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Abstract 
Nitrogen (N) concentrations increase in aquifer systems in the Central Valley (CV) in California, US, 

presenting a risk for human health and the environment. Intensive irrigated and fertilized agriculture 

is a big contributor for this development. To outline and protect most vulnerable regions, the CV-SWAT 

(Soil & Water Assessment Tool) and CV-GNLM (Groundwater Nitrogen Loading Model) were 

developed, deriving two different results for N leaching to groundwater. This work compares the 

results of the models for the most cultivated crops in the CV, outlining the main differences resulting 

in different N groundwater leaching and gives recommendations for adjusting CV-GNLM. A focus lies 

on the comparison of land use, N in harvested crops, fertilization and organic nitrogen pools.  

Land use is found to be different between CV-SWAT and CV-GNLM due to various time and source of 

the obtained data, which has no impact on crop specific leaching rates. Lower modelled N in harvested 

crops and higher fertilizer rates are identified as main reasons for an overall higher loading to 

groundwater in CV-GNLM. Adjusting N harvest rates with recent obtained data for crop yields has little 

impact, whereas the conversion factor from crop yield to N amounts is identified as decisive factor. 

Higher N in fertilizer in CV-GNLM is due to modelled manure application which underlie high variations 

and uncertainties throughout the CV. It is found that N storage as stable organic N in the soil is not 

negligible for annual crops and N storage in tissue of perennial crops is significant. Therefore, their 

implementation in CV-GNLM’s N mass balance is recommended to derive to more realistic N 

groundwater loadings.   

Possible reason for the discrepancy between the models include the outdated result from CV-SWAT. 

Implementations of parameters from CV-SWAT for stable organic N and N in perennial tissue should 

therefore be expanded to all crops present in the CV with the most recent results available. In order 

to adjust CV-GNLM, it is recommended to further investigate how the changes are applicable for the 

historic context.  

 

Keywords: nitrate leaching, groundwater, modelling, agriculture, Central Valley  
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Zusammenfassung 
Steigende Nitratkonzentrationen in den Aquifers im Central Valley (CV) in Kalifornien, US stellen ein 

hohes Risiko für die Gesundheit der Bevölkerung und die Umwelt da. Intensive, bewässerte 

Landwirtschaft trägt maßgebend zu dieser Entwicklung bei. Um anfällige Regionen hervorzuheben und 

besser zu schützen, wurden das CV-SWAT (Soil Water Assement Tool) und das CV-GNLM (Groundwater 

Nitrogen Loading Model) erstellt, die zu unterschiedlichen Ergebnissen von Stickstoffversickerung 

gelangen. Diese Studie vergleicht die Ergebnisse der beiden unterschiedlichen Modelle für die am 

häufigsten kultivierten Feldfrüchte im CV, arbeitet die wesentlichen Gründe für die unterschiedlichen 

Ergebnisse heraus und gibt Vorschläge zur Anpassung von CV-GNLM.  

Die Landnutzung ist unterschiedlich zwischen CV-SWAT und CV-GNLM aufgrund der zeitlichen 

Differenz und die Quelle der benutzten Daten. Der Unterschied weist keine Auswirkung auf die 

Feldfrucht spezifische Nitratversickerungsrate auf. Geringere Mengen an modellierten Stickstoff in 

Ernten und erhöhte Rate von Düngung sind die Hauptgründe für die höhere modellierte 

Nitratversickerung in CV-GNLM. Anpassung der Ernte – Stickstoffraten mit neuesten Daten von 

Erntemengen hat wenig Auswirkung, wobei der Konversionsfaktor von Erträgen zu enthaltenen 

Stickstoffmengen als ausschlaggebend erkannt wurde. Mehr Stickstoff in Düngung im CV-GNLM kann 

mit der modellierten Gülledüngung begründet werden, wobei diese eine hohen Variation und 

Ungenauigkeit im CV unterliegt. Es ist erkannt worden, dass Stickstoffspeicherung in stabilen 

organischen Material im Boden für jährliche Feldfrüchte nicht vernachlässigbar ist und die 

Stickstoffspeicherung in Gewebe von mehrjährigen Feldfrüchten signifikant ist. Daher ist deren 

Einführung in CV-GNLM’s Massebilanz empfohlen, um genauere Ergebnisse für die modellierte 

Stickstoffversickerung zu erzielen.  

Grund für die Abweichung der beiden Modelle liegt auch an den veralteten Resultaten von CV-SWAT. 

Die Einführung von CV-SWAT’s Parametern von stabilen organischen Stickstoff und Stickstoff in 

mehrjährigen Gewebe sollte daher mit den aktuellsten Ergebnissen durchgeführt und auf alle im CV 

angebauten Feldfrüchten erweitert werden. Um CV-GNLM anzupassen, ist es empfehlenswert zu 

erforschen, wie und ob die Veränderungen für historische Ergebnisse anzuwenden sind.     

 

Stichworte: Nitratauswaschung, Grundwasser, Modellierung, Agrarkultur, Central Valley 
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1. Introduction 

1.1 Nitrogen in groundwater 
Nitrogen is a major component for plant growth. Although about 78% of the atmosphere is nitrogen 

gas (N2), for plants it is often a limiting factor. For plant and animal use, nitrogen (N) has to be in form 

of reactive nitrogen, including inorganic reduced forms (e.g., NH3, NH4+), inorganic oxidized forms (e.g., 

NOx, HNO3, N2O, NO3
-) and organic compounds (e.g., urea). Historically, biological fixation (microbes & 

legumes) and decomposition supplied plants with its nitrogen demand. In the 20th century, a drastic 

increasing population asked for sufficient and affordable crop production, which was met among other 

things through intensive fertilization with manure and synthetic fertilizers (Galloway and Cowling, 

2002).  

Over the decades, common fertilization, irrigation, and soil management practices had an increasingly 

negative impact. Nitrate is of particular concern since it dissolves easily in water and thus, is easily 

transported on varies water pathways. Globally, cases of eutrophication of aquatic bodies by surface 

runoff, air pollution through toxic emission and nitrate (NO3
-)  leaching into groundwater related to 

agriculture are increasingly reported (Sutton et al., 2011). The latter is not only an environmental 

concern but also one of human health, as drinking water is often retrieved from groundwater aquifers. 

Nitrate-contaminated drinking water can cause methemoglobinemia for infants and other health 

issues for human (Ward et al., 2018). The U.S. Environmental Protection Agency (EPA, 2018) puts the 

drinking water limit of Nitrate - N in the United States to a concentration of 10 mg/L. This concentration 

is approximately equivalent to the 50 mg/L NO3
- or 11.3 mg/L NO3

- - N set by the World Health 

Organization (Ward et al., 2018). Harding et al. (1963) reported the problem of nitrogen leaching from 

agriculture in the Central Valley in the USA in the 1960s.  

Because of the complexity of nitrate loading (across space and time) and of nitrate transport and 

related uncertainties, it is challenging to assess the groundwater contamination due to nitrate 

contamination (Vadiati et al., 2016). It has been the effort of the last years to minimize the 

uncertainties and to better understand sources and pathways of nitrate to better protect groundwater 

aquifers. Therefore, in the last two decades, the field of computer science advanced rapidly and 

enabled hydrologists to model groundwater pollution more accurately. Nevertheless, there are 

substantial variations between different models approaches and it is debatable which model is most 

suitable for which situation and scale (Haghbin et al., 2021). 

1.2 Problem and Objective  
Nitrate concentrations are also increasing in the aquifers of the Central Valley (CV), perhaps due to the 

permeable soils and intensive agriculture that can increase the risk of nitrate leaching (Burow et al. 

2013). In order to specify most vulnerable areas, predict future loading rates and to find best possible 

measures against a continuing negative trend of groundwater contamination, different models were 

developed for the CV (Viers et al., 2012; MPEP Team, 2019).  

Many commonly used models are based on mass balance equations. Especially in agricultural 

ecosystems, balancing water or nutrient equations (like nitrogen or phosphorous) are used in many 

studies to illustrate in- and outputs of a system (Linke, 2018; Ransom et al., 2017; Harter et al., 2017). 

On the one hand, these methods highlight the major pathways clearly, however on the other hand 

they simplify the underlying processes and transformations. Therefore, mass balances are mostly 

applied in large scale investigations, where small scale pathways and transformations become less 

important. If other terms are known, it is useful to quantify one unknown variable, rather than 

investigating underlying processes. Depending on the data available, researchers need to deviate 

between making assumptions and/ or adapting the resolution of their model. As a result, modelling 

requires to balance the uncertainty against the accuracy depending on the available data and the 
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research aim (Beven, 1995; Haghbin et al., 2021). Because of the big scales in agricultural ecosystems, 

mass balances are often used in this context to evaluate the nitrate loading to groundwater.    

The “Central Valley – Groundwater Nitrogen Loading Model” (CV-GNLM), developed in 2012, is based 

on a mass balance approach and aims to assess the nitrate loading to groundwater (Viers et al., 2012). 

Thereby it initially focused on the historical change of agriculture change of land use, irrigation, and 

fertilization practices. It does not include climate or soil data, but relies exclusively on empirical review, 

archive records and farmers expertise. The alternative computational model “Soil Water Assessment 

Tool” (SWAT), further developed for the CV, requires detailed data and for the entire CV immense 

computer power and calculation time. It does not consider historic changes in land use, but includes 

climate variability. Both models come up with different results for nitrate leaching under the root zone. 

This brings up the question, where exactly the conceptual differences lie, and inaccuracies occur.  

Therefore, this study aims to improve the accuracy of calculated nitrate leaching of the latest version 

of the mass balance based in the CV-GNLM model by comparing it with the physically more detailed 

CV-SWAT model. For this, comparable variables, in- and outputs and crops are identified and evaluated 

in detail to determine the inaccuracy and uncertainties in the CV-GNLM model. Furthermore, possible 

improvements are worked out and recommendations are given how to adjust the CV-GNLM 

groundwater leaching results closer to the ones of CV-SWAT. 
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2. Theoretical Background  

2.1 Study Area 
The CV in California in the US also known as the Great Valley of California is with 20,000 square miles 

(~52,000 km2), a notable geographical depression in the world. The valley has a centered position in 

California and is bounded by the Cascade Range to the north, the Sierra Nevada to the east, the 

Tehachapi Mountains to the south, and the Coastal Ranges and San Francisco Bay to the west (Figure 

1).  

 

Figure 1: Shaded relief of the Central Valley in California, US. Derived from U.S. Geological Survey National Elevation Dataset, 
2006. 
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The CV can be divided into the “Sacramento Valley” (SAV), which occupy one-third in the north and 

the southern two-thirds known as the “San Joaquin Valley”. The latter is further split into the “San 

Joaquin Basin” (SJV) and the “Tulare Lake Basin” (TLB). The Sacramento and San Joaquin River drain 

the water from the surrounding mountains and ranges through the valley and meet with several 

eastside streams from the Sierra Nevada. After the Delta area, the combined discharge flows through 

the Carquinez Strait into San Francisco Bay and the Pacific Ocean. 

The climate in the CV is arid-to-semiarid hot, Mediterranean. Precipitation in the SAV varies between 

330 – 660 mm annually, whereas precipitation in the SJV is only expected to be between 127 – 460 

mm/a. About 85% of the precipitation falls from November to April, though December to February are 

the wettest months. In this time, the valley is prone to flooding. Besides that, high evapotranspiration 

results in very hot and dry summers, when most of the state is in water deficiency. The number of 

droughts are increasing in the last decades (Faunt et al., 2009; California Water Science Center, U.S. 

Geological Survey, 2022).  

Farrar and Bertoldi (1988) describe the Central Valley as “virtually one large sediment-filled between 

Coast Ranges and the Sierra Nevada”. In Figure 2, it can be seen that the sediment lies over a westward-

sloping basement rocks, being the subsurface continuation of the Sierra Nevada. 

 

Figure 2: Pre- and post- development of A, Sacramento Valley. B, Central part of the San Joaquin Valley, California.  
From: Faunt, 2009.  

Above the bedrock lies a thick layer of deep marine, deltaic and continental sediment. The deposits 

vary from zero in the east to more than 15,200 m deep on the western edge. Continental sediments, 

carried by streams from surrounding mountains and ranges filled the valley with sand and gravel, 

mixed with clay and silt up to a depth of 730 m today. Alluvial fans have developed on all sides of the 

CV, leaving the coarse-grained sediments rather at the valley margin, some more than 300 m thick.  

These deposits of the CV form a complex aquifer system, consisting of unconfined, semi-confined and 

confined aquifers. Clay lenses, accumulated by lakes during the Pleistocene, are distributed throughout 

the CV. These lenses have low permeability but are generally not vertically extensive or laterally 

continuous. This clay is often referred to as “Corcoran Clay” (Page und Bertoldi, 1983; Farrar and 

Bertoldi, 1988). In the western San Joaquin valley, a continuous and thicker Corcoran clay layer divides 

the groundwater flow into an upper semi-confined and lower confined aquifer. An increasing number 
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of wells above and under this layer, increased the hydraulic conductivity between these aquifers (Faunt 

et al. 2009).  

Overall, there are considerable variation of deposits throughout the CV and conclusively as well their 

hydraulic conductivity and groundwater availability (Page and Bertoldi, 1983). Because of high 

temporal and spatial variability of precipitation, runoff, and surface water availability in the CV, the 

population depends on groundwater as reliable water source. To secure agricultural development and 

population growth in the water-deficient valley, large scale hydrologic systems were engineered. 

When surface water (dams and surface water diversions) does not meet the water demand, 

groundwater is used to fill the imbalance (Faunt et al., 2009). Because of the fertile soil, the long 

growing season and the irrigation system, a big variety of crops is grown and harvested two or three 

times in a year on a single field.  

Additionally, changing market conditions (development of global market and cheaper production of 

grain production elsewhere in the world) and better transportation facilities (e.g., railroads) had the 

result that crops like almonds, pistachios and more than half of all the grapes grown in the US are 

coming from the SJV. Today around 50 different crops are cultivated in the CV (MPEP Team 2019). 

Agriculture is the dominant land user in the CV (~60% of floor area) and a main economic driver for 

the region (Faunt et al., 2009). 

It is not surprising that a long history of agricultural and urban development influenced the 

groundwater in the CV. Faunt et al. (2009) simulated the water budget (surface and groundwater) and 

concluded that intensive pumping for irrigation water results in a change in aquifer storage. 

