlations between the selected catchment characteristics and the 
assigned indicators for the minor, moderate, and major flood stage. The color indicates the size of 
correlation, red being above 0, blue being below 0. For significant correlations (p < α = 0.05) the values of 
the correlation coefficients were printed in the corresponding box. 
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Despite the strong correlation found between RIP_DEV and DEVLP, both parameters were included 

in the regression. This was done to include both the anthropogenic influences on the entire watershed 

(DEVLP), as well as the urbanization and anthropogenic land use around the streams (RIP_DEV). 

As the flood stages are a measure of damage to the area around a stream, the anthropogenic influences 

will, therefore, determine which flood stage is reached.  

 Stepwise model selection  

The stepwise model selection resulted in 100 models, for each measure of performance (AIC, BIC), 

resulting in 200 models per flood stage. As said above the selection of the best model was done 

visually, using a heatmap of the measure of performance on the y-axis and the model parameters on 

the x-axis. The models with the ten lowest RMSE were kept in mind during the parameter selection. 

The selected final model parameters are listed in Table 4.7. It shows, that all models contain the 

parameter PPTAVG and all AIC models contain DRAIN and HLR. The following explains the 

reasoning behind their selection.  

Table 4.7: Table of parameters of chosen six models for each flood stage and criterion 

 MOP Parameters 

Minor stage 
AIC PPTAVG DRAIN STREAMS HLR  

BIC PPTAVG SNOW PLANT   

Moderate stage 
AIC PPTAVG DRAIN FOREST RIP_DEV HLR 

BIC PPTAVG DRAIN PLANT   

Major stage 
AIC PPTAVG DRAIN FOREST HLR  

BIC PPTAVG FOREST    

4.4.2.1 Minor stage 

Figure 4.11 shows, that for the models fitted using the AIC, the parameters PPTAVG and HLR were 

included in all best models. For the other parameters, there was great variability in the best models, 

as well as in the best RMSE models, which made a selection of parameters difficult. DRAIN and 

STREAMS were chosen since they were in the model with the lowest AIC and had also been included 

in several models with low RMSE values.  

The selection of parameters for the BIC model was easier, as the best BIC parameter combination 

also had the lowest RMSE. PPTAVG, SNOW, and PLANT were, therefore, chosen as the final BIC 

model for the minor stage. 

4.4.2.2 Moderate stage 

For the moderate stage AIC model, DRAIN, PPTAVG, FOREST, and HLR were included in all best 

models. RIP_DEV was included in the model with the lowest AIC and lowest RMSE. DEVLP was 
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not selected, as the parameter was only included in one of the ten lowest RMSE models. The selected 

parameter combination had four out of the ten lowest RMSE, including the overall lowest.  

For the BIC model of the moderate stage, PPTAVG was selected, as it was in all of the best models 

(Figure 4.12). PLANT was in the model with the lowest BIC and in all of the ten lowest RMSE 

models. As a third parameter DRAIN was chosen, as this combination had the lowest RMSE and 

was in the top ten lowest RMSE six times.        

4.4.2.3 Major stage 

For the major stage, DRAIN and PPTAVG were in all of the best AIC models, as seen in Figure 

4.13. Outside of the two already selected parameters, there was a great variability of parameter 

combinations again, which made the selection difficult. FOREST and HLR were chosen, as they 

were included in the model with the lowest AIC. Additionally, that parameter combination had two 

of the ten lowest RMSE values. 

Parameters chosen for the BIC model of the major stage were PPTAVG and FOREST. PPTAVG 

was included in every model, in combination with FOREST it resulted in the lowest BIC value. This 

combination also had seven of the ten smallest RMSE values, including the overall lowest. 
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Figure 4.11: Heatmap of the 100 AIC (left) and 100 BIC (right) selected models for the minor stage. The k-fold cross-validation was used, darker color indicated a better MOP value. The ten models 
with the lowest RMSE are marked as well, with darker colors indicating a lower RMSE.  
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Figure 4.12: Heatmap of the 100 AIC (left) and 100 BIC (right) selected models for the moderate stage. The k-fold cross-validation was used, darker color indicated a better MOP value. The ten 
models with the lowest RMSE are marked as well, with darker color indicating a lower RMSE.  
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Figure 4.13: Heatmap of the 100 AIC (left) and 100 BIC (right) selected models for the moderate stage. The k-fold cross-validation was used, darker color indicated a better MOP value. The ten 

models with the lowest RMSE are marked as well, with darker color indicating a lower RMSE.  
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 Model evaluation 

The results of the k-fold cross-validation using the six models selected above can be seen in the 

following two tables below. Table 4.8 shows, that for the minor and moderate stage both the AIC 

and BIC model on average tend to overestimate the indicator significantly more than they 

underestimate. For the major stage, however, both models are underestimating much more than they 

overestimate. Comparing the models within each flood stage, the AIC model has a higher percentage 

of correctly guessed indicator values for all three flood stages. Though it only differs from the BIC 

models by a mean of 1,8 percent. 

Table 4.8: Results of the prediction accuracy estimated using the k-fold cross-validation: mean percentage of stations 
underestimated, overestimated, and correctly estimated. 

 MOP Underestimated [%] Overestimated [%] Correct [%] 

Minor stage 
AIC 4.46 20.42 75.12 

BIC 3.67 23.20 73.13 

Moderate stage 
AIC 9.07 27.65 63.28 

BIC 8.67 30.17 61.16 

Major stage 
AIC 31.62 4.96 63.41 

BIC 36.05 1.71 62.23 

In Table 4.9 the six models are compared using different model goodness measures. The comparison 

of the AIC shows a lower value for those models, that were chosen using the AIC as a MOP. The 

difference in AIC values matches the difference in the percentage correctly predicted in that sense, 

that it is largest between the models of the moderate and smallest between the models of the major 

flood stage. The same is true for the Loglikelihood. The values of the RMSE match the findings of 

the prediction accuracy. The minor stage has the lowest RMSE values and the highest correctly 

guessed indicator values, while the major stage has the highest RMSE values and the lowest 

percentage of correct predictions. 

Table 4.9: Results of the evaluation of the models: comparison of the measure of performance (AIC, BIC), the goodness 
of fit to the data (loglikelihood), and the prediction quality (RMSE) 

 MOP AIC Loglikelihood RMSE 

Minor stage 
AIC 1029.78 -491.89 0.89 

BIC 1045.71 -517.85 0.93 

Moderate stage  
AIC 1268.37 -610.18 1.09 

BIC 1296.15 -643.08 1.13 

Major stage  
AIC 1220.67 -587.33 1.11 

BIC 1224.56 -608.28 1.13 
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Overall, the difference in prediction accuracy and RMSE of the AIC and BIC models is rather small. 

It does not justify using a model with more parameters (AIC) over a model with less (BIC). 

Therefore, the BIC models of all flood stages were chosen for a closer examination of the model 

parameter coefficients. Figure 4.14 shows a heatmap of the absolute values of the model parameter 

coefficients |β|. The algebraic sign of the coefficients is depicted as + or - within each tile. The model 

coefficients given by the output of polr were transformed into β-values as described in 3.2.5.2. It is 

important to remember, that the coefficients don’t describe a direct influence on the category 

outcome of the response. Instead, they show the influence on the logit of the probability P(𝑦 ≤ 𝑟|𝑥).  
PPTAVG has the highest absolute β in all models, with around 4.5 in the minor and moderate and 

3.3 in the major model. For the minor model SNOW and PLANT have similar absolute β values, 

however, PLANT has an increasing effect on the logit of the probability (1.16), while SNOW has a 

decreasing effect (-1.02). In the moderate model DRAIN and PLANT both have increasing effects, 

with betas of 1.33 and 1.19 respectively. FOREST in the major model has a decreasing effect on 𝑙𝑜𝑔𝑖𝑡(P(𝑦 ≤ 𝑟|𝑥)), the β-value being -0.91. Regarding the β-values of all parameters, only SNOW 

and FOREST have a decreasing effect on the predictor.  