Consequently, water level changes (dominantly declines, rises in some areas) which alters 

groundwater flow rates and directions and influences the flow exchange with streams and surface 

waters as illustrated in Figure 2. This development results in extensive loss of riparian vegetation and 

wildlife habitat. Additionally, aquifer – system compaction and land subsidence are further results 

from groundwater pumping (Farrar and Bertoldi, 1988; Galloway et al., 1999). Another problem, not 

connected with the available water quantity but with the water quality is the leaching of nitrate. As 

mentioned before, part of the pumped groundwater used for irrigation, infiltrates back to the ground. 

Hence, this water takes up the highly soluble and mobile nitrate, originated from fertilizers and 

transports it into the groundwater. Although this effect varies across the CV, it becomes an increasing 

problem throughout the state. Mainly, shallow aquifers are effected which are used as drinking water 

supply in rural areas, constituting a health risk for the population (Burow et al., 2013). This paper will 

elaborate and investigate this phenomenon of GW leaching further.     

 

2.2 Nitrogen mass balance in agriculture 
Nitrogen is needed as part of nucleotides and proteins and is therefore essential for all life. For plant 

growth, it can be a limiting factor for growth and productivity as any other nutrient. Although N makes 

up 79% of our air in form of N2, only a few natural processes can break the strong triple bond between 

the two Nitrogen atoms and transforming it to available form for plants in soil. For once, lightning can 

break this bond with its immense heat, but more commonly N is made available by N2 – fixing microbes 

which are capable to convert N2 to NH3. The discovery of the Haber – Bosch process which forms 

Ammonia (NH3) under high pressure and heat from CH4 and N2, revolutionized agriculture fertilizer 

practices. The capability to produce N – fertilizer, enabled agriculture to increase its crop yield, 

meaning more food can be produced on less area. In the last century, this high productivity enabled to 

sustain the increasing world population while relieving pressure on land clearance. In agriculture as 

well as in in other ecosystems, the N cycle is highly complex. Since Nitrogen is not present in rocks as 

most other necessary nutrients, it must derive from other sources. The form in which N is delivered is 
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of major importance since that depends on how available it is to organisms and plants, and how mobile 

it is and therefore vulnerable to loss through hydrological and gaseous pathways (Robertson and 

Vitousek, 2009; Schimel and Bennett, 2004; Pang and Letey, 2000).   

Robertson and Vitousek (2009) explain in detail the different sources, pathways, and transformation 

processes of Nitrogen in the soil. Nitrogen deposition through rainwater and from dry deposition is a 

minor contribution and in most natural ecosystems N2 – fixation through plants and microbes are the 

major N source. If not carried out by harvest, the N gets replenished when organic matter is 

decomposing and returned to the soil. This natural cycle is interrupted in agriculture, by removing N 

through harvest of yield, leading to an N deficit in the soil for future plants. There are essential three 

possibilities for farmers to replace N loss: 1st to include N-fixing crops in rotation (historically most 

common, but little efficient), 2nd returning removed N in form of manure which is derived from grazing 

animals from pasture or 3rd to add synthetic fertilizer. Whereas the first option is commonly used in 

organic farming by including N fixing winter crops, this strategy includes additional costs which 

precluded their widespread (Pang and Letey, 2000). Manure input can be provided where there are 

animal farms nearby or combined with crop production. Since N ingested is mostly excreted, manure 

application is suited as fertilizer (Robertson and Vitousek, 2009). According to Allen (2008), the 

introduction of legumes, crop rotation and manure application to balance the N loss from harvest, 

greatly contributed to an increase of crop yields in the preindustrial Britain. Today, agricultural 

businesses are structured more linear in the sense that farmers are more specialized. (It is more 

profitable to grow one specific crop or only concentrate on animal farming than to run a “mixed farm 

system”. On the other hand, these operations are not efficient with their nutrient management.) As a 

result, feed and livestock are produced far from each other, making it expensive to transport the 

manure back to feed production and closing the N cycle. This spatial disconnect makes the third option 

the most lucrative one for farmers, operating an intensive cropping system. Synthetic fertilizer are “[…] 

easy to transport, readily available, and relatively inexpensive…” (Robertson and Vitousek, 2009, 102).  

 

Figure 3: Pathways of nitrogen (N) in a substantial simplification of the N cycle. Solid lines indicate transformations occurring 
in all ecosystems, whereas dashed lines indicate processes particular to agricultural systems. From Robertson & Vitousek 
(2009). 
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Cassman, Dobermann and Walters (2002) state that this practice comes with great environmental 

costs since less than half of the applied N is recovered in crops. Consequently, the rest is lost to the 

environment with pathways like surface runoff in rivers, lakes and oceans, atmospheric loss and 

leaching to groundwater. In order to improve management practices and reducing harm to the 

environment from N loss, it is vital to understand and quantify those highly complex pathways and 

transformation processes (Robertson et al., 2008).  Figure 3 shows a simplified version of the N cycle 

in agricultural ecosystems, whereas the dotted lines represent stream flows, not present in natural 

systems.  

Nitrogen inputs are inorganic fertilizer (arrow A in Figure 3), organic fertilizer like mulch and manure 

(B), N2 fixation (C) and atmospheric deposition (D & E). Fertilizer inputs are depending on the 

management practice. Synthetic fertilizer (mostly inorganic N and urea) are instantly available for 

plants, whereas organic fertilizer needs to be processed by microorganisms before its N is available for 

uptake. The process of mineralization (F & G) describes the transformation from organic forms to 

soluble and plant available form, including amino acids by extracellular enzymes. Although already 

available for plants, most amino acids are further transformed to inorganic form (Schimel & Bennet, 

2004). Nitrification (H) is the process of further oxidation of the less mobile NH4
+ to more mobile NO2

- 

(nitrite) and further to NO3
- (nitrate). As an anion, nitrate is easier receivable for roots and transported 

to groundwater.  Process I in Figure 3 shows the uptake by plants, mostly in the form of nitrate (NO3
-) 

(Jackson, 1997). The counter transformation of immobilization (J) is driven by microbes, also in need 

of N, thus competing with the demand of the plants. On the other hand, through immobilization, N is 

retained from loss to the environment and can be made available at a later point through 

mineralization again (Schimel and Bennet, 2004).  

Outputs of N in an agricultural ecosystem is for once the harvest (K) and leaching to surface and 

groundwater (L) as mentioned above. Hence its negative charge, nitrate is highly soluble in water and 

therefore moves easily with it through soil to groundwater or other hydrological pathways. Di and 

Cameron (2002) state that this phenomenon can be observed in all agricultural ecosystems, but 

especially when crops or pasture is fertilized and irrigated. Other pathways for N loss are gaseous. 

Denitrification to N2 (M) removes available N from the ecosystem and returns it to the atmosphere. 

Little is known about the magnitude of this flux and is often quantified by the difference of the other 

fluxes. Nevertheless, except in flooded soils like in wetlands, denitrification losses are rather small and 

harmless to the environment since the high content of N2 in air. NH3 volatilization (N) is the loss from 

manure, soils, and plants. It mostly occurs shortly after fertilization and can be especially high when 

anhydrous NH3 (liquid manure, urea) is applied under dry soil conditions (Schjoerring, 1998). In the 

process of denitrification and nitrification, a small fraction is emitted to the atmosphere as N2O (from 

denitrification) and NOx (from nitrification) (O, P; Figure 3). Although the overall loss is rather small 

from agricultural ecosystems, the emission from nitrogen oxides must not be underestimated (Xiao et 

al., 2021).  

 

2.3 Modelling Nitrogen groundwater content  

2.3.1 General 

Modelling is the attempt to describe natural processes based on input variables, model parameters 

and initial conditions. Because in hydrological systems and especially in groundwater systems, 

extensive measurements on large scale are often either physically not possible or very expensive, the 

tool of modelling gives us a possibility to fill research gaps (De Jong and Van Joolingen,1998). In the 

last decades, hydrological models have been used increasingly to not only understand natural 

processes but also to study the effect of different future management scenarios. This approach 
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enables researchers to make predictions in ungauged catchments and to make predictions of 

possible future changes in climate, land use and management practices (Beven, 2001; Williams, 

1995). In the context of groundwater, the field shifted its focus in the last decades. Whereas in the 

late 20th century many studies focused on modelling leakage of point sources and their spreading 

in a groundwater body, in the last decades the focus lies on non-point pollutants. As mentioned 

before, N in surface and groundwater becomes increasingly an environmental and health risk (U.S. 

Environmental Protection Agency, Office of Water, 2018). Therefore, more effort is put in 

understanding leakage processes and quantifying N loading from varies sources. 

Liu et al. (1997) describes that there are many different forms of modelling N transport and 

transformations but that they can basically divided in physical and empirical modelling. Physical 

modelling relies on site-specific (model) parameters and measurements. It is important to keep in mind 

that this data may not be complete or inaccurate for which the theory of the model may or may not 

be complete (Worrall and Burt 1999). The empirical modelling on the other hand relies exclusively on 

empirical literature. With this model more general contexts and connections are explained, but it is 

unable to make more side specific predictions. In most cases, a “structural model” is used which uses 

both kinds (physical and empirical) of modelling (Liu et al., 1997). 

Since the accuracy and reliability of hydrological modelling is highly dependent on the computing 

power available, new approaches and extend of hydrological models arise with the increasing 

performance of modern computers. A rather new method are the “Soft Computing” (SC) models such 

as as fuzzy logic (FL)-based models, artificial neural network (ANN), support vector machines (SVM), 

self-organized mapping (SOM), decision trees (DT) and random forest (RF) (Srinivasan et al., 2018; 

Sharafati et al., 2021). It gets further stated that those approaches have high potential to improve 

accuracy of predictions of groundwater pollution sources but also still needs a lot of improvement. The 

problem of land use change over time at the same location is given as an example. It makes it difficult 

for machine learning applications to apply mechanisms for which there is not enough data. Future 

research in this field will need to update the time lag between observed data, modelling, and 

predictions (Sharafati et al., 2021). In the CV where the problem of Nitrate leaching in groundwater is 

an acknowledged problem, Ransom et al. (2017) predict and visualize nitrate concentrations with a 

hybrid machine learning model (boosted regression tree). This method not only calculates N 

concentrations but also highlights which variables serves as good predictors.  

With all these different methods and approaches how to model N loading to groundwater (GW), it is a 

good question to ask which model to use. According to Gharari and Razavi (2018), ideally one would 

have a full- dimensional process representation, based on a perfect understanding of the processes, 

their heterogeneity, and their spatio-temporal scale dependency. Unfortunately, as stated before, 

some of that information are often not available in hydrological modelling and the bigger the scale, 

the more effort to reflect heterogeneity. Beven (1995) states that it is inadequate to transfer a small-

scale model on a bigger scale by using “effective” parameter values, but to incorporate hydrological 

heterogeneity. On the other hand, a more precise model, also needs more data to feed. If those are 

not available, it is obsolete to develop a high resolution model. At the end, it is a question about what 

one wants to answer, which scale is from interest and what data is available. 

 

2.3.2 GNLM 

The “Groundwater Nitrogen Loading Model” (GNLM) was developed in the framework of the report 

“Nitrogen Sources and Loading to Groundwater in the Central Valley” by Viers et al. (2012) and further 

updated multiple times. In order to make sources of N loading to the GW more comprehensible for 

the public by presenting N pollution sources, a field scale mass balance approach was chosen. This was 
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done not only for irrigated crops but also for other land uses. After reviewing the results with literature, 

those N loading rates were then applied for large scale areas like the SAV, SJV and the TLB. A special 

emphasis was put on the change of land use from 1945 to 2007. The travel time from nitrate source to 

the GW water level and to the next well is typically years, decades to centuries and more. Therefore, 

to assess current and future GW quality in wells and at the interface to streams, one need to know 

historic N losses to the water table and their historic timeline (Harter et al., 2017).  

The mass balance approach is conceptual one of the simplest methods to model transport of a material 

whereas the analysis is zero-dimensional. Mass fluxes in and out of a control volume are aggregated. 

It is therefore a simple accounting method, not considering transformation processes within the 

control volume how they would occur in nature.  

 

 ∆𝑺𝒕𝒐𝒓𝒂𝒈𝒆 =  𝑵𝑰𝒏𝒑𝒖𝒕𝒔 −  𝑵𝑶𝒖𝒕𝒑𝒖𝒕𝒔  (1) 

 

Where: 

 𝑵𝑰𝒏𝒑𝒖𝒕𝒔 =  𝑵𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 +  𝑵𝒊𝒓𝒓𝒊𝒈𝒂𝒕𝒊𝒐𝒏 + 𝑵𝒔𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄 + 𝑵𝑳𝒂𝒏𝒅𝑨𝒑𝒑𝒍𝒊𝒆𝒅 + 𝑵𝒎𝒂𝒏𝒖𝒓𝒆_𝒔𝒂𝒍𝒆 (2) 

 

 𝑵𝑶𝒖𝒕𝒑𝒖𝒕𝒔 =  𝑵𝒉𝒂𝒓𝒗𝒆𝒔𝒕 + 𝑵𝒓𝒖𝒏𝒐𝒇𝒇 +  𝑵𝒂𝒕𝒎_𝑳𝒐𝒔𝒔 + 𝑵𝑮𝑾_𝒏𝒐𝒏𝒅𝒊𝒓𝒆𝒄𝒕  (3) 

 
The control volume comprises of 50x50 m cells and N fluxes are calculated for one year, whereas time 

periods of 15 years are summarized by the same land use (crop and fertilizer application). In order to 

make spatial comparison more comprehensible, amounts are presented in loadings instead of 

concentrations (kg N/ha/yr). 

INPUT 

Since the report “Nitrogen Fertilizer Loading to Groundwater in the Central Valley” (Harter et al., 2017) 

deals with different time periods, a focus of it was to obtain the necessary and reliable data for each 

variable. Since this paper only takes the most recent time period into account, only the data collection 

of this period will be elaborated.  

The land cover map is composed of different sources of information. Agricultural land use information 

is taken from the Department of Water Resources and the Pesticide Use report. Urban areas are 

combination of urban areas from Farmland Mapping and Monitoring Program (FMMP) and the CDF 

(California Department of Forestry and Fire) Multisource Land Cover (MSLC) layer. Furthermore, 

natural lands are taken from the MSLC layer if an area is neither agricultural nor urban. All these layers 

together combined result in the “California Augmented Multisource Landcover” (CAML) at 50x50m 

resolution. 

NDeposition: Nitrogen deposition through rain and atmosphere 

N deposition can vary spatially, especially dry deposition which are rarely measured. Large scale 

estimates are therefore mostly based on modeling. In this report the data from the “Community 

Multiscale Air Quality” (CMAQ) model is used, developed by the U.S. EPA. The models highest 

resolution is a 4km grid and estimates were updated by Bobbink et al. (2010), taking measured rates 

more accurately with into account.  
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NIrrigation: Nitrogen content in irrigation water  

The nitrogen content in irrigation water can vary greatly throughout the CV. For once, because of the 

amount of irrigation water applied and secondly, for the N content in that water. The GW use for 

irrigation and the amounts of nitrate in groundwater is derived from Boyle et al. (2012), providing 

nitrate-nitrogen application rates through measurements from public supply wells for 2000 - 2009 

(Viers et al., 2012).   