 

Figure 4.14: Heatmap of the absolute coefficient values |β| of the three chosen BIC models. The algebraic sign of each 
value is depicted with "+" for positive values and "-" for negative values. 

The figure below shows, that all model parameters were statistically significant. The β-values of 

PPTAVG and PLANT were highly significant (p < 0.001), the other parameters had p-values well 

below the significance level of α = 0.05 aswell (p < 0.01).  
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Figure 4.15: Heatmap showing the absolute values of β and the significance of the coefficients of the BIC models. 
Significance coded as follows: 0 “***” 0.001 “**” 0.01 “*” 0.05 “·” 0.1 “ ” 1 

Table 4.10 shows, that the classification in was never correctly predicted by any of the three models. 

For the minor and moderate stage, in was more often underestimated than overestimated. For the 

major stage, the opposite was true with the majority of stations classified as in being overestimated. 

The tendency of the models to under- and overestimate is also shown in the count of classifications 

correctly predicted.  

Table 4.10: Evaluation of the count of which classification category was underestimated, overestimated, and correctly 
estimated in the k-fold cross-validation for all three models 

 Category  
Under-

estimated 
Category 

Over-

estimated 
Category Correct 

Minor 

stage 

in 43 below 21 below 494 

above 126 in 4 above 39 

Moderate 

stage 

in 49 below 49 below 330 

above 168 in 16 above 115 

Major 

stage 

in 1 below 214 below 11 

above 11 in 52 above 438 

 



5 Discussion 
 

47 

 Discussion 

5.1 Methods  

 Flood frequency analysis  

5.1.1.1 Independence criteria  

When using the peak over threshold approach, assuring the independence of events is crucial. For 

this analysis the independence criteria included the catchment area, resulting in a varying time lag 

between independent events for each catchment. Another approach for assuring independence was 

introduced by Cunnane (1979), where events were required to be separated by three times the time 

to peak, calculated as an average over five hydrographs. He also suggested that the intermediate 

discharge value between two independent peaks must be less than ⅔ of the first peak. Both of those 

criteria were also used by Bayliss and Jones (1993) and by Bačová-Mitková and Onderka (2010). 

The US Interagency Advisory Committee on Water Data (USWRC) (1982) suggested that 

intermediate flows had to drop below ¾ of the lower peak. Ye et al. (2018) used both a 7 and 15-day 

interval between independent peaks.  

As shown many different independence criteria have been proposed in literature, with none of them 

having a clear advantage. The here chosen criterium including catchment area is, thus, deemed a 

good choice as it was officially proposed for US catchments, by the US Interagency Advisory 

Committee on Water Data (USWRC) (1982). 

5.1.1.2 GPD goodness of fit 

Evaluating the GPD fitted plots showed, that the discharge of high return periods was often poorly 

estimated. The AD-test confirmed this, by indicating that for 240 stations when giving more weight 

to the tails of the distribution, the GPD was not a good fit to the data. This resulted in a wide range 

of calculated return periods and discharge values. Underestimation of the tail resulted in calculated 

return periods of a given discharge value being estimated too high, and discharge values assigned to 

a return period being too low. Overestimation of the tail led to the opposite, with discharge values of 

return periods being too high and return periods of discharge values too low.  

Most of the return periods estimated for the minor stage were in a reasonable range between zero and 

100 as seen in the violin plot (Figure 4.3). For the moderate and major stage, however, calculated 

return periods exceeded both annualities that were reasonably estimated without too much 

uncertainty (more than three times the time series length) and reasonable time periods. This further 

proves, that the tails of the distribution and with that upper return periods, were poorly estimated by 

the GPD.  
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In the literature a variety of possible distribution functions are introduced and used for the flood 

frequency analysis. Most notably the log-Pearson type III distribution, which has been the official 

model used for all US catchments since 1967 (US Interagency Advisory Committee on Water Data 

(USWRC), 1982). According to Meylan et al. (2012), the 2-parameter exponential distribution, along 

with the GPD, is often used to model the POT time series. Seeing how poorly the tails of the POT 

data were fitted for some stations, the selection of a different distribution might be advisable, 

especially since the validity of the further analysis heavily relies on accurate results of the flood 

frequency analysis. The method of parameter estimation could of course also be changed, but seeing 

as L-moments are considered superior for estimating the GPD, the change would most likely not 

improve the fit (Hosking, 1990; Sankarasubramanian and Srinivasan, 1999; Zea Bermudez and Kotz, 

2010a).  

The chosen threshold also influenced the calculated return periods, as the number of events per year 

is included in the μ parameter in formula (3.14). A lower threshold will lead to a higher number of 

events per year, consequently decreasing μ and the obtained return periods. However, this influence 

is not relevant to the goodness of fit of the GPD, as μ is included in both the estimated return periods 

using the GPD and the calculated return periods of the observations. 

5.1.1.3 Flood stage exceedance and infinite return periods  

Results in 4.2.4 showed, that the calculation of return periods of flood stage triggering flows resulted 

in infinite values for some flood stages. The return period was calculated using formula (3.14) and a 

non-exceedance probability PU, obtained using the cdf previously fit to our POT time series. The 

closer Pu is to one, the higher the return period calculated. For the return period to be infinite, 1 − 𝑃𝑈 

has to be zero, which was the case with a non-exceedance probability of one.  

When calculating PU, the bottom term in formula (3.9), takes into account, that the maximum 

observed POT value, may be exceeded. Therefore, the maximum POT discharge value does not have 

a 𝑃𝑈 = 1, but the cumulative non-exceedance probability monotonically approaches 𝑃𝑈 = 1 with 

increasing discharge values Q. For some stations, the difference between the maximum observed 

QPOT in the POT time series and QStage of flood stage triggering flows was very high. The highest 

QPOT already had a high non-exceedance probability, an even higher QStage resulted in a value of Pu 

being very close to or even reaching one. This in turn led to the return period becoming very high or 

even infinite. 

The value of 𝜇 was not relevant for this, meaning the chosen threshold did not influence whether a 

station´s return period was infinite or not. The threshold only limited the lower bound of discharge 

values chosen, and, therefore, events per year, it at no influence on the highest peaks.   
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A comparison of stations with infinite return periods and stations where flood stage triggering flows 

were never reached or exceeded in the chosen time period, showed a pattern. For those stations, 

where the return periods of all stages were infinite, neither flood stage was never triggered. An 

exception to this is explained in detail later. When the moderate and major flood stages had infinite 

return periods, neither of both flood stages was triggered, and additionally, for half of those stations, 

the minor stage was also never triggered. Of those stations with infinite return periods for the major 

stage, for all except one station, the stage triggering discharge was never reached. The exception for 

the major stage was station ´01500000´, Figure 5.1 depicts the GPD fit to the POT data. It shows, 

that for a Pu below 0.75, the GPD estimates the actual discharge very well. Above that, however, it 

first slightly overestimated and later significantly underestimates Q. 𝑃𝑈 = 1 is reached way below 

the highest POT value of QPOT = 34 mm/d. The same was true for the estimation of return periods 

(Figure 5.2), while the GPD estimated the discharge well for return periods below two years, above 

15 years it significantly underestimated Q. This underestimation led to the infinite return period for 

the major stage, because while QStage = 32 mm/d was smaller than the max POT discharge QPOT = 34 

mm/d, the fitted GPD already reached 𝑃𝑈 = 1 at around 24 mm/d. 

 
Figure 5.1: POT data for station ´01500000´(black) and fitted GPD (red): Cumulative non-exceedance probability Pu  

 
Figure 5.2: POT data for station ´01500000´(black) and fitted GPD (red): return period in years  
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 Regression 

For the ordinal logistic regression to be used, the proportional odds assumption had to be valid. The 

Brandt test was executed along with a visual evaluation of the assumption. Calculation results 

confirmed the proportional odds assumption for all stages, however, visual evaluation was less 

conclusive. When plotting the odds, they were deemed proportional if the categories of a parameter 

had a similar value, depicted as a similar distance from zero on the x-axis (right end of the plot). 

Figure A-1 in the appendix shows the visual results exemplary for the minor stage and parametes of 

the final minor model. While the distance was similar for most parameters, especially for HLR the 

difference was rather large. Unfortunately, no exact numbers could be found for the distance, above 

with the assumption is not valid. But seeing as the distance was very similar for those parameters, 

that were selected for the final regression models, and the calculated results confirmed the 

proportional odds assumption, ordinal logistic regression was deemed applicable.  

5.2 Research questions  

 Question 1: Classification evaluation 

The results of the classification showed, that the impact-based flood stages matched the statistical 

thresholds on average for only 8% of stations, totaled over all stages. For the minor and moderate 

stage, a majority (71% and 52%) of stations was classified as below. For the major stage, the majority 

(62%) of stations were classified as above.  

As stated in the introduction, the conference paper by Anderson (2016) is the only comparative 

analysis of impact-based and statistical thresholds found in the literature. She found a strong 

relationship between statistical and impact-based thresholds, which was different from the one given 

by the APRFC (Alaska-Pacific River Forecast Center) (NOAA, 2019). In Anderson´s analysis, the 

major flood stage was best approximated by a return period of 100 – 500 years and the moderate 

flood stage by a return period of 25 – 50 years. She relates the high difference between recurrence 

intervals and flood stages for the major stage to the rarity of major events and the scope of available 

gauge data in Alaska.  

Comparing the median return periods calculated for each flood stage to Anderson´s findings, the 

moderate stage median of 9.3 years is below the 25 – 50 years range she found, while the median for 

the major stage of 184 years lies in the lower 20% quantile of her given range of 100 – 500 years. 

To better relate her findings to the ones of this thesis they are classified according to 3.2.3. Both the 

moderate and major stages are classified above, the moderate stage by about ten years, the major 

stage by 50 – 400 years. For the major stage, this matches the findings of this analysis, with the 

majority of CONUS stations being classified as above. For the moderate stage, however, results 

obtained here indicate a lower return period of the stage triggering flow, opposite to her findings. For 



5 Discussion 
 

51 

the minor stage, no results were reported by Anderson. When comparing the results, one has to keep 

the different study sites in mind, especially in regards to the population density of the analyzed 

watersheds. Seeing as flood stages are based on impacts on anthropogenic infrastructure and 

population, a higher population density means an increased number of targets for flood impacts and 

increased causal effects.  

Using the GAGES II database (Falcone et al., 2010; Falcone, 2017), the two study sites are compared 

to try and explain the differing results. Anderson (2016) used Alaskan catchments for her analysis, 

as no catchment IDs are given, all Alaskan catchments included in GAGES II are used for the 

comparison. The 87 catchments in Alaska have a mean residential population of 0.8 residents/km2, 

the 727 catchments in CONUS used for this thesis have a mean of 61 residents/km2. When it comes 

to the percentage of developed area in the watersheds, for Alaska the maximum is 9%, with a mean 

of 0.3%. For catchments in CONUS, the maximum is 97% and the median is 7% of a catchment 

being developed area.  

This might explain why Anderson´s results would classify the moderate stage as overall above, 

seeing as in less populated areas there is also less developed area and with that less infrastructure to 

be damaged by a flood. That in turn leads to flood stages being triggered at higher discharge values, 

resulting in higher return periods than the reference return periods given by the APRFC. Transferring 

this to the catchments of CONUS, more development in the catchment and around the stream leads 

to lower flows causing more damage than in undeveloped areas. Lower flow means lower return 

periods, hence, why the minor and moderate stages are classified as below for the majority of stations 

and their return periods are below APRFC reference return periods. 

Anderson also mentioned outliers in the relationship between statistical and impact-based thresholds, 

though no explanation for them was found by her. Similarly, the flood frequency analysis performed 

here also resulted in outliers, leading to a wide range of calculated return periods for flood stage 

triggering flows. The methodical reasons behind this wide range have already been discussed in detail 

in 5.1.1.2 and 5.1.1.3, here only the implications for the classification are explored. The poor fit of 

the GPD, especially at higher return periods leads to faulty classifications of stations. For the minor 

stage, that error is the smallest, as the plots show a rather good fit to the data here. For the moderate 

stage, both underestimation and overestimation can be observed in the plots, for the majority of 

stations, the deviation is limited to an acceptable extent. However, for the major stage, the poor fit 

leads to a grave overestimation of the classifications. The return periods of discharge values are 

overestimated because the discharge is underestimated. 

For the major stage, one has to keep in mind, that at many stations the discharge level necessary to 

trigger said stage was never reached in the time series. This leads to very high and in some cases 

even to infinite return periods as explained in 5.1.1.3. While the exact numbers calculated for the 
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return periods might not be valid, the classification resulting from them can be. Because if a discharge 

value is never reached and as for some stations, much higher than the largest POT value QPOT_max, its 

return periods must be very high, compared to the return period of the maximum POT. Considering 

that the smallest maximum return period of the POT data TPOT_max is 76 years, with a median of 101 

years, that leaves 397 stations with a maximum POT return period above 100 years. If the stage 

triggering flow is now higher than the maximum POT flow, for more than half of the stations that 

should automatically lead to the classification of above, without fitting a distribution. Looking at the 

classifications of those stations with TPOT_max > 100 and QStage > QPOT_max, only 113 are actually 

classified as above. For 418 stations the major stage was never reached in the time series, and they 

were classified as above, including the 113 stations extracted before (TPOT_max > 100 and QStage > 

QPOT_max). So, 305 of the 418 stations were classified as above, despite only upholding one of the 

criteria mentioned before (QStage > QPOT_max). Examining the difference between the major stage 

triggering discharge and the maximum POT value for those stations gave a median difference of 70 

mm/d and a 25% quantile of 16 mm/d. This difference was large enough, to lead to high return 

periods as explained in 5.1.1.3. These results prove that despite the poor fit of the GPD, the 

classification above can still be assumed as valid for the majority of stations, even if the calculated 

return periods are overestimated.  

The classification of below and in for the major stage on the other hand is more dependent on the 

correct estimation of the return period flows. For the classification as in, stage triggering flows can 

only take up a limited, much smaller range of flow values, compared to above and below. Poor 

estimation of that range can quickly lead to over or underestimation of the classification. For the 

classification as below, it can be observed, that QStage < QPOT_max was true, which is reasonable 

considering the return periods of QPOT_max. 