NFertilizer: Nitrogen content in synthetic fertilizer applied 

This information was obtained by interviewing experts, growers, reviewing literature for most recent 

published fertilizer practices for major crops in California (Rosenstock et al., 2014; Viers et al., 2012) 

and investigating fertilizer sales in the time period, published by “California Department of Food and 

Agriculture” (https://www.cdfa.ca.gov/is/ffldrs/Fertilizer_Tonnage.html). 

NlandApplied: Nitrogen content in manure fertilizer from inside the raster 

Manure mainly derives from dairy operations, beef lots and poultry and swine manure. CV-GNLM 

differentiates between manure application on cropland within dairies and outside of dairies. This was 

determined, whether cropland is located within raster associated with a dairy’s reported “assessor 

parcel numbers” (APNs). All manure applications are distributed proportional to typical fertilizer N 

applied for that specific crop on that specific field.  Where dairy farmers also own cropland (“dairy 

cropland”), it is assumed that liquid manure accounts for 2/3 total fertilizer application for field crops 

like corn (often double cropped with winter grain) and 1/3 for grain and hay crops. The amount of 

available liquid manure on dairy cropland was calculated by determining the amount of N excreted 

minus the amount of N in atmospheric losses prior to land application minus the amount of N exported 

from the dairy facility. The amounts in this calculation are derived from EPA 2005 dairy database, 

evaluated by Viers et al. (2012) and Pettygrove et al. (2010). Taking with into account the “support 

stock” (calves and heifers), a total of 198 kg N/yr per an adult cow was determined. The size of herds 

was obtained from “United States Department of Agriculture” (USDA) agricultural census data from 

2007 from which the total amount of excreted manure could be calculated. The amount of N, lost to 

the atmosphere prior to application are at 38% (EPA, 2003). Final amounts of manure application on 

dairy cropland is taking the overall N demand of each crop and NSynthetic application with into account. 

It is common practice among farmers, that although manure would meet crops N demand, instead or 

in addition synthetic fertilizer is added on the field because of the "uncertainty about short- and long-

term release of plant available forms of N from organic sources" (Harter et al., 2017). The amount of 

manure N applied to a dairy cropland raster was therefore calculated:  

 𝑁𝑙𝑎𝑛𝑑𝐴𝑝𝑝𝑙𝑖𝑒𝑑𝑖 =  
𝑁𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖

∑ 𝑁𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖
𝑛
𝑖=1

∗  ∑ 𝑁𝑙𝑎𝑛𝑑𝐴𝑝𝑝𝑙𝑖𝑒𝑑

𝑑𝑎𝑖𝑟𝑦

 (4) 

𝑖 = raster cell  

Outside of dairy croplands, amounts available for manure application is based on manure sales 

(explained in detail further on). Exported manure is mostly in form of dried or composted manure 

solids which is besides of field crops and grain and hay crops, additionally applied to perennial crops 

and alfalfa (Viers et al., 2012). The export of manure is obtained from UC-Davis’s Dairy Annual Report 

Database v2012. In some cases, reported values are higher than calculated amounts (62% of excreted 

manure) in which case the median value of N export from dairy operation was used. If that amount 

was still higher than 62%, amounts were further reduced to 62% of initial excreted manure, leaving no 

manure available for the corresponding dairy cropland. It is further stated that due to high 

transportation costs, exported manure rarely leaves the county (Viers et al., 2012).  
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It is assumed that solid manure application outside of dairy cropland is always applied in addition to 

synthetic fertilizer (Harter et al., 2017).   

Table A - 1 (Appendix A) gives a detailed overview of crops receiving manure in the column “GNLM: 

LUdriven N source_Dairy” whereas “1” indicates application of liquid manure on dairy cropland and 

“2” application of solid exported manure 

Nmanure_sale: Nitrogen content in manure fertilizer from outside the raster  

As mentioned above, the manure N export from dairy facilities is obtained by UC Davis Dairy Annual 

Report Database v2012. For the period of interest, the focus is on the records of each dairy from 2007. 

The atmospheric loss of 38% prior to application was taken with into account.  

 𝑁𝑚𝑎𝑛𝑢𝑟𝑒𝑆𝑎𝑙𝑒𝑖,𝑗 =  
𝑁𝑒𝑥𝑝𝑜𝑟𝑡𝑗

𝐴𝑟𝑒𝑎𝑁𝑒𝑥𝑝𝑜𝑟𝑡𝑗
 (5) 

 

Where NmanureSale stands for exported manure in kg N/ha/yr for raster cell 𝑖 receiving exported manure 

in county 𝑗. 

Nharvest: Nitrogen content in harvested crop 

N removal in harvested crop is calculated in two steps. First, amounts of yield for each year and county 

was taken from the ACR (Agriculture commissioner report). Secondly, the amounts of yield are 

converted in N removed by using the USDA Crop nutrient tool. N harvest rates were estimated for each 

crop for each county and time period. An arithmetic mean was then computed for the mean harvest 

rate for each crop and in each county (Viers et al. 2012). 

Nrunoff: Nitrogen content in surface runoff water 

In the Technical Report 2, Viers et al. (2012) set the surface runoff losses to streams to general 14 kg 

N/ha/yr and lean their assumption on the study from Beaulac und Reckhow (1982). Although this study 

focused on the U.S midwest, it is argued that this source is widely cited.  

Natm_loss: Nitrogen lost to atmosphere due to denitrification.  

N emission rates are obtained from literature review:  

 N2O: 1% The default emissions factor of direct field emissions used by the IPCC 

(Intergovernmental Panel on Climate Change) (Klein et al., 2006). 

 N2: 1.8% This emissions factor is based on the average N2:N2O ratio reported in agricultural 

sites (Schlesinger, 2009) 

 NH3: 3.6% Average emissions measured from 10 California fields (Goodrich et al., 2009) 

 NOX: 2.1% Average emissions across 8 crops and 20 sites (Matson, 1997) 

The total of 8.5% of all applied N is rounded up to 10% and is argued to be reasonable (Harter et al., 

2017) 

As a result:  

 𝑵𝒂𝒕𝒎𝑳𝒐𝒔𝒔 =  𝟎. 𝟏 ∗ (𝑵𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 +  𝑵𝒊𝒓𝒓𝒊𝒈𝒂𝒕𝒊𝒐𝒏 + 𝑵𝒔𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄 + 𝑵𝑳𝒂𝒏𝒅𝑨𝒑𝒑𝒍𝒊𝒆𝒅 + 𝑵𝒎𝒂𝒏𝒖𝒓𝒆_𝒔𝒂𝒍𝒆) (6) 

 



 

12 
 

NGW_nondirect: Nitrogen leaching to groundwater from irrigated agricultural land (excludes leaching from 

septic tanks and urban areas). This variable is unknown and is the aim to be calculated with the mass 

balance approach, explained in more detail in the next paragraph. 

 

OUTPUT  

Harter et al. (2017) argue that due to the arid conditions in the CV no significant measurable increase 

in soil organic matter have been recorded over the past 65 years. It is therefore negligibly small: 

 ∆𝑺𝒕𝒐𝒓𝒂𝒈𝒆 =  𝟎 (7) 

 

Conclusive, from the previous equations:  

 𝑵𝑰𝒏𝒑𝒖𝒕𝒔 =  𝑵𝑶𝒖𝒕𝒑𝒖𝒕𝒔  (8) 

 

Following equation is obtained when re-arranging the N mass balance for the potential nitrogen 

loading to groundwater:  

 
𝑵𝑮𝑾_𝒏𝒐𝒏𝒅𝒊𝒓𝒆𝒄𝒕 =  (𝑵𝒅𝒆𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 + 𝑵𝒊𝒓𝒓𝒊𝒈𝒂𝒕𝒊𝒐𝒏 + 𝑵𝒔𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄 + 𝑵𝑳𝒂𝒏𝒅𝑨𝒑𝒑𝒍𝒊𝒆𝒅

+ 𝑵𝒎𝒂𝒏𝒖𝒓𝒆_𝒔𝒂𝒍𝒆) − (𝑵𝒉𝒂𝒓𝒗𝒆𝒔𝒕 + 𝑵𝒓𝒖𝒏𝒐𝒇𝒇 + 𝑵𝒂𝒕𝒎_𝑳𝒐𝒔𝒔) 
(9) 

 

All variables on the right-hand side have been accounted for and estimated on various spatial and 

temporal scales. By solving this mass balance for each raster in all the regions, possible and major 

contributor for nitrogen loading in groundwater are concluded (Harter et al., 2017). 

 

2.3.3 CV-SWAT 

The Soil & Water Assessment Tool (SWAT) is a model to simulate the quantity and quality of surface 

and groundwater. With its implementation of climate, soil, and land cover, it can model impacts from 

different land use and management practices. It is therefore used globally to prevent soil erosion, 

assess non-point sources and for the management of watersheds (Arnold et al., 2012).  

In the framework of this work, the updated version “CV-SWAT” (Central Valley – Soil Water Assessment 

Tool) was used. This version was programmed by the MPEP team, to make it more suitable for the 

conditions in the Central Valley. The model was modified with diverse cropping systems, soils, 

management practices, yields, and climates unique to the region. This allowed the modelers to 

accurately represent the land cover and use in the CV and to distinguish regional differences more 

accurately (Formation Environmental, 2021). 

Since this work focuses on the N-Balance of agricultural used land and only this data was used, a focus 

is put on how CV- SWAT deals with Nitrogen in- and outputs and their different transformation 

processes.  

INPUT  

Climate data is from major importance for CV-SWAT. It requires daily information on solar radiation, 

relative humidity, wind speed, air temperature and precipitation not only to accurately map the water 

cycle but also to simulate physical processes to plant growth, evapotranspiration, nutrient uptake and 
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cycling. This information is obtained from the closest weather station from the “California Irrigation 

Management Information System” (CIMIS).  

Soil information were taken over from Natural Resources Conservation Service  (NRCS). Their beta 

version is based on data mainly retrieved from field samples taken from soil pits (pedons), hence the 

name “PEDON” for the soil database.  

Land use information include crop type, crop growth parameters, management practice (planting and 

harvesting date, tillage, nitrogen application, irrigation) (Formation Environment, 2019).  

Calibration 

In the report “Groundwater Protection Values” (Formation Environment, 2021), the MPEP team 

elaborates in particular how crop growth was calibrated. Growth is calculated as a function of solar 

radiation (derived from climate data), nitrogen and water uptake. Biomass and yield production result 

from these components. Parameters used in the model describing growth and yield were obtained 

from literature (Geisseler, 2016, 2021) and were adjusted in an iterative process. Pathways of Nitrogen 

were calibrated as followed:  

1) As explained in previous chapter, denitrification processes are highly complex and dependent 

on many other factors in the soil. Since it was assumed that N2O emissions are roughly 50% of 

total denitrification emissions, denitrification processes were calibrated to roughly 2% or less 

of the N fertilizer input. This value also depends on the calculated moisture content in the soil. 

Note that N2O emissions can vary greatly between less than 20% to more than 50% of total 

denitrification according to Cuhel et al. (2010) and Weier et al. (1993). 

2) Ammonia volatilization, the conversion from NH3 to NO3 is linked strongly to denitrification 

since both processes are dependent on the same factors. After calibration, volatilization 

targeted closer to 1-2% of applied N, with crop-specific differences due to management 

practices. 

3) CV-SWAT takes N storage in perennial plant biomass into account. (MPEP Team, 2019) defines 

that this pathway is “controlled in part by calibrating crops to take up an appropriate total 

amount of N in a growing season and ensuring that the proper amount of N is removed with 

harvested materials”. 

4) N lost in surface runoff was not calibrated additionally. Since SWAT is a model especially 

programmed to model runoff processes, it was assumed that it is already well suited for 

simulating these processes (Krysanova und White, 2015). 

5) Organic N stored in soil organic matter was divided into three different “pool”. “Fresh plant 

residue” is divided in mobile Nitrate (80%) and “active organic N” (20%). This pool can either 

mineralize to nitrate (mobile), depending on soil parameters (e.g moisture) or become “stable 

organic N”. CV-SWAT tries to equilibrate the amount of humus N in the “active pool” to 2%, 

therefor 98% remains stable and is inaccessible for plants. As a result, crops with high organic 

residues can lead to accumulation of organic soil (MPEP Team, 2019).  

Besides Nitrogen pathways, also crop management was calibrated. Since the report of MPEP (2019) 

investigated the impact of different management practices on groundwater contamination, an 

emphasis was put on N application and irrigation. Those parameters were calibrated with the 

“Irrigation and Nitrogen Management Plan” (INMP) and “Nitrogen Management Plan” (NMP) created 

and pulled together by growers in the CV. It will not be further elaborated in here since only the 

“baseline” scenario is used for comparison.  

http://www.nrcs.usda.gov/
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At the end of the calibration process, an overall catalogue was the result, representing for each crop 

any possible combination of soil, climate, and land use. Every of those outcomes are expressed in a 

“hydrological response unit” (HRU) (Formation Environment, 2021).  

OUTPUT 

The output file contains extensive information for each unique HRU, among other the amount of N 

[kg/ha] at the bottom of the root zone for each time step. Although SWAT gives results in daily time 

steps, those are summarized in monthly and yearly time steps since the analysis would exceed the 

workload of the report (MPEP Team, 2019). Note that N load describes N at the bottom of the root 

zone, which does not necessarily reflect amounts infiltrating in the groundwater. Furthermore, all 

components are presented as loads (kg/ha/time) not as concentrations since it reflects better 

agricultural activity. Concentrations are highly linked to water use efficiency, meaning if water gets 

used more efficiently, N concentrations leaching to GW are getting higher. This should be kept in mind, 

since two different HRU’s with the same N load to GW could have much different N concentrations 

infiltrating (Formation Environment, 2021). Crop productivity is based on reported yields from growers 

from 2016. N content in harvested crops is determined with the help of works from Geisseler (2016) 

and Geisseler and Horwarth (undated) (MPEP Team, 2019). 

The Formation Environment (2021) team argues that with comparison to literature and field values, 

CV-SWAT ensures reasonable and conservative estimates of N loads across a 30-year model period in 

varies regions in the CV.  