To summarize there is a high estimation inaccuracy of the fitted GPD compared to the calculated 

return periods of the POT data, which leads to possible faulty classification. This error is smallest 

for the minor stage, seeing as the GPD estimates low return periods well. The moderate stage is both 

undecimated and overestimated, with an overall acceptable deviation for most stations. For the major 

stage, the estimation error is highest. However, despite the significant underestimation, the error of 

classification is balanced out and the results can be used for further analysis.  

 Question 2: Classification variability  

5.2.2.1 Spatial variability  

When plotting the classification for all flood stages separately, patterns could be seen both across all 

three stages and varying with increasing flood stage. Those patterns are now compared to the 

hydrologic landscape regions shown in Figure 3.2.  
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Stations of the minor stage that were classified below mostly exhibit a humid or sub-humid climate, 

but they can also be found in areas with semi-arid climates and impermeable soils. This is true for 

both stations in mountain areas and stations located along the Atlantic Plain and central Lowlands. 

Stations classified above are located in regions of semiarid mountains (Colorado, Utah, New Mexico, 

Wyoming) and humid mountains with permeable soils in the Appalachian Highlands. Stations 

classified as in can be found in both humid and arid climates.  

For the moderate stage an increase in stations classified above is visible. Stations in humid and sub-

humid areas are still mainly classified as below, as seen in the diagonal zone from Illinois to Texas 

and the center of the Appalachian Highlands. Stations classified above, as for the minor stage, exhibit 

an arid and semi-arid climate. However, there is an increase in stations classified above located in 

humid areas, that were previously predominantly classified below.  

With the majority of stations being classified below for the major stage, they are now located in both 

areas with a humid and arid climate. Those stations that remained below, are still in regions with 

humid or sub-humid climates, the most prominent locations being the Appalachian Highlands, 

Central Lowland, and the western Atlantic Plain.  

The majority of catchments with a humid or sub-humid climate were classified below, the higher 

precipitation in those regions leads to higher discharge and with that a more frequent exceedance of 

flood stage triggering flows. Additionally, in regions with impermeable soils, lack of percolation 

leads to an increase in surface runoff flowing to the streams and with that an increase in discharge. 

In arid regions the precipitation is lower than the evapotranspiration, the lower amount of rainfall 

combined with the high evapotranspiration leads to less runoff and with that less frequent exceedance 

of flood stage triggering flows and the classification as above. The permeability of soils adds to that, 

as percolated water does not directly contribute to stream discharge values (not taking exfiltration 

into account). The climate characteristic of the HLR regions seems to have the biggest influence on 

the spatial distribution of the classification, while the permeability of soil and bedrock is only 

secondary.  

5.2.2.2 Hydro-climatic parameters  

The flood stage threshold is determined by the area around the stream, depending on urbanization, 

population, and anthropogenic land use. The recurrence of flood stage exceedance is determined by 

the overall amount of discharge at a gauge, which depends on those characteristics of the entire 

catchment, that influence runoff formation processes. The classification of stations is dependent on 

the latter, as it states how often a flood stage triggering flow is reached. In the following, results from 

literature are compiled on catchment characteristics that influence flood formation processes and 

those that can be used to determine flood hazard. 
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Anderson (2016) anecdotally analyzed, whether the outliers she found could be explained using 

catchment characteristics such as mean annual discharge, population, or ice effect, though no 

relationship was found. Merz et al. (2014) stated that a traditional view is that catchment 

characteristics such as topography, geology, and meteorology influence the formation of floods. 

Hollis (1975) stated that the effect of urbanization is decreasing with increasing flood magnitudes, 

as the importance of interception, depression storage, and infiltration decreases. O’Driscoll et al. 

(2010) confirmed these findings, that urbanization leads to an increase in smaller peak flows, while 

the increase is less pronounced for flows with higher return periods. According to O’Driscoll et al. 

(2010) urbanization also leads to an increase in discharge variability and flashiness.  

Saharia et al. (2017) performed an analysis using data from the NWS flood event database, to 

examine the variability of temporal and spatial flood characteristics in CONUS. They used the 

Köppen-Geiger climate classification to investigate the influence of climatic regimes and other 

parameters such as basin area and relief on flood magnitudes and flooding rise time. They found 

precipitation to be the primary driver of floods, with the magnitude of peak discharge depending on 

the causative rainfall. The catchment area also influenced the unit peak discharge, although in 

mountainous areas the relief had a greater impact than the basin size. 

When thinking of influences on the recurrence of flood stage exceedances, the determination of flood 

stage flow values has to be kept in mind as well. If the area around the gauge is highly developed a 

lower flow value will have a greater impact, than if the area was only sparsely populated. The lower 

the flood stage flow value, the more often it will get exceeded, which is why characteristics 

influencing the flood risk also influence the classification applied in this thesis. Assessing the flood 

hazard of a catchment, Balica et al. (2009) used a large number of catchment criteria for calculating 

a flood vulnerability index. They divided into social, economic, environmental, physical 

components, each containing different catchment characteristics. Parameters such as percentage of 

urban area, land use, rainfall, and river discharge were used to determine the exposure (damage 

potential) to floods.  

The results of the correlation analysis (4.4.1) showed only a weak correlation between the 

classification and catchment parameters, meaning that no single catchment characteristic can 

sufficiently explain the spatial variability of the classification. Examining the correlation coefficients 

per flood stage showed, that for the minor stage the annual mean precipitation had the highest 

correlation to the indicator, while for the moderate and major stage it was land-use characteristics. 

One could hypothesis from this, that for the minor stage and with that flows of smaller recurrence 

the precipitation is more important than land use. For higher stages and with that higher return 

periods, land use and its influence on runoff processes become more important than precipitation. 

However, the correlation coefficients of those parameters are only differing by small amounts and 
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the correlation itself is very small. So, while a pattern is visible in the coefficients and they are all 

significant, the correlations are too similar to reliably draw conclusions from them.  

The literature review showed that many catchment characteristics influence the formation of runoff, 

reaffirming the results of the correlation that no single parameter can sufficiently explain the 

relationship between statistical and impact-based thresholds. To model the relationship a 

combination of parameters needs to be used. A closer examination of the selected model parameters 

is carried out in the following chapter. 

 Question 3: Model evaluation  

5.2.3.1 Accuracy  

Stepwise model selection and model evaluation were used to choose catchment characteristics for 

classification prediction models. With a prediction accuracy between 61% (moderate stage) and 73% 

(minor stage), it is possible to model the relationship between statistical and impact-based thresholds. 

A closer examination of the prediction reveals, that the classification in was never correctly predicted 

by any of the three models. This is most likely due to only a small number of stations being classified 

as in (8%), which is not enough for the models to properly reproduce the category. It can also be seen 

in Figure 4.7 and was examined in the analysis of the spatial variability in 5.2.2, that the stations 

classified as in do not share similar locations or HLR characteristics. This increases the difficulty of 

correctly predicting this category.  

The difficulty to estimate categories that have fewer observations can also be seen for the 

classification of below and above for all three stage models. For the minor model, the majority of 

observations used to train the model were below, which led to an estimation accuracy of 95% for the 

below category but an underestimation of the other categories. For the major model, a majority of 

above was observed as the station category, resulting in estimation accuracy of 97% for the above 

category, with the other categories being overestimated. The observations used to train the moderate 

model were more balanced in the number of stations classified above and below. While there still is 

a tendency to underestimate, the model correctly predicts 87% of below and 40% of above.  