 

2.3.4 Model Comparison 

As elaborated in previous chapters, CV-GNLM and CV-SWAT take different approaches to estimate 

nitrate loading leaching rates to GW. Thus, results differ from each other throughout the CV and for 

crops. UC-Davis developed a tool to compare results of nitrate loading of CV-GNLM and CV-SWAT. It is 

accessible under http://subsurface.gr/joomla/SWAT/SWAT_GNLM_perCrop_v2.html and allows the 

user to choose between different basins, crops and loading scenario. The tool shows the 5, 25, 50, 75 

and 95 percentile of the distribution nitrate loading for the selected crop. Figure 4 shows nitrate 

loading rates from CV-GNLM and CV-SWAT for almonds in SAV over time.  

 

http://subsurface.gr/joomla/SWAT/SWAT_GNLM_perCrop_v2.html
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Figure 4: Comparison of nitrate leaching to groundwater between CV-GNLM and CV-SWAT. Taken from UC-Davis groundwater 
tool: http://subsurface.gr/joomla/SWAT/SWAT_GNLM_perCrop_v2.html.  

The results illustrate that the models have significant discrepancies. CV-GNLM has constant increasing 

N loading from 1960 until 1990 to stay constant from 2000. CV-SWAT on the other hand fluctuates 

more and has significantly less N loading for most of the period. It is the motivation of this study to 

investigate in detail which variables and parameters of the models are most significant for the big 

difference. Furthermore, feasible adjustments for CV-GNLM are researched. 

  

http://subsurface.gr/joomla/SWAT/SWAT_GNLM_perCrop_v2.html
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3. Method 

3.1 Comparison 
To find out how CV-GNLM needs to be updated to be more compatible with CV-SWAT, differences 

were identified and analyzed. In the following chapter different categories which were compared are 

pointed out and described in more detail. The data worked with in this report contains the output data 

from CV-GNLM from 2017 and output data from CV-SWAT from 2020. The data was provided by 

supervising professor Dr. Thomas Harter.  

 

3.1.1 Land Use 

A first challenge to overcome was the different area used by the two models. Although both models 

concentrate on the intensive agricultural areas of the CV, including the Sacramento Valley, the San 

Joaquin Valley and the Tulare Lake Basin, there are differences in the areas included. Besides some 

difference in the boundaries between the valleys, the major difference is that CV-SWAT includes the 

entire watershed and sub basins of streams and rivers. Those areas are negligible for the N-balance. 

Therefore, regions, not included in CV-GNLM, were cut from CV-SWAT and borders between valleys 

were unified. Figure 5 illustrates this adaptation. Map A) shows in light brown the area used by CV-

GNLM. The model does not separate throughout the different regions and focuses on the agricultural 

intensive valley without the surrounding area. CV-SWAT on the other hand divides the valley in three 

regions and includes the corresponding watershed, shown in red (SAV), blue (SJV) and green (TLB).  

 

Figure 5: Maps of A) Initial Area used from both models and B) Unified Outlines for comparison. 

To make a land use comparison expressive, unified outlines were created. The created outlines shown 

in Figure 5 B) only include areas, present in both models. Due to that, areas like at 39.2°N, 121.9°W 
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(national park “Caldwell Hills”) or foothills from the coastal ranges at 38.9°N, 122.1°W are excluded. 

These outlines were further used to cut out the original land use shape files from both models.  

In a second step, the different land use was analyzed. Both models use different land cover types. CV-

GNLM uses over 200 different land covers, whereas CV-SWAT model focuses on 22 main crops (95% 

of agriculture; partly subdivided in multiple species or plant stages) and few land cover types for 

natural vegetation and urban landscapes (MPEP Team, 2019). In order to compare the area of the land 

use, crops were categorized in sixteen groups as it was done in the CV-GNLM report:  

- No data 

- Urban 

- Native Vegetation 

- Pasture 

- Barren 

- Water 

- Citrus and Subtropical 

- Deciduous Fruits and Nuts 

- Field Crops  

- Corn, Sorghum, Sudan 

- Grain 

- Alfalfa 

- Semiagricultural and Incidental to Agriculture 

- Truck, Nursery and Berry Crops  

- Rice  

- Vineyard 

The CV-SWAT land cover types were assigned to a corresponding land cover from CV-GNLM and 

accordingly categorized. Since CV-GNLM uses land cover data from 2005 and CV-SWAT from 2014, 

different results were expected. A detailed overview of allotment of crops from CV-GNLM and CV-

SWAT is found in Table A - 1 in Appendix A.   

3.1.2 Balance 

In this chapter, modeled N pathways from both models were compared, categorized in N inputs and 

outputs and an N mass balance was calculated. Therefore, decisive differences and variables are 

highlighted. Since results are different for each crop, it is crucial to analyze each crop separately. To do 

so, the dataset was reduced to the most recent time period, relevant variables and a choice of crops.  

CV-SWAT models varies scenarios of different management practice of which one needed to be 

chosen.  From the options: “baseline”; “moderate fertilization & high irrigation”; “high fertilization & 

moderate irrigation”; “high fertilization & high irrigation”, the “baseline” scenario was chosen, as it is 

best comparable with CV-GNLM settings. The timeframe of the obtained data includes averages from 

the years 2003 – 2007 for CV-GNLM (applied for each year equal) and data from 1990 – 2014 for CV-

SWAT, whereas yearly results were used for further calculations.  

Because an analysis and comparison of all crops would exceed the frame of this thesis, most cultivated 

crops as listed by the MPEP Team (2019) are used for further comparison: 

1. Almonds 

2. Pistachios 

3. Tomatoes 

4. Walnuts 

5. Vineyards (wine, table and raisin grapes) 
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6. Oranges 

7. Cotton 

8. Corn (silage) 

9. Wheat (silage) 

10. Onion & Garlic 

11. Mandarins 

12. Beans 

13. Peaches 

14. Wheat Grain 

15. Carrot 

16. Sunflower 

17. Pomegranate 

18. Oates 

19. Nectarines 

20. Cherries 

As a first step to analyze both models N budget, a general N-Balance with variables in both models was 

set up. For this purpose, all balance components from CV-GNLM were adopted. In addition, variables 

from CV-SWAT were categorized to close its N balance.  

 𝑵𝑰𝑵 =  𝑵𝑫𝒆𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 + 𝑵𝑰𝒓𝒓𝒊𝒈𝒂𝒕𝒊𝒐𝒏 + 𝑵𝑺𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄 + 𝑵𝑴𝒂𝒏𝒖𝒓𝒆  (10) 

 

 
𝑵𝑶𝑼𝑻 =  𝑵𝑯𝒂𝒓𝒗𝒆𝒔𝒕 + 𝑵𝑷𝒆𝒓𝒆𝒏𝒏𝒊𝒂𝒍 𝑻𝒊𝒔𝒔𝒖𝒆 + 𝑵𝑹𝒖𝒏𝒐𝒇𝒇 + 𝑵𝑨𝒕𝒎.𝑳𝒐𝒔𝒔 + 𝑵𝑨𝒄𝒕𝒊𝒗𝒆 𝑶𝒓𝒈.

+ 𝑵𝑺𝒕𝒂𝒃𝒍𝒆 𝑶𝒓𝒈. + 𝑵𝑮𝑾−𝑳𝒆𝒂𝒄𝒉𝒊𝒏𝒈 
(11) 

 

 𝑵𝑰𝑵 =  𝑵𝑶𝑼𝑻 (12) 

 

Table 1 illustrates how each component of the balance is calculated. For a correct method, several 

meetings with members of the MPEP team from UC Davis in California were held to insure correct 

understanding for N movement through the model. The calculation of N in perennial tissue assumes 

that all plant residues are mineralized. This assumption is accurate for most HRU’s states CV-SWAT 

expert Kenneth Miller (personal communication, 2022).  
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Table 1: Determination of categories for the N balance for CV-GNLM and CV-SWAT. 

BALANCE CATEGORY  GNLM  SWAT  
 

IN 

Deposition Ndeposition NRAIN, NFIX 
Irrigation Nirrigation - 

Synthetic Fertilizer Nsynthetic N_APP (+ N_AUTO) + NGRZ 
+ NCFERT  

Manure Fertilizer NlandApplied + 
NmanureSale 

- 

 

 

OUT 

Harvest Nharvest_actual YLD * removal coefficient  
(if Harvest > 0.8* Nup, then 

0.8 * Nup is used for 
Harvest) 

Perennial Tissue - NUP – Nharvest – F_MN 
Runoff Nrunoff_actual NSURQ + NLATQ + ORGN + 

LNO3 +  
Atm. Loss NatmLoss (10% from 

inputs) 
DNIT 

Active Org.  - 0.2 * F_FM – A_MN – A_SN 
Stable Org.  - A_SN 

GW-Leaching GW_nondirect; NO3L  
 

Variables of CV-GNLM got explained in the previous chapter. (Arnold et al., 2012) gives detailed 

explanation of SWAT variables:  

NRAIN: Nitrate added to soil profile by rain (kg N/ha). 

NFIX: Nitrogen fixation (kg N/ha) in time step. Amount of nitrogen fixed by legumes during the time 

step. 

N_APP: Nitrogen fertilizer applied (kg/N/ha). Total amount of Nitrogen (mineral and manure) applied 

in regular fertilizer operations during the time step. 

N_AUTO: Nitrogen fertilizer auto-applied (kgn/ha. Total amount of Nitrogen (mineral and organic) auto 

applied during time step. 

NGRZ: Nitrogen applied during grazing operations (kg N/ha). Total amount of Nitrogen (mineral and 

organic) added to soil during time step. 

NCFERT: Nitrogen applied during continuous fertilizer operation (kg N/ha). Total amount of Nitrogen 

(mineral and organic) added to soil by continuous fertilizer operation during time step. 

YLD: Harvested yield (metric tons/ha). The model partitions yield from the total biomass on a daily 

basis (and reports it). However, the actual yield is not known until it is harvested. The harvested yield 

is reported as dry weight.   

Removal coefficient: coefficient, calculated and provided by the “Formation Environment” team to 

convert amounts of yield into amount of N harvested (for each crop), based on works from Geisseler 

(, 2016, 2021). Detailed conversion factors for each land use in CV-SWAT is found in Table A - 2. 

NUP: Plant uptake of nitrogen (kg N/ha) during time step. 
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ORGN: Organic N yield (kg N/ha). Organic nitrogen transported out of the HRU and into the reach 

during the time step 

NSURQ: NO3 in surface runoff (kg N/ha). Nitrate transported with surface runoff into the reach during 

the time step 

NLATQ: NO3 in lateral flow (kg N/ha). Nitrate transported by lateral flow into the reach during time 

step 

NO3L: NO3 leaching from soil profile (kg N/ha). Nitrate that leaches past the bottom of the soil profile 

during time step. The nitrate is not tracked through the shallow aquifer. 

NO3GW: NO3 transported into main channel in the groundwater loading from the HRU (kg N/ha)   

F-MN: Fresh organic to mineral N (kg N/ha). Mineralization of nitrogen from the fresh residue pool 

during the time step. 

A-MN: Active organic to mineral N (kg N/ha). Movement of nitrogen from the active organic pool to 

the nitrate pool during the time step.  

A-SN: Active organic to stable organic N (kg N/ha). Movement of nitrogen from the active organic pool 

to the stable organic pool during the time step.  

NLATQ: NO3in lateral flow (kg N/ha). Nitrate transported by lateral flow into the reach during the time 

step.  

 

It is assumed that for both models, the N balance is closed:  

 𝑵𝑩𝒂𝒍𝒂𝒏𝒄𝒆 =  𝟎 = 𝑵𝑰𝑵 − 𝑵𝑶𝑼𝑻  (13) 

 

Conclusive:  

 

𝑵𝑩𝒂𝒍𝒂𝒏𝒄𝒆 =  (𝑵𝑫𝒆𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 + 𝑵𝑰𝒓𝒓𝒊𝒈𝒂𝒕𝒊𝒐𝒏𝑵𝑺𝒚𝒏𝒕𝒉𝒆𝒕𝒊𝒄 + 𝑵𝑴𝒂𝒏𝒖𝒓𝒆) − (𝑵𝑯𝒂𝒓𝒗𝒆𝒔𝒕

+ 𝑵𝑷𝒆𝒓𝒆𝒏𝒏𝒊𝒂𝒍 𝑻𝒊𝒔𝒔𝒖𝒆 + 𝑵𝑹𝒖𝒏𝒐𝒇𝒇 + 𝑵𝑨𝒕𝒎.𝑳𝒐𝒔𝒔 + 𝑵𝑨𝒄𝒕𝒊𝒗𝒆 𝑶𝒓𝒈.

+ 𝑵𝑺𝒕𝒂𝒃𝒍𝒆 𝑶𝒓𝒈. + 𝑵𝑮𝑾−𝑳𝒆𝒂𝒄𝒉𝒊𝒏𝒈) 

(14) 

 

This calculation was carried out to validate the accuracy of the obtained data. Hence CV-GNLM 

calculation of “NGW-Leaching” is based on the mass balance shown in equation (9), it is expected to be 

zero.  

As a second step, a comparison of the two models for each parameter highlights the most important 

variables and differences between the models are pointed out. Suggestions on how to adjust NGW-

Leaching were derived and further developed. For this purpose, median values were calculated for each 

variable from all data in the CV for each crop type.  

 

3.1.3 Harvest & Fertilizer Application  

The amount of Nitrogen (kgN/ha/yr) contained by harvested crops is calculated for both models 

separately. CV-GNLM includes amounts of NHarvest in the model itself and is based on studies and 

conversion with farmers and experts for each crop as elaborated in previous chapters. For CV-SWAT 

on the other hand, NHarvest amounts need to be calculated as depicted in Table 1. The condition that if 
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calculated NHarvest exceeds 80% of NUP, the latter is used as NHarvest, is implemented by 

recommendations of Kenneth Miller (personal communication, 2022). Differences will be pointed out 

and discussed further on.  

Based on previous discoveries, the variable “N-Application” is further analyzed. Especially because of 

the more distinct application rates of manure in CV-GNLM, it is important to distinguish between 

synthetic fertilizer and manure application.  

Both evaluations were carried out for each crop, comparing the two models. For CV-GNLM, data from 

the timeframe 2003 – 2007 (most recent), sorted by crop was used. The whole time frame from 1990 

– 2014 is used for CV-SWAT. Since CV-SWAT applies the same land use and management practice over 

the whole time frame, the difference in the amount of years and different time frame in general does 

not influence the results in this case. 

  

3.2  Adaptation  
After filtering out the most influential variables on NGW-Leaching, possible solutions to adapt CV-GNLM 

were investigated. For once, the influence of updating CV-GNLM harvest data is explored. Another 

attempt for adaptation is the implementation of different organic N pools.  