The clear influence of data distribution across the three categories is especially apparent for the in 

category. When the model was trained with a majority of below observations, the majority of 

predictions for stations classified as in were below. The opposite is true if the majority of observations 

were above, resulting in the overestimation of the in category, the majority being predicted above. 

More balanced observations in regards to the categories led to a smaller difference between over- 

and underestimation of the in category.  

This shows that to increase the prediction accuracy across all classification categories, the 

observations used to train the model need to be more evenly distributed across all categories. 
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5.2.3.2 Parameters  

When analyzing the spatial pattern of the classifications across all stages, climate variables of the 

HLR regions could be used to explain the observed variability. It is, therefore, reasonable, that of the 

catchment characteristics selected for the regression, the mean annual precipitation (PPTAVG) is 

included in the regression models for all stages.  

In the previous comparison of the results with Anderson (2016), the percentage of developed area in 

the catchment (DEVLP) was named as a possible explanation of the differences. Looking at the 

regression models, that parameter is not included in either of the three models. It is possible that 

seeing as we have a higher overall percentage of developed area in our catchments, the importance 

of the parameter is smaller than the combination of other catchment criteria. Looking at the 

correlation between other catchment characteristics and DEVLP, the parameter might have been 

replaced with another that is correlated with DEVLP but has a higher influence on the indicator. 

There is a moderate correlation between DEVLP and PLANT, a parameter that is included in two of 

the final models. Additionally, there is also a moderate correlation between DEVLP and HLR, HLR 

being included in all three AIC models. Taking the almost perfect correlation between DEVLP – 

RIP_DEV into account, parameters correlated with RIP_DEV should also be useable as a 

replacement of DEVLP.  

Comparing parameters used in the AIC and BIC models, the correlation between parameters is 

examined to try to explain the different selections. HLR was included in all AIC but in no BIC model. 

Examining the correlation between HLR and other parameters, there is a moderate correlation 

between HLR – FOREST and HLR – SNOW. For the minor stage, the correlation HLR – SNOW 

may have led to the inclusion of the SNOW parameter, in the model. For the moderate stage, a 

moderate correlation between RIP_DEV and FORREST with PLANT and a strong correlation 

between HLR – PLANT might explain the replacement of the three parameters with PLANT for the 

BIC model. The moderate correlation between PLANT and FOREST led to an alternation between 

the two parameters in the 100 best models of the stepwise model selection. This is especially visible 

for the major BIC model, as one of the two is included in all models, but never both.  

The model selection process showed, that a large number of catchment characteristics can be used to 

model the relationship between statistical and impact-based thresholds, with only small differences 

in accuracy. It also showed that those parameters impacting runoff processes have a bigger influence 

on the classification than those determining the flood stages. Neither RIP_DEV nor DEVPL was 

included in the final models.  

Before considering the hydrological reasonability of the coefficient signs, the effect of the parameters 

on the response variable is examined. PPTAV, PLANT, and DRAIN all have an increasing effect on 

the 𝑙𝑜𝑔𝑖𝑡(P(𝑦 ≤ 𝑟|𝑥)). This means the higher the values of those predictors, the higher the log-odds 
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of being in a category or below. For FOREST and SNOW the opposite is true, increasing values 

decrease the log-odds. To translate this to probabilities of being in a category (below < in < above): 

an increase in PPTAV, PLANT, and DRAIN results in an increased probability of the predictor 

falling in a lower category, while an increase in FOREST and SNOW results in an increased 

probability to fall in a higher category.  

To get back to the hydrologic reasonability, the influence of the parameters on the probability and 

with that the category makes sense considering flood formation processes. Seeing as precipitation is 

the primary driver of floods, it is reasonable that the PPTAVG parameter has the highest regression 

coefficient (Saharia et al., 2017). An increase in precipitation leads to an increase in runoff and with 

that higher discharge values. Those, in turn, result in flood stages being triggered more often than 

the assigned return period range would suggest.  

Seeing as snowpack is a natural water reservoir, an increased percentage of snow of the total 

precipitation reduces winter floods and results in less low flow values in spring and summer due to 

snowmelt. Davenport et al. (2020) found, that an increase in rain fraction leads to larger peak 

discharge values, a shift from snow to rain increases the flood risk. Over all analyzed watersheds, 

rain-dominated catchments had floods with significantly larger peak discharge flows than snow-

dominated basins. The higher the SNOW parameter value, the higher the percentage of snow of the 

total precipitation. With snow decreasing flood peak magnitude and flood risk, it makes sense that 

increasing parameter values increase the probability of falling in a higher classification category, as 

the return periods of high flows are increased.   

Several studies reported that with increasing drainage area, the discharge also increases (Furey and 

Gupta, 2005; Curran et al., 2016; Saharia et al., 2017). In the model, an increase in drainage area 

increases the probability to fall in a lower classification category and with that indicates decreased 

return periods meaning increased frequency of peak discharge values.  

PLANT refers to the percentage of catchment area used for agriculture. Schilling et al. (2014) 

modeled the conversion of cropland to perennial vegetation, to examine the effect on floods. They 

found, that an increase in perennial vegetation reduced the number of flood events and the frequency 

of severe floods. Hounkpè et al. (2019) modeled different land-use scenarios focusing on changes in 

land use and land cover. They found that land-use changes significantly affect the magnitude and 

frequency of floods. The expansion of agriculturally used areas and the decrease of natural 

vegetation, such as forests, led to an increase in flood characteristics. Those findings match our model 

parameter, as an increase in PLANT increases the probability to fall in a lower category, meaning 

stage triggering flows are exceeded more often.  

The effect of forests on floods varies in the literature. Bathurst et al. (2017) state, that the runoff-

reducing effects of forests are most significant for small storms and are increasingly less effective as 
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precipitation increases. According to them, changes in forest cover have little effect on the peak 

discharge of larger floods with return periods of ten years or longer. Alila et al. (2009) on the other 

hand found, that in some catchments, forests may reduce flood frequency over all flood magnitudes. 

Rogger et al. (2017) commented on the contradicting effects of forests in literature, naming varying 

methods and gaps in research as the reason. In a more recent study, Bathurst et al. (2020) found, that 

forested catchments have a lower peak flow magnitude for given a flood frequency and a higher 

return period for given flow magnitude. In our model, FOREST increases the probability to fall into 

a higher classification category, therefore, increasing the return periods of certain magnitude flows. 

Bathurst et al. (2020) also stated that the relevance of land cover decreases for the largest events on 

record. However, in this thesis FOREST is included in the major model, therefore, affecting higher 

return periods and flows partially much larger than the highest flow value of the time series. This 

contradicts the findings of Bathurst et al. (2020), as forests are only relevant for high return periods, 

and not included in the other models.  

Curran et al. (2016) performed regression analysis, using catchment characteristics for estimating 

flood magnitude and return periods for ungauged catchments in Alaska and Canada. Their results 

showed that the log of the drainage area (DRAIN) was the strongest explanatory variable, followed 

by the log of the mean annual precipitation (PPTAVG). They used the same parameters for estimating 

discharge corresponding to different annual exceedance probabilities, only varying the parameter 

coefficients. It is important to note, that their regression equation was developed for ungauged 

catchments, where peak flows are not significantly affected by urbanization, impervious surfaces, 

and flow regulation measures.  