 

3.2.1 Data Adaptation 

The N content in harvested crop was identified being a decisive factor. Two approaches are tried to 

adapt the harvest rates closer to the ones in CV-SWAT. For once, to update the data of harvested crop 

amounts with the newest published data from the USDA. 

The three regions defined previously, intersect with 20 counties in the CV:   

 Sacramento Valley (SCV): 

o Butte 

o Colusa 

o Glenn 

o Placer 

o Sacramento 

o Shasta 

o Solano 

o Sutter 

o Tehama 

o Yolo 

o Yuba 

 (Northern) San Joaquin Valley (NSJV or SJV): 

o Contra Costa 

o Madera 

o Merced 

o San Joaquin 

o Stanislaus 

 Tulare Lake Basin (TLB): 

o Fresno 

o Kern 

o Kings 
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o Tulare    

For each county, the amounts of harvested crops from the years 2018, 2019 and 2020 were 

downloaded from the USDA Statistics Service 

(https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/index.php).  

Secondly, the conversion from the amounts of yield (harvested crop) to N amounts is updated. For CV-

GNLM the USDA “Crop Nutrient Tool” was used to convert yield weight to N amounts 

(https://plantsorig.sc.egov.usda.gov/npk/main). Recent studies from Geisseler (2021) present 

updated N content in harvested plant parts. The impact of this change on the amount of N leaching to 

GW is analyzed and evaluated. Since CV-SWAT also uses studies from Geisseler to convert crop weight 

to N amounts, this approach is promising to bring the two models closer to equal results for N GW-

leaching.   

3.2.2 Organic Nitrogen Pools 

A main difference identified between CV-GNLM and CV-SWAT is the modeling of N transformation 

processes. These processes are closely interrelated with water content in the soil and the soil 

composition itself (Jackson, 1997). Thus, it can only be modelled by CV-SWAT. Figure 6 gives an 

overview of how organic N is cycled through the system and how it is calculated.  It is investigated 

what the impact and long term influence of different organic N pools are by calculating yearly averages 

and accumulation over the modelled timeframe of CV-SWAT.  

 

Figure 6: Concept of CV-SWAT's modelling of organic N pools. In red marked arrows indicate components leaving the yearly N 
cycle. 

Furthermore, N taking up by the plant and not used for crop production is studied in more detail for 

different crop types. N content of leaves and perennial tissues (stem, roots, bark, etc.) is investigated 

in more detail for varies plants. Especially for perennial crops, this could be an additional component 

https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/index.php
https://plantsorig.sc.egov.usda.gov/npk/main
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of CV-GNLM’s N balance which is not taken into account yet. The calculation of each parameter can be 

taken from Table 1. 

4. Results 

4.1 Comparison 
In the following chapter, the results from the model comparison are illustrated and explained. For 

many variables, the comparison of both models is carried out for each crop. For clarity reasons, results 

are presented exemplary for one crop (almonds) whereas the extensive results for all crops are found 

in Appendix B.   

 

4.1.1 Land Use 

Crop types were identified, matched, and categorized. A detailed overview of this process is found in 

Appendix A, Table A - 1. In Figure 7, these results are illustrated. It is visible that agricultural activity is 

similar. In both models, vineyards are concentrated in the TLB around Fresno, areas around Modesto 

in the San Joaquin Valley are dominated by “Deciduous Fruits and Nuts” and “rice” crops are cultivated 

north of Sacramento. Also, areas of “Pasture” and “Native Vegetation” roughly match. It also gets clear, 

that although locations of dense cultivations are made visible in land use maps like in Figure 7, it does 

not give a good impression of the actual area from each category. Therefore, a more detailed analysis 

of area distribution was carried out. 

 

Figure 7: Map of categorized land use comparison of CV-GNLM (left) and CV-SWAT (right. 

Since the dataset for CV-SWAT was too large to merge together, each region is observed separately. 

Figure 8 displays this comparison between the models in form of bar plots. There are some major 

differences between the two models which occur in all of the regions. For once, it points out that CV-

SWAT has no area designated to semiagriculture and water which account up to 1500 km2 and 1900 
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km2 respectively in the TLB. Furthermore, the area for land use category “Barren” is always higher in 

CV-SWAT. It constantly lies over 1000 km2 and exceeds the area from CV-GNLM four times in the 

Sacramento Valley until up to twelve times more in the Tulare Lake Basin.  

The same trend is observed for “Truck, Nursery and Berry Crops” which is in all CV regions multiple 

times higher for CV-SWAT than for CV-GNLM. On the other hand, water intensive crops in the 

categories “field crops” and “grain” have more area in CV-GNLM, especially in the SJV (2200 km2; five 

times more) and TLB (2275 km2; 3.5 times more). Surprisingly, the category “urban” differ between 

the models. Urban area in the SJV accounts up to 1500 km2 in CV-GNLM, 670 km2 more than in CV-

SWAT. In the SAV and TLB on the other hand, it is CV-SWAT which models twice and three times more 

the area for this land use. Same observation can be made for “Vineyards”, diverging between the 

models and the regions. The two categories “Alfalfa” and “Barren” are the only land uses, which remain 

in the same proportion between the two models throughout the different regions.  
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Figure 8:  Comparison of categorized land use of CV-GNLM and CV-SWAT for each region in the Central Valley (A: Sacramento 
Valley; B: San Joaquin Valley; C: Tulare Lake Basin). 
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Having a closer look on each region, it points out that there are specific differences between the 

models in each region. For the Sacramento Valley, “Native Vegetation” for instance takes more than 

three times more the area in CV-SWAT than in CV-GNLM. In contrast, CV-GNLM’s area for pasture 

counts 4250 km2, whereas only 600 km2 for CV-SWAT. Furthermore, CV-GNLM models vineyards for 

roughly 1800 km2, eight times more than CV-SWAT. As already indicated in Figure 8, main cultivated 

crops in the Sacramento Valley are Rice (GNLM ~1000 km2 more than SWAT) and Deciduous Fruits and 

Nuts, with an area of ~1850 km2 respectively.  

Table 2 compares the total areas of both models and each region. This highlights how comparable the 

land use amounts are. 

Table 2: Total area of the Sacramento Valley, San Joaquin Valley and Tulare Lake Basin in the land use comparison of CV-
GNLM and CV-SWAT. 

MODEL SAV [KM2] SJV [KM2] TLB [KM2] 

CV-GNLM 17 438 16 518 17 853 
CV-SWAT 17 438 16 538 17 406 

 

The SJV longitude extend from 36°N in the very south to 38.2°N in the top with a total area of 16 518 

km2. The land use differ greatly in comparison to the SAV. For once, much less native vegetation is 

registered, whereas the area of pasture remain in the same magnitude for CV-GNLM (~3800 km2). 

Though, CV-SWAT even exceeds this area by over 1000 km2. Here it gets obvious that main cultivations 

are different for each model. For CV-SWAT, deciduous fruits and nuts (3590 km2), barren (1460 km2), 

and “Corn, Sorghum, Sudan” (1100 km2) are cultivations, occupying most areas. “Deciduous fruits and 

nuts” is also highest category for CV-GNLM (2455 km2), though it is followed by “field crops” (2210 

km2) and “grain” (1460 km2), being four times and six times higher than in CV-SWAT. “Citrus and 

Subtropical” and “Rice” play a subordinate role in this region with each less than 100 km2.  

The TLB, south of the SJV extend south to 34.9°N. Table 2 shows that the total area differ by 447 km2. 

Although on a total area of 17 853 km2 (CV-GNLM) this difference is only 2.5%, it is to be discussed 

where the difference comes from since the same total area as in the other regions was expected. 

“Citrus and Subtropical” are with an area of ~1000 km2 in both models most represented in the TLB. 

Also “Corn, Sorghum, Sudan” and “Deciduous Fruits and Nuts” are rather equally represented by the 

models (CV-SWAT ~300 km2 more). Furthermore, the nitrogen fixing grass “Alfalfa” has the highest 

area in TLB in comparison with the other regions with 1353 km2 in CV-GNLM and 847 km2 in CV-SWAT. 

Only a negligible area of 0.055 km2 is used for “Truck, Nursery and Berry Crops” in CV-GNLM. For the 

same category it is 500 km2 for CV-SWAT.  

 

4.1.2 Balance 

After comparing categorized land use distributions, a detailed analysis for specific crops was required 

in order to assess the reason for different NGW-Leaching results of the two models. As explained in the 

method, 20 crops which account for 95% of all agricultural used land were chosen for the investigation. 

The different variables were assigned to in- and outputs as elaborated in chapter 3.1.2 in Table 1. Here, 

the differences between the models for each crop are shown and characteristics of single crops are 

highlighted. For the sake of a good overview, only a few example results are shown here, whereas the 

detailed results are presented in Appendix B.  

Figure 9 illustrates the N mass balance results calculated according to equation (13) for CV-GNLM and 

CV-SWAT. The highlighted “zero” stands for the result: IN = OUT. When the N mass balance is positive, 

IN > OUT and if negative, IN < OUT. Whereas N mass balance is constantly zero for all crops for CV-
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GNLM, the balance varies in CV-SWAT. For almonds, median balance lies at 0.5 kgN/ha/yr, ranging 

from 2.6 to -1.5 kgN/ha/yr. The extent of this variation is different throughout the crops.  

 

Figure 9: Almonds N-Balance (IN - OUT including GW-leaching) for CV-GNLM and CV-SWAT. 

The variance of the balance for CV-SWAT is rather low for almonds, beans, cherries, pistachios and 

vineyards. It stands out that especially for annual crops, like carrots corn, onion and garlic, tomatoes 

and wheat the variance can range from 70 to -60 kgN/ha/yr, although the median mostly lies between 

0 – 5 kgN/ha/yr. An exception is the crop orange where the median lies at ~60 kgN/ha/yr. 

 

Figure 10: Detailed comparison between CV-GNLM and CV-SWAT of all in- and output variables for almonds. 
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To evaluate the difference between CV-GNLM and CV-SWAT, a more visible comparison between all 

the variables is displayed in Figure 10. There, one can see in more detail, how variables of the models 

differ between one another. For clarity, the bar plot divides the variables into “IN” and “OUT” to 

illustrate to which side of the balance each variable belongs. It stands out that some variables are only 

present in one model or the other. In general, N – input through atmospheric deposition or irrigation 

water is only present in CV-GNLM with the exception of beans for atmospheric deposition (here used 

also to designate plant nitrogen fixation by leguminous plants, such as beans). Same applies for 

“atmospheric loss” (being always 10% of all inputs for CV-GNLM) and whereas “runoff” is fixed to 14 

kgN/ha/yr for CV-GNLM for all crops, it is much less in CV-SWAT, though variations are observable 

throughout different crops.  Variables concerning organic N like active organic N and stable organic N 

are only present for CV-SWAT. For the example of almonds in Figure 10, both organic N sinks (active 

and stable) lie under 10 kgN/ha/yr. Another parameter only present in CV-SWAT is perennial tissue 

(“Peren. Tissue”) which lies in the case of almonds at around 38 kgN/ha/yr. This parameter varies 

significantly between the investigated crops and is in the case of carrots and sunflowers even negative 

(exemplarily for carrots seen in Figure 11.) A more detailed look on these parameters is taken in the 

next chapter.  

 

Figure 11: Detailed comparison between CV-GNLM and CV-SWAT of all in- and output variables for bean, carrot, corn and 
orange. 

Bean Carrot 

Corn Orange 
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Comparing the two models throughout all crops, it stands out that the variable “Fertilization” is the 

highest input and “Harvest” the biggest output of Nitrogen in the balance (except for “beans”). The 

other main observation being that “GW-leaching” is always higher in CV-GNLM, except for beans, oats 

and Onion & Garlic. The magnitude of difference varies throughout the crops. In the following 

paragraph detail differences between the crops will be investigated.  

For almonds (Figure 10) both models have a fertilization rate of >250 kgN/ha/yr. Though CV-GNLM 

models a much lower harvest rate (~40 kgN/ha/yr less), resulting in GW-leaching five times higher than 

in CV-SWAT. The results from beans in Figure 11Figure B - 5 stand out since it is the only crop for which 

CV-SWAT models atmospheric deposition, exceeding the amount from CV-GNLM by far. Although the 

N amount for the variable “harvest” is proportional larger as well, a surplus of N results in more GW-

leaching for CV-SWAT. “Corn” it is one of the only crop types, where CV-GNLM models higher harvest 

rates than CV-SWAT. Still more GW-leaching can be observed in CV-GNLM as seen in Figure 11. Oranges 

stand out since CV-GNLM models fertilization > 200kgN/ha/yr (50 kgN/ha/yr more than CV-SWAT), 

though lower harvest rates, resulting in high amounts of GW-leaching (CV-GNLM). On the other hand, 

CV-SWAT is modelling no GW-leaching. As mentioned before, also the balance for oranges is off by a 

median of ~60 kgN/ha/yr in CV-SWAT. For oranges and wheat grain, CV-SWT models no NGW-Leaching, 

whereas CV-GNLM not for oats. In general, NGW-Leaching is higher in CV-GNLM for most crops.  

 

4.1.3 Harvest & Fertilizer Application  

It was established in the previous chapter, that “Harvest” and “Fertilization” have the biggest impact 

on the in- and outputs of the N balance. Therefore, these two parameters will be investigated in more 

detail. Figure 12 examines the distribution of harvest rates of both models for almonds. For other 

investigated crops, results are found in Appendix B.  

 

Figure 12: Detailed analysis of N- harvest for almonds. 

For the comparison of harvest rates, it stands out that whereas CV-GNLM has one fixed value for the 

whole crop type throughout the CV, harvest rate from CV-SWAT has deviations. As elaborated before, 

harvest rates are mostly higher in CV-SWAT, confirmed by the median value. Lower deviation values 
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or extreme outliers might be lower than the one from CV-GNLM in some cases. In the case of almonds, 

NHarvest lies at 142 kgN/ha/yr whereas the median from SWAT lies at 183 kgN/ha/yr with the 1st and 3rd 

quantile being 145 and 207 kgN/ha/yr respectively. Harvest rates are higher for CV-SWAT throughout 

all crops, except for “corn” and onion & garlic.  The variance of NHarvest in CV-SWAT differ from crop to 

crop. 

Table 3 examines the fertilizer application further for both models for almonds. It gets clear that it is 

important to distinguish between the two fertilizer methods, since they can vary greatly. Although 

overall fertilization is higher in CV-GNLM (Figure 10), CV-GNLM median synthetic application is 4 

kgN/ha/yr lower than CV-SWAT’s, whereas the average is higher. Furthermore, CV-GNLM’s synthetic 

fertilizer application ranges from zero to 246 kgN/ha/y, whereas from 85 to 250 kgN/ha/yr for CV-

SWAT. Nevertheless, standard deviation and variance is much higher in CV-SWAT. Besides for beans, 

oats and vineyards where the same trend is observed, standard deviation and variance is mostly zero 

for CV-SWAT since only one fixed value is set for synthetic application (same minimum, maximum, 

median and mean value).   