The regression models built in this analysis do not predict a discharge value but classify whether 

certain discharge values are below, within, or above an assigned range of return periods. Nonetheless, 

both regression models aim to describe flood formation processes. In this thesis the question is, which 

parameters increase the frequency of flood stage triggering flows, leading to the classification of 

below, and which parameters decrease the frequency, classifying a station as above.  

In the final models selected here, PPTAVG has the highest parameter coefficient and with that is the 

strongest explanatory variable, while DRAIN is only included in one of the three models. Curran et 

al.'s (2016) models are designed for catchments with small anthropogenic impacts, while the 

catchments analyzed in this thesis show great variability of anthropogenic changes (e.g. developed 

area). Additionally, their models predict flood magnitude corresponding to a return period, while the 

models here classify the flood frequency of certain flow values, this explains the difference in 

parameter selection.  
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 Question 4: Impact-based vs statistical thresholds  

The analysis has shown, that recurrence intervals are not a good indicator of how much impact a 

flood will have on the area around the stream. Only very few stations were classified as within (in) 

the return period range assigned to a flood stage. The calculated return periods of flood stage 

triggering flows exhibited a wide range of values, exceeding figures both reasonably estimated and 

comprehensible. Statistical thresholds are, therefore, no alternative to flood thresholds based on the 

assessment of flood impacts.  

The normalized discharge (mm/d) at which a flood stage is triggered strongly differs across 

catchments, as it depends on the anthropogenic use of the area around the stream. In an area with 

higher population density, urbanization, or exposure of infrastructure the flood stage will be assigned 

a lower stage value compared to anthropogenically sparsely used areas. The number of exceedances 

of a flood stage and with that its recurrence is also vastly different across catchments, as it depends 

on the catchment characteristics, that influence runoff formation processes, which vary in space.  

In addition, the non-stationarity of said catchment characteristics can lead to changing frequency and 

magnitude of flood events over time, making recurrence intervals an unreliable indicator for flood 

impacts. While the frequency of flood stage exceedances changes, the actual gauge height assigned 

to a flood stage does not. That is unless changes to the area around the stream are made, such as an 

increase in anthropogenic use and infrastructure, making it more vulnerable to flooding and, 

therefore, lowering the flood stage triggering flow.  

Statistical thresholds determine theoretical flows, that can, due to their dependence on the discharge 

time series, vary with time. Impact-based thresholds are practical flow values, based on observations 

of flood impacts that, if the area around the stream is not modified, always stay the same.  

In Germany, many gauges have a color-coded indicator classifying the water level, that can be 

accessed online. In Baden-Württemberg, the indicator gives a range of return periods, a statistical 

threshold, that the discharge level corresponds to. This indicator does not signal how much flooding 

is to be expected or what actions need to be taken unless that is explicitly stated elsewhere or 

remembered from experience. 

The classification of flood stages in the US clearly states what impacts are to be expected, when a 

certain water level is exceeded. The meaning and extent of impact caused by each flood stage in 

theory, stays the same, even if the flood stage gauge height changes. The same is true for the majority 

of gauges in Germany, which also apply an impact-based classification of the water level. 

While statistical thresholds are easier to obtain since they only require a time series of discharge, a 

classification of floods based on their impacts is preferable. Impact-based thresholds are less 

vulnerable to non-stationary catchment characteristics influencing runoff formation processes. 
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Additionally, they are easier to comprehend for residents of the impacted area, as they directly name 

expected flood impacts. 

5.3 Implications 

It has been proven above, that statistical thresholds are not a good alternative to impact-based 

thresholds, but what does that mean for gauges where statistical thresholds have to be used because 

no impact-based thresholds are available? The previous classification of stations in below/in/above 

will be used to explain the implications arising from the found relationship between statistical and 

impact-based thresholds.  

If a station was classified below, it meant that QStage < QT_lower and TStage < Tupper. Using QT_lower for the 

construction of flood protection measures and as the flood stage triggering flow, would lead to an 

underestimation of floods. Actual impacts would already happen at lower flow values and with that 

statistically more often as well. Flood protection measures would be effective too late, as flood 

impacts are already caused by lower flows. The same is true for the assigned flood classification, as 

corresponding impacts would already happen before the flood stage is reached, misinforming and 

potentially endangering residents. 

The classification of a station as above meant that QStage > QT_upper and TStage > Tupper, resulting in an 

overestimation of flood impacts. Impacts to the area around the stream happen at higher flows and 

with that statistically less often. Flood protection measures would be in effect at flows not causing 

flooding, their construction being an unnecessary waste of money and recourses. In theory 

established measures should of course also protect against higher floods, making them not 

ineffective, their extend, however, would be inappropriate. Considering the warning function of the 

flood categories, residents would be urged to avoid certain areas or evacuate too soon, leading to 

unnecessary concerns and actions taken. 

Stations classified in, exhibit flood stage triggering flows within the flood stage corresponding return 

period range, making flood protection measures that are built based on QT_lower to QT_upper reasonable. 

However, the possibility of under- and overestimating floods is also given here. It is important to 

carefully consider the selection of a return period from the given range Tlower to Tupper to assign the 

flood stage to, considering the resulting flows QT_lower to QT_upper differ by up to 53 mm/d. So even if 

the flood stage triggering discharge falls within the range, it does not guarantee that the flood 

measures based on a selected return period are appropriate.  

When a classification of the relationship between statistical and impact-based thresholds is available, 

the return periods assigned to flood categories can be adjusted accordingly. As presented in this thesis 

selected catchment characteristics can be used to model said relationship. However, the models as 

shown here can only determine a classification category relative to Tlower and Tupper, they do not 
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indicate how much lower or higher a flood stage needs to be set, compared to the assigned return 

periods.  

5.4 Methodical considerations 

The following subdivision follows the scheme proposed by Yen (2002), who considered the 

uncertainties of flood frequency analysis. That scheme is applied to discuss the FFA and the 

implications of the results, as well as the selected catchment characteristics.  

 Natural uncertainty 

For the analysis of this thesis, stationary conditions were assumed, meaning the statistical properties 

(mean, variance) of the time series do not change with time. However, the natural conditions are not 

stationary, exhibiting trends of time dependant mean or variance (Bauer, 2021).  

Multiple studies have found trends in the flood time series, results both showing increasing and 

decreasing flood properties with strong spatial variability across all catchments of CONUS (Hirsch 

and Archfield, 2015; Mallakpour and Villarini, 2015; Archfield et al., 2016). Spatial patterns of 

increasing and decreasing frequency can also be observed in the flood stage exceedances (Slater and 

Villarini, 2016). The influences of selected catchment characteristics on runoff processes and both 

flood magnitude and frequency have been described in 5.2.3.2. This clearly shows, that with the 

discharge time series being proven nonstationary, the catchment characteristics influencing runoff 

formation processes must also be nonstationary.  

Slater and Villarini (2016) named the following dynamic parameters as reasons behind increasing 

flood frequency: changes in precipitation, snowmelt patterns, land use and cover, antecedent soil 

moisture, and anthropogenic modifications of the water cycle. The non-stationarity, thus, is not just 

due to global-scale shifts in atmospheric conditions, like climate change, but also caused on a much 

smaller scale. The influences of land-use change on the catchment scale have been previously 

described (Hounkpè et al., 2019), as well as the effects of urbanization (Hollis, 1975; O’Driscoll et 

al., 2010). Anthropogenic modifications like dams reduce annual peak discharge by up to 90% when 

comparing the unregulated reach above a dam with the regulated reach downstream of a dam (Graf, 

2006; Mei et al., 2017). Retention basins have a similar effect, though on a smaller scale. They reduce 

flood peak magnitudes but increase the recession time and magnitude at the recession of flood 

hydrographs (Soong et al., 2009). Modifications in channel capacity and roughness can significantly 

alter the frequency of floods on a local scale (Slater and Villarini, 2016). 

Merz et al. (2014) state, the traditional approach of performing flood frequency analysis under the 

assumption of a stationary time series needs to be extended to account for non-stationary climate and 

catchment characteristics that result in changing flood characteristics. Abrupt changes in the 

discharge time series can be a result of changing land use and cover, gauging practice, or flood 
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regulation by dams and retention basins. To assess the non-stationarity of parameters an inspection 

of the discharge record and the characteristics of the catchment is necessary (Villarini et al., 2009).  

While stationarity is assumed for the analysis, literature shows that the natural conditions are non-

stationary. This results in the calculated flood probabilities not accurately representing the current 

probability distribution. The time series of the used stations need to be examined for trends and the 

non-stationary conditions need to be taken into consideration when calculating the probabilities. This 

also means examining the catchment characteristics for temporal changes.  

 Model uncertainty 

A visual examination of the fitted rating curve to the rating data showed a poor fit for many stations. 

This results in the conversion from ft3/s to mm/d being inaccurate. However, since the conversion is 

used for all compared data, the mistake is the same over all calculations and with that becomes 

negligible.  

As stated in 5.1.1.2, the fitted distribution is not a good approximation of the tails of the POT data. 

This poor estimation leads to faulty return periods and with that to possibly incorrect classifications 

of stations mostly for the major stage. While, as shown in 5.2.1, the classification of stations for the 

major stage is reasonable for most stations, using a better fitting distribution is still advisable to 

reduce the classification error. As stated by Kidson and Richards (2005) and the US Interagency 

Advisory Committee on Water Data (USWRC) (1982) the log-Pearson III distribution is the 

officially recommended distribution for flood frequency analysis on both AMF and POT data of US 

catchments. Anderson (2016) used if for her analysis, as did Curran et al. (2016).  

Curran et al. (2016) also state, that when calculating the discharge corresponding to a certain annual 

exceedance probability, the skew coefficient determines the curvature of the flood frequency curve. 

Said coefficient is estimated from flow data, which for short periods of record is an unreliable 

estimation of the population, as it is very sensitive to extreme events. The US Interagency Advisory 

Committee on Water Data (USWRC) (1982), therefore, recommends weighing the local skew of a 

station with a regional skew. This is done to reduce the uncertainty of the skew estimate, as regional 

skews are assumed to be unbiased. Bulletin 17B (US Interagency Advisory Committee on Water 

Data (USWRC), 1982) includes a national map of the regional skew coefficients. Using weighted 

skews is an additional way of improving the fit of the distribution and with that, the estimation of 

return period flows.  

 Parameter uncertainty 

Literature justifies the selection of the L-moments methods, stating that it gives better parameter 

estimates of the GPD compared to other methods (Hosking, 1990; Sankarasubramanian and 

Srinivasan, 1999; Zea Bermudez and Kotz, 2010a). Considering the poor fit to the tails of the POT 
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distribution, using different methods and comparing the resulting fits might lead to better estimations. 

GPD estimation methods have been compiled and compared by Zea Bermudez and Kotz (2010b, 

2010a). 

If the decision is made to use a different distribution altogether, the method used for estimating the 

parameters has to be changed as well. For the log-Pearson III distribution, the method of moments is 

recommended by the US Interagency Advisory Committee on Water Data (USWRC) (1982). 

 Data uncertainty 

For the flood frequency analysis in this thesis daily mean discharge values were used. Because of 

this, the actual maximum instantaneous peak flow was not included in the data. Missing out on the 

highest peak flows meant either missing or underestimating the exceedance count of a flood stage. 

While the incorrect number of exceedances of a certain flood stage is not relevant for the 

classification, the impact on the calculated return periods and flows is. Overall, the maximum POT 

peaks are too low compared to the actual maximum discharge at the gauge, which leads to an 

overestimation of return periods and an underestimation of return period flows. A value that is never 

exceeded in the daily mean POT data, might have been exceeded multiple times in the actual time 

series. A POT peak that was assigned a return period of for example 100 years, might have a much 

lower statistical recurrence when using daily maximum flows for the FFA. For the classification that 

means, when using the POT data stations are more often classified above, than would be the case 

using daily maximum flows.  

The catchment characteristics used were taken from the GAGES II database (Falcone et al., 2010; 

Falcone, 2017). Mean annual precipitation and runoff were given for the time period 1971 – 2000, 

SNOW for 1901 – 2000, and land use data was from 2006. It is likely, that the data is outdated and 

does not accurately represent the catchment conditions today. Changes in climate conditions have 

been documented, as well as increasing urbanization. However, since we are assuming stationarity 

of the time series, stationarity of catchment characteristics is also assumed. Additionally, the 

resolution of the data used to determine the catchment characteristics strongly varies, possibly 

leading to inaccurate representation of the catchments.  
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 Conclusion 

The key findings of this thesis are as follows: 

• No clear pattern was found in the relationship between impact-based and statistical 

thresholds, as the flood stages exhibited a wide range of return periods. The return period 

range assigned to the different flood stages could not be confirmed. 

• As shown by the at best weak correlations found, no single catchment characteristic could 

sufficiently explain the spatial variability of the classification.  

• The classification and with that the relationship between statistical and impact-based 

thresholds could be modeled, the prediction accuracy laying between 61% (moderate stage) 

and 73% (minor stage). A more equal distribution of the data across all classification 

categories might improve the accuracy further.  

• Of the selected parameters in the models PPTAVG, PLANT, DRAIN had an increasing and 

FOREST, DRAIN a decreasing effect on the indicator category. 

• Runoff influencing parameters of the entire catchment were more important in modeling the 

relationship than flood stage height determining anthropogenic parameters of the stream 

adjacent area, the latter were not included in the selected models.  

• Hydrologists applying statistical thresholds for flood warnings and protection measures must 

be aware of the discrepancy between theoretical flood thresholds based on statistical 

recurrence and practical thresholds based on observed impacts.  

Future research needs to evaluate the stationary assumption applied in this thesis by examining the 

discharge time series for trends and the catchment characteristics for their actuality.  

When thinking of the implications and applications of the results of this thesis, in the next step, spatial 

patterns of flood stage triggering flows could be examined disconnected from their return periods. 