Table 3: Statistical summary of different fertilizer applications (synthetic and manure) of both models for almonds. Results are 
depicted in kgN/ha/yr. 

 

Additionally, CV-SWAT has no manure applications for almonds. This applies for all investigated crops. 

Median and average manure application in CV-GNLM are 11.7 and 13.9 kgN/ha/yr respectively for 

almonds. It stands out that extreme outliers are present, the minimum being zero and maximum value 

being 3852 kgN/ha/yr. A variance of 710 kgN/ha/yr indicates a high dispersion of results. Many 

perennial crops like cherries, peaches, pistachios and vineyards have similar results for manure in CV-

GNLM. Manure results of CV-GNLM for corn and wheat application range from zero to multiple 

hundred thousand. Median application lie for both crops at 11.7 kgN/ha/yr, averages are 357.3 and 

192.6 kgN/ha/yr respectively resulting in enormous high standard deviation and variance. 

 

4.2 Adaptation  

4.2.1 New Data 

Figure 13 shows the harvest rates in kgN/ha/yr of crop type almond in CV-GNLM. The boxplot on the 

left side shows harvest rates with the new data from ACR of 2018, 2019 and 2020. On the right side 

results from the old data set is shown as known from previous graphs. As explained in previous 

chapters, harvest rates from CV-GNLM are averaged throughout a time period and the CV resulting in 

one unified value, being at 142 kgN/ha/yr for almonds. 

 

MODEL FERTILIZER MIN MAX MEDIAN MEAN SD VARIANCE 

GNLM Synthetic 0 246 246 245.5 8.7 76 

Manure 0 3851.5 11.7 13.9 26.6 710 

SWAT Synthetic 85 250 250 220.9 62.9 3957.8 

Manure 0 0 0 0 0 0 
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Figure 13: Comparison of the new and old data set for CV-GNLM harvest rates. Example almonds. 

For the new calculated harvest rates, the median value is similar to the value of the old data set. In 

fact, it is less by 6.47 kgN/ha/yr. The variance stretches from ~75 kgN/ha/yr to 200 kgN/ha/yr. Few 

outliers are noticeable above and below the whiskers (min = 18 kgN/ha/yr; max = 240 kgN/ha/yr). 

Appendix B shows the results of each crop. To make the results from all crops visible in one graph, the 

variation between N harvested [kgN/ha/yr] of the new and old data was calculated:  

If the variation results in a negative value, harvest rates are lower with the new data set and vice versa. 

Figure 14 shows the results of the variation for all crops. The “zero” line is highlighted, indicating the 

value, where harvest rates are equal. One can see that for almonds the median is slightly lower, but 

the variance can also be higher as seen in Figure 13. Similar results are seen for beans (with huge 

outliers), carrots, walnuts, and wheat. Pistachios and cotton have less variance and median value of N 

harvest rates are ~50kgN/ha/yr less with the new data set than with the old one. The same accounts 

for Onion & Garlic, though the variance is greater and reaches into a positive variation of N harvest. 

The median values for oats and oranges lie on the threshold line with an equal variance reaching to 

both sides.  
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Figure 14: Variation of harvest rates between new and old data set of CV-GNLM for all crops. 

Data adaptation resulted in an increased NHarvest for sunflowers with a small variance from the median. 

Tomatoes and vineyards results in an overall positive variation of NHarvest, though with a big variance 

and outliers. “Corn” shows an exception. The change in data and harvest conversion resulted in an 

unproportioned decrease of NHarvest by ~210 kgN/ha/yr with a variance ranging from      -320 kgN/ha/yr 

to -80 kgN/ha/yr. 

 

4.2.2 Organic Nitrogen Pools 

Different organic N pools were compared throughout different crops. Figure 15, Figure 16 and Figure 

17 illustrate N accumulation of active organic N, stable organic N and N in perennial tissue for different 

crops. Table 4 summarizes the average yearly accumulation rates for each organic pool and each crop 

represented in the graphs.  

Table 4: Average yearly accumulation of active organic N, stable organic N and perennial tissue growth for a variation of crops 
in kgN/ha/yr. 

AVG. 
ACCUMULATION 

ALMOND YOUNG 
ALMOND 

ORANGE PEACH TOMATO VINEYARD TABLE 
GRAPES 

GRAIN 

ACTIVE ORG. N 0.63 0.91 0.30 0.38 1.79 0.21 0.17 1.44 

STABLE ORG. N  5.65  7.74  2.60  3.35 10.42  1.67  1.56  7.77 

PEREN. TIS. N 38.04  5.60 12.21 56.95  6.91 17.97 22.64  4.93 

  

After 24 years, accumulation ranges from 4.3 (table grapes) to 44.85 kgN/ha (tomato). It stands out 

that the accumulation does not proceed linear, but with periods of stagnation and even depletion. 

“Grain” is a good example for this, where in the years 1994, 2004 and 2010 short periods of depletion 

are followed by a steep increase of accumulated active organic N. Young and adult almonds stagnate 

or slightly decrease from year 2001 on. Peach, orange, vineyard and table grape have very low active 
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organic N accumulation raters, yearly averages ranges from 0.17 to 0.38 kgN/ha/yr. A close look reveals 

that for these crops a stagnation is seen from year 2001 as well. Figure 16 displays accumulation of 

stable organic N in CV-SWAT over the same period. The range of total accumulation after 24 years is 

in a different magnitude, ranging from 48.93 to 260.5 kgN/ha. Though stable organic N accumulates 

much more continuous than for active organic N, it does not increase linear.  

 

Figure 15: Accumulation of active organic N in CV-SWAT over 24 years. 

 

Figure 16: Accumulation of stable organic N in CV-SWAT over 24 years. 
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The results from grain and young almonds illustrates this where young almond’s accumulation exceeds 

the one from grain in 1994 but are equal again in 2014. Average yearly accumulation ranges from 1.56 

to 10.42 kgN/ha/yr. It stands out that results after 24 years are in the same descending order for active 

and stable organic accumulation, table grapes having the lowest and tomatoes the highest 

accumulation of N. As for active organic N, also results from stable organic N show that table grapes, 

vineyards, oranges and peaches are clustered together with low accumulation rates. 

Figure 17 shows the cumulative accumulation of N in perennial tissue. Results are in a higher 

magnitude than previous results of this chapter. Lowest values is 123.16 kgN/ha for grain after 24 years 

with an average yearly increase of 4.93. Highest N accumulation in perennial tissue is seen in “Peach” 

with 1423.63 kgN/ha in 2014 (after 24yrs) with a rather linear increase of an average 56.95 kgN/ha/yr. 

Almonds have the second highest results with 951 kgN/ha (avg. of 38.04 kgN/ha/yr), followed by table 

grapes with 566 kgN/ha (avg. of 22.64 kgN/ha/yr) and vineyard with 449 kgN/ha (avg. of 17.94 

kgN/ha/yr). Grain, young almonds and tomatoes have rather low perennial tissue growth with an 

average increase between 4.93 and 6.91 kgN/ha/yr. Besides for grain and almond, graphs proceed 

rather linear.  

 

Figure 17: Accumulation of N in perennial Tissue in CV-SWAT over 24 years. 

Overall, cumulative results of different organic N pools over the period of 24 years are very different 

in magnitude. Furthermore, within the same N pool, cumulative results and yearly averages differ 

greatly throughout different crop types. These results will be discussed further on.  
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5. Discussion  

5.1 Comparison 
In the following chapter, the results from the model comparison are discussed and put in perspective.  

 

5.1.1 Land Use 

Although both models results focus on the agricultural land in the CV, they use different inputs. CV-

SWAT not only focuses on the nitrogen but on phosphorous and the entire water balance as well. 

Therefore, it includes the whole watershed which expands beyond the agricultural used land (MPEP 

Team, 2019). Since there are three major watersheds: Sacramento Valley, San Joaquin Valley and 

Tulare Lake Basin, the spatial domain was divided accordingly. Thus, the different outlines for the 

models emerge.  

To analyze the different outcomes of the land use, one needs to distinct between 1) the difference 

between the models and 2) the difference between the regions. Firstly, CV-SWAT uses land use dataset 

from a 2014 summer season, derived from the Department of Water Resources (DWR) published 2016 

(MPEP Team, 2019). CV-GNLM on the other hand compiles its land use map from varies sources, based 

on the earlier version of the “California Augmented Multisource Land cover” (CAML). For once, 

agricultural land use was obtained as well from the DWR from the years 1997 (County of Monterey) to 

2006 (County of Kern) and the Pesticide Use Report from 2008. Additional information on urban and 

natural land cover was obtained from the Farmland Mapping and Monitoring Program (FMMP) and 

the Multi-Source Land Cover (MSLC) to derive to the overall CAML 2010 (Viers et al., 2012).  

Results showed that CV-SWAT has a significant less amount of field crops and grain which are water 

intensive crops (Hattendorf et al., 1988). In Figure 18, statewide precipitation anomalies for California 

can be seen. Johnsen (2021) demonstrates that droughts return periodically and were observed back 

to 1950 (in comparison with 1990-2020 average).  

 

Figure 18: Statewide precipitation anomalies for California from 1950 - 2020 relative to 1990-2020 average (black line). From: 
(Johnson 2021). 
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Focusing on the last two decades, it stands out that in the beginning of the 2000’s no persistent 

extreme drought took place and that 2005 and 2006 were even rather wet years. The years 2010 to 

2015 on the other hand present a historic period of partly extreme droughts. Due to droughts, 

groundwater levels decline and wells are threaten to run dry. Although shallow domestic wells are 

more vulnerable, also irrigation wells are threatened to run dry or to have lower pumping capacity 

regionally (Scanlon et al., 2012; Perrone und Jasechko, 2017). Niles und Hammond Wagner (2019) 

point out that according to their survey in Yolo County, farmers are aware of the problem of 

groundwater depletion. Be it by personal conviction, environmental circumstances or governmental 

policies – many farmers changed their fruit cultivation, management strategies or irrigation technique 

in the last years to adapt to drought conditions. One can expect that the decrease in field crops and 

grain in all three regions is due to farmer’s drought adaptation. It is debatable why the most water 

intensive crop corn is even more represented in the drier San Joaquin Valley and Tulare Lake Basin in 

2014. MPEP Team (2019) show in their Appendix Table C-1 that in the Sacramento Valley corn is 

cultivated for its grain, whereas in SJV and TLB mainly for silage. There is a higher density of dairy 

corrals in central and south of CV as mentioned in table 11.101 in Harter et al. (2017) (in SJV and TLB, 

789 and 616 facilities respectively, in SAC only 130). It is assumed that farmers rely on corn for silage 

as feed source for dairy farms in these regions, explaining the increasing amount of corn cultivation in 

the SJV and TLB.  

In the Sacramento Valley, the major difference between the models is the discrepancy in “native 

vegetation” and “pasture”. One explanation could be the persistent drought which did not make it 

profitable anymore to keep vast land of pasture and return it to “native vegetation”. The discrepancy 

of the category “water” is explained by the fact that the CV-SWAT report (MPEP Team, 2019) does not 

take water with into account. “Wetlands” was established to be regarded as native vegetation as seen 

in Appendix A, Table A - 1. Therefore, area regarded as water in CV-GNLM is often counted as native 

vegetation in CV-SWAT, explaining the discrepancy partly.  Furthermore, besides in SJV, an increase in 

urban area is seen comparing CV-GNLM and CV-SWAT. One reason could be that population and 

therefore urban area has grown in the decade. Johnson et al. (2022) state though that the population 

growth of California has decreased dramatically in recent decades, indicating that it is more likely that 

the additional information to urban land use from FMMP included in CV-GNLM lead to different results 

in urban land cover. A visible example of this can be seen in Figure 7, where the “Interstate Highway 

5” is displayed in the CV-GNLM map and not in CV-SWAT.   

The general difference of crop cultivation throughout the regions in both models is explained by the 

climatic difference in the CV. The north of the Sacramento Valley is not yet heavily used by agriculture 

and gives room for more native vegetation. Rice finds best growing conditions in the more humid 

Sacramento Valley whereas deciduous trees, nuts, citrus and subtropical crops grow better in the 

warmer SJV and TLB.  

CV-SWAT has in all regions higher amounts of unfertilized land like native vegetation and barren and 

less fertilizer intensive crops as field crops and grain. One could conclude that because CV-SWAT’s 

different land use, associated with less fertilizer application, overall less N is put in the system and 

therefore potential NGW-Leaching. It was therefore  important, that further analysis of model comparison 

is carried out not in total N amounts, but area specific, meaning converted N going in or out per unit 

of area in a specific time step.  
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5.1.2 Balance 

Because both models use very different approaches to derive to amounts of N leaching to the GW, a 

N mass balance was calculated to prove its fidelity. As equations (8) and (9) point out, balance results 

for CV-GNLM were expected to be zero. Results of all crops confirmed this assumption. This is 

expected, since CV-GNLM calculates NGW-leaching based on a N mass balance as shown in equation (9). 

Therefore, the balance results in zero unavoidably (Viers et al., 2012).  

CV-SWAT on the other hand, uses extensive data, exceeding N correlated parameters like topography, 

soils and climate. Since all these parameters are decisive for plants growth and therefore N uptake, 

they all have indirect impact on the N balance. By far, not all parameters necessary for CV-SWAT were 

available. Although the CV-SWAT database contains default values for many crops, they were found to 

be partly unfitting for conditions in California. Therefore, multiple crop growth parameters, variables 

of the N dynamics and crop productivity underwent a repeating process of calibration and validation. 

A repeated process of hard data validation (comparing simulated values with observed data) and soft 

data validation (simulated values are compared to literature review) should ensure liable model results 

(MPEP Team, 2019). All N in and outputs should be accounted for. As results from Figure 9 (Almond as 

example) show, this is not the case. A median positive balance indicates more N going in than out as it 

is the case for all crops. This surprising results are difficult to explain since multiple errors can be the 

cause. Intensive research and multiple meetings and discussions with members from the MPEP team 

should exclude the possibility that the variables in Table 1, calculating CV-SWAT’s N mass balance are 

flawed. Multiple revisions of parameters and redefining variables did not solve the problem. More 

likely is the assumption that the data is still with small deviations and errors. This research was 

conducted with CV-SWAT data from 2020. It should be highlighted, that in the meantime updated and 

more recent data were implemented which should be more precise. Unfortunately, this data set could 

not be made accessible in the timeframe of this research. It would be interesting to find out if the 

outdated data set is causing the imbalance and should be investigated in future research. Another 

possible reason for the unbalance could be the manual adaptation by the MPEP team of some NHarvest 

results. Through the mentioned soft and hard data validation, the MPEP team adapted NHarvest if yield 

* conversion factor > 0.8 * NUP. Then, 0.8 * NUP is used as result for NHarvest. According to Kenneth Miller 

(personal communication, 2022), this adaptation could lead to a disparity in the N mass balance.  