Performing a regression using flood category gauge heights as the response and catchment 

characteristics as the predictors, to identify characteristics that have a determining influence on the 

flood stage. If they possess a high enough accuracy, these new models could be applied in areas 

where no impact-based thresholds are available, where they might result in more accurate flood 

thresholds than would be the case using statistical thresholds. They could also be applied in areas 

without sufficient data of the discharge time series available to calculate statistical thresholds, as long 

as reliable catchment characteristic data is obtainable.  
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Appendix 

A.1 HLR descriptions  

Table A-1: Hydrologic landscape region (HLR) descriptions (Wolock, 2003) 

HLR region 

number 
Description  

1 Subhumid plains with permeable soils and bedrock 

2 Humid plains with permeable soils and bedrock 

3 Subhumid plains with impermeable soils and permeable bedrock 

4 Humid plains with permeable soils and bedrock 

5 Arid plains with permeable soils and bedrock 

6 Subhumid plains with impermeable soils and bedrock 

7 Humid plains with permeable soils and impermeable bedrock 

8 Semiarid plains with impermeable soils and bedrock 

9 Humid plateaus with impermeable soils and permeable bedrock 

10 Arid plateaus with impermeable soils and permeable bedrock 

11 Humid plateaus with impermeable soils and bedrock 

12 Semiarid plateaus with permeable soils and impermeable bedrock 

13 Semiarid plateaus with impermeable soils and bedrock 

14 Arid playas with permeable soils and bedrock 

15 Semiarid mountains with impermeable soils and permeable bedrock 

16 Humid mountains with permeable soils and impermeable bedrock 

17 Semiarid mountains with impermeable soils and bedrock 

18 Semiarid mountains with permeable soils and impermeable bedrock 

19 
Very humid mountains with permeable soils and impermeable 

bedrock 

20 Humid mountains with permeable soils and impermeable bedrock 
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A.2 Results 

A.2.1 Classification of stations 

Table A-2: Count of the classification combinations over all flood stages 

Minor stage Moderate stage Major stage  Count 

below below below 220 

above above above 163 

below below above 112 

below above above 84 

below in above 47 

below below in 45 

in above above 35 

in in above 6 

below in in 5 

in in below 2 

in in in 2 

above in above 2 

in below below 1 

below above below 1 

in below in 1 

below in below 1 
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Table A-3: Count of classification combinations for all stages: starting from the minor stage calculating number and 
percentage of the following stage classification 

Minor stations [%] Moderate stations [%] Major stations [%] 

below 515 71% 

below 377 73.2% 

below 220 58.4% 

in 45 11.9% 

above 112 29.7% 

in 53 10.3% 

below 1 1.9% 

in 5 9.4% 

above 47 88.7% 

above 85 16.5% 
below 1 1.2% 

above 84 98.8% 

         

 
in 

 
47 

 
6% 

below 2 4.3% 
below 1 50.0% 

in 1 50.0% 

in 10 21.3% 

below 2 100.0% 

in 2 20.0% 

above 6 60.0% 

above 35 74.5% above 35 100.0% 
         

above  165  23% 
In 2 1.2% Above 2 100% 

above 163 99% above 163 100% 

 

Table A-4: Count of classification combinations for all stages: starting from the major stage calculating number and 
percentage of the previous stage classification 

Major  stations [%] Moderate  stations [%] Minor  stations [%] 

below 225 30.9% 

below 221 98.2% 
below 220 99.5% 

in 1 0.5% 

in 3 1.3% 
below 1 33.3% 

in 2 66.7% 

above 1 0.4% below 1 100.0% 

         

 
in  

 
53  

 
7.3%  

 
below 

 
46 

86.8% 
below 45 97.8% 

in 1 2.2% 

in 7 13.2% 
below 5 10.9% 

in 2 28.6% 

         

above 449 61.8% 

below 112 
24.9% 

 
below 112 100% 

in 55 12.2% 

below 47 85.5% 

in 6 10.9% 

Above 2 3.6% 

above 282 62.8% 

below 84 29.8% 

in 35 12.4% 

above 163 57.8% 
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A.3 Discussion  

A.3.1 Regression  

     
Figure A-1: Plot to test the proportional odds assumption, exemplary for the minor stage and parameters of the final minor 

model 
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A.4 Abbreviations  

Table A-5: Abbreviations 

Notation Unit Description 

A [km2] Area  

AD – test  Anderson-Darling – test  

AIC [-] Akaike’s Information Criterion  

AMF  Annual maximum flows 

APRFC  Alaska-Pacific River Forecast Center 

BIC [-] Bayesian Information Criterion  

Cdf, F(x)  cumulative distribution function 

CLASS [-] Reference/non-reference class: 

CvM – test   Cramér–von Mises – test 

CM   Cumulative models 

CONUS  Conterminous United States 

cov(x1x2) = sx1x2 [-] Covarianz 

D [-] Kolmogorov–Smirnov statistic 

DEVLP [%] Watershed percent "developed" 

DRAIN [km2] Watershed drainage area  

E  Expected value  

Edf , Fx, Fy  Empirical distribution function 

F(.)   Continuous distribution function 

FFA  Flood frequency analysis  

FOREST [%] Watershed percent "forest" 

g(y)   link function 

GEV  Generalized extreme value distribution  

GPD  Generalized Pareto distribution  

HLR [-] Hydrologic landscape region  

IQR  Interquartile range  
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k   [-] 
Number of groups data is divided in for k-fold cross 
validation 

KS – test  Kolmogorov-Smirnow – test 

L  [-] Likelihood 

LENTIC [%] 
Watershed surface area covered by "Lakes/Ponds" + 
"Reservoirs" 

Log(L) = l   [-] Loglikelihood 

Max  Maximum value 

Min  Minimum value  

MOP  Measure of performance  

n  Number of observations  

nfold   Number of observations in the k-fold 

NOOA  National Oceanic and Atmospheric Administration 

NWS  National Weather Service  

p  [-] number of fitted parameters  

P(x)  [-] Probability 

Pr [-] Probability of individual categories (r)  

PLANT [%] Watershed percent "planted/cultivated" 

POT [mm/d] Peaks over threshold  

PPTAVG [cm/year] Mean annual precipitation  

PRECIP_SEAS [-] Precipitation seasonality index 

Pu [-] Non-exceedance probability  

Q [mm/d , ft3/s] Discharge  

QPOT [mm/d] Discharge of POT data  

QPOT_max [mm/d] Maximum discharge value of POT data 

QStage [mm/d] Flood stage triggering discharge 

QT [mm/d] Discharge of given return period  

QT_lower [mm/d] Discharge of Tlower 

QT_upper [mm/d] Discharge of Tupper 

r  [-] Categories of the response 
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Ri [-] Rank of an observation 

RIP_DEV [%] Riparian 800m buffer "developed" 

RMSE [-] Root-mean-square error 

RRMEDIAN [-] Elevation - relief ratio 

RUNAVE [mm/year] Watershed annual runoff 

SNOW [%] Snow percent of total precipitation 

STREAMS [km/km2] Stream density 

T [years], [a] Return period 

Tlower [years], [a] 
Lower end of the return period range corresponding 
to a flood stage 

TPOT_max [years], [a] Return period of QPOT_max 

TStage [years], [a] Return period of the flood stage triggering flow  

Tupper [years], [a] 
Upper end of the return period range corresponding 
to a flood stage 

USGS  United States Geological Survey  

WHG  Water management act 

Wn
2 [-] Anderson-Darling statistic 

x   [mm/d] Flood peak 

X   Random variable, vector of observations 

x(PU)    quantile function 

x1, x2, …, xn    random variables 𝑥̅1, 𝑥̅2   Mean of the variable  

X k:n   Kth order statistic Drawn from a distribution of X 

xi [mm/d] Ordered POT data  

y  [-] response of the regression model 

y*  [-] latent variable 

α  [-] significance level 

βi, ηi  [-] regression coefficients 

|β|   [-] absolute β value 

Θ  [-] parameters of the distribution 
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λ [-] L-moments  

μ [years], [a] mean time between two successive POT events 

μl  [-] Location parameter 

ξ  [-] Shape parameter 

ρ  [-] Spearman or Pearson’s correlation 

σ  [-] Scale parameter 

τ [-] L-moments ratios  

ω2 [-] Cramér–von Mises criterion 

ζk [-] 
intercept of the ordinal regression for the class 
boundaries 
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