Not only is the median not zero, but a high variance in the balance especially for annual crops indicate 

regional differences. The results of NHarvest showed big variances for crops in CV-SWAT as well whereas 

other values are fixed (NFertilizer). It is speculative whether there is a correlation between the variance 

of NHarvest and overall N mass balance, especially since variations are not in the same ratio (i.e. corn: N 

mass balance ranges from 39 – (-) 37 kgN/ha/yr [difference of 76], whereas harvest rate ranges from 

85 - 255 kgN/ha/yr [difference of 170]). 

Results from Figure 10 unfold the difference in structure and focus of variables between the models. 

It stands out that variables like atmospheric deposition and loss is neglected by CV-SWAT. Both 

parameters are less than 50 kgN/ha/yr for all crops (CV-GNLM), making them minor contributor for 

the N mass balance. (Robertson und Vitousek, 2009) confirm this observation. It is arguable if the 

negligence of this parameters in CV-SWAT is justifiable. On the one hand atmospheric deposition and 

loss are variables which make the model more true to nature and possibly more accurate. (Bobbink et 

al., 2010) and  (Pardo et al., 2011) state that N deposition has significant impact on plant diversity and 

will have an increasing effect on plant growth in the future with increasing pollution of N gases. On the 

other hand, atmospheric deposition through rain and air is very difficult to measure and regional 

differences are not captured from the CMAQ by EPA which has a 4km grid accuracy. Also for Natm.Loss, 

it is challenging to quantify amounts reliable. Although Harter et al. (2017) give reasonable explanation 

for atmospheric loss being 10% of all N inputs, an uncertainty remains. One could argue for CV-SWAT 
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that the focus on specifying decisive parameters is more important than including inaccurate variables 

with little impact. Since NDepostion < NAtm.Loss (in most cases), the implementation of these parameters as 

in CV-GNLM would result in a negative N mass balance. “Beans” represent an exception for this 

observation. As the results for “beans” in Figure B - 5 show higher NDepostion in CV-SWAT. This is due to 

the fact that CV-GNLM does not take N fixation through leguminous crops (like beans) with into 

account in the N mass balance. Harter et al. (2017) identify “alfalfa” and “clover” as main leguminous 

crops in the CV. “The uncertainties in the amount of N fixation by these legume crops relative to 

harvested nitrogen, and relative to (small amounts of) fertilizer nitrogen (synthetic or manure) applied, 

is too uncertain to arrive at reasonable N leaching estimates” (Harter et al., 2017, p.67). Hence, field 

measurements reported in literature for N leaching under the root zone from alfalfa and clover is used 

as final estimate for NGW-Leaching for these crops. For the sake of completeness and to be better 

comparable with CV-SWAT, it is recommended to proceed with “beans” the same way as for “alfalfa” 

and “clover”. Since only a very small amount of land use is taken by beans (<3%) (MPEP Team, 2019), 

the overall impact of NGW-Leaching is expected to be rather small. 

Another parameter solely present in CV-GNLM is N input through irrigation water. As in the theoretical 

framework explained, levels of N in irrigation water vary greatly throughout the CV and depth of the 

wells. Especially water from shallow, unconfined aquifer systems are likely to increase in future (Boyle 

et al., 2012). Although NIrrigation is less than 10 kgN/ha/yr in median for most crops, for certain regions 

especially in the SJV and TLB it could become a more relevant factor in future, hence the increasing N 

loads in GW. NRunoff results are collectively up to 10x less for CV-SWAT. For CV-GNLM the fixed value of 

14 kgN/ha/yr is taken from literature review (Viers et al., 2012) whereas CV-SWAT models runoff as a 

result of topography, soil and climate data. One can assume that especially on the regional spatial 

scale, CV-SWAT is more precise in this regard. Since this parameter varies widely, it is difficult to 

implement one value for the whole CV or for a crop type (since dependable from other parameters 

not taken into account from CV-GNLM). Since a lower NRunoff would result in more NGW-Leaching, adapting 

this variable would not result in a more precise result for NGW-Leaching. 

Organic N in- and outputs like active organic N, stable organic N and perennial tissue growth is only 
considered by CV-SWAT since these parameters are highly dependent by soil and climate and therefore 
vary spatially and temporally throughout the CV (Miller und Geisseler, 2018; Pang und Letey, 2000). 
Harter et al. (2017) assume that given the arid climate and intensive agricultural land use, accumulation 
of soil organic matter is negligible as expressed in equation (7). This assumption is further investigated, 
since organic active N, stable organic N and N in perennial tissue are N outputs in the N mass balance 
which could possibly contribute in lowering NGW-Leaching in CV-GNLM. Results of perennial tissue were 
highlighted for oats and sunflower since a negative values are observed in Figure B - 17 and Figure B - 
32. The calculation of perennial tissue assumes that all of fresh residues is mineralized again. If this is 
not the case, “F-MN” is aimed too high for the calculation of N in perennial tissue, possibly resulting in 
a negative growth of perennial tissue. In nature this is unrealistic, besides the fact that neither oats 
nor sunflowers are perennial crops in the first place.  

Figure 10 show that NHarvest and NFertilization are the most important variables in both models. This is 

noticeable not only for “almonds” but for all crop types. In the theoretical framework and methods it 

was established how both models calculate NHarvest. Identified as major components of the N mass 

balance, these variables will be investigated and further discussed in the next chapter. 

The discrepancy of NGw-Leaching between the two models for all crop types highlight once more the 

importance and need to adjust CV-GNLM’s N mass balance.  

 



 

39 
 

5.1.3 Harvest & Fertilizer Application  

Results in Figure 12 and corresponding graphs for other crops in the Appendix B show a higher variance 

of NHarvest for CV-SWAT. This is due to the fact that CV-GNLM calculates averages yield of crops through 

the CV and CV-SWAT not. Furthermore a higher median harvest rate is observed in CV-SWAT for almost 

all investigated crops. Whether the period of the obtained data and/or different conversion tools used 

for N conversion is causing this difference, is investigated further in a later chapter. Exceptions for 

general higher harvest rates in CV-SWAT are corn and onion & garlic. This is caused by the fact that in 

CV-GNLM, corn is double cropped with winter wheat in most cases, especially in the TLB (Harter et al., 

2017). Since yearly results are displayed, they include NHarvest and NFertilizer for both crops, hence results 

are higher for CV-GNLM. The same is true for onion and garlic. Whereas CV-GNLM accounts for both 

crops and add them together, CV-SWAT only takes onions with into account as seen in Appendix A, 

Table A - 1. It is stated that the MPEP Team already adjusted this in newest version of CV-SWAT and 

implemented double cropping of corn and wheat with manure application for certain areas in the CV 

(Kenneth Miller, personal communication, 2022). Therefore, it is from high interest to update this 

research with newest CV-SWAT data and to investigate whether results change.   

As pointed out in the results of Figure 10, the median overall fertilizer rate from CV-GNLM exceeds the 

one from CV-SWAT frequently. In the results major differences between NManure and NSynthetic between 

CV-GNLM and CV-SWAT are pointed out.  

NSynthetic is often found to be lower in average in CV-GNLM as in CV-SWAT. Since both models rely on 

fertilizer reports from ACR, it is expected to be due to increasing synthetic fertilizer application 

practices over the years as stated from Harter et al. (2017). It is highlighted by Harter et al. (2017) that 

NSynthetic is likely to be overestimated in CV-GNLM due to possible over reporting. As explained in the 

theoretical framework, CV-GNLM bases its synthetic fertilizer application on fertilizer sales in the 

counties. It was observed in multiple cases that sales were occasionally accounted for twice. Once 

when sold from the distributer to a “middleman” and a second times when sold to the end user. 

Although not highlighted in the reports of CV-SWAT, one can expect that the same inaccuracy accounts 

for CV-SWAT, since its synthetic fertilizer amounts are taken from ACR as well.   

The fact that CV-GNLM has higher manure application is explained by the method. How Viers et al. 

(2012) and Harter et al. (2017) derive to manure application on and off dairy cropland is elaborated in 

the theoretical framework. Crops like field crops (e.g. corn) and grain and hay crops receive high 

manure application as they receive liquid manure on dairy cropland. It is argued that significant 

amounts of those crop acreages are actually “off-dairy” and probably not using manure as fertilizer 

addition. Therefore, estimates are likely to overestimate NManure  and underestimating NSynthetic as the 

amounts get adjusted accordingly (Viers et al., 2012). NSynthtetic’s variance in CV-GNLM is explained by 

this adaptation of fertilizer application. For crops like almonds, receiving exported manure in form of 

dried and composted solids off dairy land, a higher overall fertilizer rate is observed since NManure is 

applied additionally to NSynthteic. Although it is common practice to add NSynthetic to NManure to ensure N 

availability for the crops in crucial growth periods (Harter et al., 2017), it is likely that farmers would 

adjust their application in praxis for economic and ecological reasons (Pang and Letey, 2000). It is 

therefore argued that NManure is often overestimated for field crops, grain and hay crops, perennial 

crops and alfalfa off dairy cropland.  

For all crops with NManure application a variance is recorded in CV-GNLM based on the fact that 

throughout the CV, dairy facilities are distributed unequally, being highest in the TLB (Viers et al., 2012). 

Additionally, each dairy operation has different amounts NManure available (based on the amount of life 

stock), influencing the amounts applied for each county. Because results are displayed per crop and 

not per region, mentioned crop types not only have the highest NManure application in general but also 

a high standard deviation, variance and ranges between minimum and maximum as seen in 
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corresponding tables of Table 3 for CV-GNLM (Appendix B). Because in the SAV, less dairy facilities are 

present (Viers et al. 2012), less NManure is applied here. Therefore, often less overall fertilizer is applied 

here with amount of yield being similar. Harter et al. (2017) states that as a result, nitrogen use 

efficiency (NUE) varies greatly throughout the CV in CV-GNLM, being highest in SAV (since lowest 

NManure application) which is not necessarily true in reality.  

CV-SWAT on the other hand, records no NManure application for any crop, since no parameter could be 

defined which represents this input. MPEP Team (2019) states that it takes N application rates from 

the “nitrogen use report” of 2016 with into account which includes all mineral fertilizer, manure and 

compost fertilizer and any N in irrigation water. In neither report of MPEP Team (2019) or Formation 

Environmental (2021) it gets further elaborated how NManure is implemented. Kenneth Miller (personal 

communication, 2022) states that in the updated version of CV-SWAT, double cropping of corn and 

grain for silage with NManure application was implemented. In the frame of this study, it cannot be 

investigated further, since only output data was provided and no further inside how each variable was 

defined for each crop is available.  

It is established that NManure application has significant regional differences and is often overestimated 

in CV-GNLM, whereas CV-SWAT almost neglects it completely. Although adapting NManure applications 

according to CV-SWAT would decrease NGW-Leaching, it is concluded that this would not be a justifiable 

adaptation. Viers et al. (2012) and Harter et al. (2017) put significant effort into determining NManure as 

precise as possible. Although uncertainties and inaccuracies remain, it is argued that for a majority of 

cropland, NManure is modelled closely to realistic practices. Van der Schans et al. (2009) and Harter et al. 

(2002) highlight the impact of manure application on the GW quality in irrigated agriculture. Therefore, 

it is indispensable to implement this factor for GW-leaching models.   

 

5.2 Adaptation 

5.2.1 New Data 

The implementation of more recent data from the ACR is shown exemplary for almonds in Figure 13 

(for other crops found in Appendix B), whereas Figure 14 gives an overall overview for all crops. For 

most crops, median NHarvest is lower for the new calculated values. Since the aim is to lower NGW-Leaching, 

the opposite was achieved. The high variance for the new data stands out, which is explained by the 

many different species for one crop in the USDA’s National Agricultural Statistics Service 

(https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/index.php). In the 

Appendix A, Table A - 3 lists which crop species are compared with which crop from CV-GNLM. In the 

example of “beans” nine different species get compared to the averaged NHarvest from CV-GNLM. In the 

ACR it is distinguished between yields of different species, different further processing and counties 

throughout CV. It is obvious that this leads to a high variation of N content. Geisseler (2021) 

distinguishes partly between species which is implemented in the calculation. As an example: “grapes 

raisin”, “grapes wine” and “grapes table” have different conversion rate which are taken with into 

account for the new data results, but not in CV-GNLM. Nevertheless, for most crops the median NHarvest 

does not change significantly, indicating that conversion rates of USDA’s Crop Nutrient Tool and 

conversions from Geisseler (2021) do not differ greatly. Further research in the crop nutrient tool 

reveals that values contained in the database supporting the tool are derived from various sources and 

values reflect national averages. The USDA lists as their data sources 

(https://plantsorig.sc.egov.usda.gov/npk/NutrientSources) varies nationwide research, dating from 

1959 to 2000 with many being prior to 1980. Since the research from Geisseler (2021) illustrates crop 

averages specifically from California and more recent crop yields, it is arguable that conversions with 

Geisseler’s results are more accurate. An important factor not to neglect when converting crop yields 

https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/index.php
https://plantsorig.sc.egov.usda.gov/npk/NutrientSources
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to N content is the role of moisture content in the crops. Both USDA conversion tool and Geisseler 

emphasize the moisture content of the crop yield when showing N content in amount of yield per area. 

This gets clear when comparing table grapes with raisins in Geisseler (2016) where N in table grapes is 

2.26 lbs/tons whereas N in raisins is 10.1 lbs/ton (at moisture of 15%). Through the process of drying, 

the crop becomes lighter, whereas the nutrient content stays the same, thus increasing the N content 

per weight. Mulvaney und Devkota (2020) confirm the importance of moisture content in yield/area 

data and point out that frequent mistakes are made in the conversion. Since the moisture content is 

unknown in the provided data of crop yields in ACR, the accuracy of the N conversion remains 

uncertain.  

In Figure 14, the crop corn stands out, NHarvest being significantly lower than in the new data than in the 

old CV-GNLM data set. One can take from Appendix A, Table A - 3 that in CV-GNLM “corn” is double 

cropped with grain (mostly as winter wheat). Since NHarvest displays N removed per year, N amounts in 

the yield of both crops are included in CV-GNLM whereas only different kind of corn (silage, grain & 

sweet corn) is included in the new calculated dataset. Among farmers in the CV, especially in the TLB, 

it is common practice to till a field twice a year, especially for the purpose of silage (Harter et al., 2017), 

making the setting of double cropping a realistic scenario. 

Overall, results from Figure 13 and Figure 14 show, that median yields for each crop throughout the 

CV do not differ significantly between 2005 and more recent obtained data. It is concluded that neither 

the implementation of new data, nor the conversion with Geisseler (2021) is a suitable adaptation for 

CV-GNLM to increase NHarvest amounts for crops to be better comparable with CV-SWAT. Although the 

implementation of the whole spectrum of crop yields would better reflect the variety of crop yields 

throughout the CV, it would also mean a significant increase in workload and calculation time. Since it 

is found out, that there is no significant difference between amounts of yields between the beginnings 

of the 2000’s to the 2020’s, the different result in NHarvest between CV-GNLM and CV-SWAT is concluded 

to be due to the “conversion coefficient” used by MPEP Team (2019). This coefficient was provided by 

the MPEP team, but unfortunately it is not further elaborated how the coefficient was prepared in 

neither CV-SWAT report.  

It is recommended to further investigate why the conversion coefficient result in higher NHarvest rates. 

It would be feasible to adjust NHarvest with determined yields in CV-GNLM and calculate its N content 

with the conversion coefficient, thus adjusting the NHarvest rates accordingly to CV-SWAT’s. It is assumed 

to be a reasonable solution to decrease CV-GNLM’s NGW-Leaching. In order to implement this procedure 

for historic values from CV-GNLM as well, further research is necessary to investigate if the conversion 

coefficient is applicable for historic yields in the CV.   

 

5.2.2 Organic Nitrogen Pools 

The complexity of transformation processes of organic N in soil was touched in the theoretical 

framework. Results from Figure 15, Figure 16 and Figure 17 illustrate the relevance of active organic N 

and stable organic N in the soil and N uptake from plants for perennial tissue. 

Active organic N describes the N content in soil which is in the process of transformation from fresh 

organic matter to mineralized N through microbial organisms as fungus and bacteria (Robertson and 

Vitousek, 2009). An accumulation of active organic N therefore indicates high microbial biomass and 

activity, which is regarded as an indicator of healthy soil (Doran and Parkin, 1996). Accumulation over 

24 years in the active organic N pool ranges between a maximum of 44.85 kgN/ha for tomatoes and a 

minimum of 4.3 kgN/ha for table grapes. This shows that the storage of active organic N is very crop 

dependable. That active N in soil is highly dependable of land use and agricultural management 

practices is also confirmed by Dilly et al. (2003). It stands out in Figure 15 that accumulation of active 
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organic N is highest for annual crops like tomatoes and grain. Common management practice for 

annual crops is the plowing under the soil of plant residues like roots and stems after harvest, 

increasing the organic N content in the soil. Entry et al. (1997) confirms this observation by highlighting 

the dependency of organic by-products and microbiological activity. It should be mentioned that 

microbiological activity is additionally dependable from the soil. Verberne et al. (1990) explain that the 

rate of mineralization is lower in fine texture soils. Furthermore, climate (precipitation and 

temperature) plays a key role in soil respiration, N mineralization and microbial biomass 

(Franzluebbers et al., 2001). Changing soil and climate conditions is expected to be the reason for the 

fluctuating average yearly accumulation rates for tomatoes and grain, for which in occasional years 

even a decrease in active organic N is observed. Since in this analysis only average values throughout 

the CV per crop are taken into account, regional differences of soil and climate are not visible. Note, 

that there can be significant regional differences for the accumulation of active organic N throughout 

the CV for the same crop. It stands out that from the year 2000/2001 to 2014, accumulation rates 

stagnate. This especially applies for young almonds, having highest yearly increase until 2000 but then 

decreasing and stagnating in accumulation. One attempt to explain the change in the behavior could 

be climate. Figure 18 shows that since the 2000’s, climate is increasingly becoming drier. Findings from 

Franzluebbers et al. (2001) indicate though that increasing precipitation lower soil microbial biomass, 

thus it is expected to be higher in dry conditions. Additionally, no change is observable in the rather 

wet years 2005 and 2010, indicating that change in climate is not the reason for stagnating active 

organic N accumulation for perennial crops. It remains questionable why active organic N stagnates 

for perennial crops from the year 2000 on.  

Comparing young almonds and grain illustrate that the accumulation does not proceed linear. Total 

accumulation after 24 years varies from 260.5 kgN/ha for tomatoes to 38.93 kgN/ha for table grapes, 

being in average four times higher than accumulation of active organic N. Like for active organic N, 

stable organic N is highest for annual crops (tomato and grain). This is explained by the fact that stable 

organic N is a product of active organic N as Figure 6 illustrates. It is therefore a product of the addition 

of fresh organic matter to the soil (Kelley and Stevenson, 1995). As previous stated, more organic 

matter is added to the soil yearly with annual crops for land use. Thus, it is not surprising that perennial 

crops have very low rates of N trapped in the soil. For perennial crops, no residues get plowed under 

but it is a common management practice to let plant residues like leaves and woodchips cover the soil 

to decrease water loss from soil through evaporation (Sinkevičienė et al., 2009). Because of above 

described transformation processes, this material might also accumulate as stable organic N although 

not in the same amounts than for annual crops. As Harter et al. (2017) mention, NUE is different for 

each crop and region and therefore also the N content in plant residues. Thus, N in stable organic pool 

differs depending which plant residues are applied to the soil. This applies for perennial crops as for 

annual crops alike.  

In general, the arid to semi-arid climate in the CV is not promoting high accumulation of organic 

material in the soil.  “No significant measurable increases in soil organic matter have been recorded 

over the past 65 years” (Harter et al. 2017, p.63) leads to the assumption for the CV-GNLM that N 

storage in soil is negligible. Although Figure 15 and Figure 16 show that accumulation of organic N 

(active and stable) is present in the model of CV-SWAT, yearly averages are so low that it is difficult to 

confirm yearly accumulations with measurements. Comparing active and stable organic N with other 

variables of the N – balance in Figure 10, it gets clear that they have little to no impact on the yearly 

balance and NGW-Leaching for perennial crops. Nevertheless, for annual crops, average yearly 

accumulation can exceed 10 kgN/ha/yr. Parameters like NDeposition, NAtm.Loss, NIrrigation and NRunoff have low 

impact as well but are still implemented in the N mass balance. It can be argued that the 

implementation of stable organic N for annual crops would make results more precise and should not 

be missing. This would lower NGW-Leaching, adjusting CV-GNLM more towards the results of CV-SWAT. 
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Discussing results from Figure 17, it is important to highlight that accumulation of N in perennial tissue 

are in a different magnitude than for active and stable organic N in soil, ranging from 1423.63 kgN/ha 

for peaches to 123.16 kgN/ha for grain. Accumulation over 24 years does not proceed linear. Factors 

affecting plant N uptake include type of crop, source, timing and rate of fertilizer, environmental 

factors like soil and climate and management practice (Recous et al., 1988; Raun and Johnson, 1999). 

Because all of these factors can vary even for the same crop over the CV and over the period of 24 

years, it is logical that yearly tissue growth differ between the years. Since annual crops do not have 

perennial tissue growth, it is questionable why tomato and grain have average yearly storage in tissue 

of 6.91 kgN/ha/yr and 4.93 kgN/ha/yr respectively (Table 4). Although these amounts are negligible, it 

was expected to be zero. Since perennial tissue is calculated by subtracting NUP by F-MN (plant 

residues), a possible explanation could be that NUP is partly defined too high or F-MN too low in CV-

SWAT and further calibrations are necessary. As detailed inside is missing on how these parameters 

were determined for each crop, one can only speculate that this is the reason. Since an updated version 

of CV-SWAT is already available, it can be assumed that these parameters were further revised. It is 

therefore recommended to determine perennial tissue growth for crops again when updated data is 

available. Furthermore, it stands out from Table 4 that for perennial crops, growth of perennial tissue 

differentiates widely. This is a logical consequence hence different N uptake of crops. Therefore, it is 

concluded that is vital to distinguish between different perennial crops and not summarize all 

perennial crops together. Table 4 states an average yearly N uptake in perennial tissue of 38.04 

kgN/ha/yr for almonds. If incorporated in the N-balance of CV-SWAT, this would decrease NGW-Leaching 

significantly from 90.92 kgN/ha/yr to 52.04 kg/ha/yr. It is therefore concluded, that the 

implementation of perennial tissue growth as an output of CV-GNLM’s N mass balance has the 

potential to lower NGW-Leaching for perennial crops. As crops as almonds and pistachios make up a 

substantial amount of agricultural used land in the CV (MPEP Team 2019), this adaptation could 

potentially have a significant impact of modeled NGW-Leaching throughout the CV. Since this research 

focuses on the most recent period from CV-GNLM, further research is required to find out the impact 

on groundwater leaching in the previous years. More research is needed to investigate if N uptake in 

perennial tissue from past periods are comparable with those from today. 
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6. Conclusion  
The objective was to identify key differences and parameters between CV-GNLM and CV-SWAT which 

result in the difference of modelled N leaching to GW and to work out possible adaptions for CV-GNLM, 

adjusting overestimated GW loading.  

For once, a land use analysis revealed that land use not only varies over the time period 2000 to 2016, 

but also throughout the CV. In all regions, CV-GNLM land use shows more field crops and grain due to 

adaptation to drier climate and regulations. The fact that CV-SWAT has more native vegetation and 

barren land, is assumed to be due to the same reason. As a result, CV-SWAT has less area where 

fertilizer intensive crops are grown, resulting in less total amount of N available for NGW-Leaching. Further 

analysis and comparison were therefore carried out in amounts per area per year. The difference in 

land use throughout the CV attributes to the different climate in the CV. Whereas rice can grow in the 

more humid SAV, whereas citrus and subtropical crops are cultivated in the hotter and drier TLB. Corn 

is grown in the south even though it is water intensive, for the purpose of silage to serve as feed for 

livestock.  

An N mass balance for both models indicate that CV-GNLM accounts for all in- and outputs. CV-SWAT 

records an imbalance between in- and outputs which could imply an inaccuracy for NGW-Leaching as well. 

Detailed comparison of all model parameters show that both models have different focus. Whereas 

CV-SWAT does not include NDeposition or NAtm.Loss, neither NIrrigation, CV-GNLM neglects organic N in soil 

(active and stable) and N content in perennial tissue. NFertilizer and NHarvest are identified as most 

influential N in- and outputs. A focus on these variables revealed that NHarvest shows a high variance for 

CV-SWAT due to implementation of regional differences of crop yields and species. It is discovered that 

the implementation of updated crop yields and an updated conversion of N content in crops has little 

impact on average NHarvest in CV-GNLM. Although the implementation of regional crop yields could 

increase the accuracy of CV-GNLM (regional differences in crop growth), it is not feasible for the 

adaption of historic data, since no data is available prior to 1980. Rather, it is recommended to apply 

CV-SWAT’s conversion coefficient to derive to comparable NHarvest, thus lowering significantly NGW-

Leaching of CV-GNLM. Further research is necessary, whether the conversion coefficient is applicable on 

historic data of crop yields. Separation of NFertilizer into NSynthetic and NManure revealed that higher amounts 

of NFertilizer in CV-GNLM is caused by modelled amounts of NManure. Additional NManure application on 

crops outside of dairy cropland leads to overestimation of applied NFertilizer with high variance 

throughout the CV due to regional differences of size and number of dairy facilities and exported 

manure.  

Implementation of active organic N pool in CV-GNLM is concluded to be redundant. For once, because 

of soil and climate dependency and hence significant regional differences. Second, it was found that 

even for annual crops, active organic N is less than 2 kgN/ha/yr. This amount is so low, that it is below 

measurable detection and therefore cannot be proven by field measurements. For stable organic N on 

the other hand, different results for annual and perennial crops are found. Whereas for perennial 

crops, stable organic N accumulation is small, up to over 10 kgN/ha/yr are stored as stable organic N 

for annual crop. It is argued that this could have an impact on the overall N mass balance in CV-GNLM 

and lower NGW-Leaching. Further research is recommended to investigate if this implementation applies 

for modelling historic land uses in CV-GNLM.  

Findings show that N uptake for growth of perennial tissue is a significant N output over time. For 

perennial crops like peaches, NGW-Leaching could be reduced by up to 56 kgN/ha/yr. Although this 

adaption only has an impact on perennial crops, it is expected to have a high impact since large 

amounts of land use are used by perennial crops like almonds and pistachios in the CV. For future 

research it is recommended to establish average yearly N uptake of perennial tissue for each perennial 
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crop with most recent output data from CV-SWAT available. Hence these results are derived from 

modeled parameters based on recent obtained data, it is recommended to further study if this 

implementation is applicable for historic data. If confirmed, this adaptation has high potential of 

adjusting NGW-Leaching from CV-GNLM closer to results from CV-SWAT for the majority of agricultural 

used land in the CV.  

In conclusion, following list clarifies the recommendations for further research and implementation in 

CV-GNLM 

 Update to most recent data (2018-2021) not necessary 

 Implementation of active organic N is redundant 

 Implementing CV-SWATs conversion coefficient in CV-GNLM conversion from crop yield to 

NHarvest 

 Implementation of stable organic N for annual crops 

 Implementation of N uptake in tissue for perennial crops  

 Merged together as parameter “organic N”  

 Further research required, finding out the impact on NGW-Leaching in previous years 

These recommendations have high potential of adjusting results from CV-GNLM. Higher outputs of 

harvest and organic N results in lower NGW-Leaching. Therefore, results of CV-GNLM and CV-SWAT match 

better and are more comparable. 
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Appendix A: Land Use 
 

Table A - 1: Comparison of CV-GNLM and CV-SWAT land cover types, overall categorization and indicator if CV-GNLM land use is driven by dairy sources (0=no; 1=liquid manure on dairy cropland; 
2=solid manure off dairy cropland). 

CAML 
CODE/GNLM 

RASTER VALUE 

DWR/CAML/GNLM 
LAND COVER TYPE 

GNLM: 
LUDRIVEN N 

SOURCE_DAIRY 

CAML ALSO IN 
DWR 2014 LAND 

USE SURVEY? 

CIG-MPEP CV-SWAT 
LAND COVER TYPE 

("CROP2014_FINAL") 

CIG-MPEP CV-
SWAT RASTER 

TERM 

GROUPED CLASSIFICATION 

0 No data 0 No     No data 

500 No Access 0 No     No data 

1440 Not surveyed 0 No     No data 

2161 (Unknown referent) 0 No     No data 

2600 Out of area 0 No     No data 

1 Urban (backcasted) 0 No Urban URML Urban 

53 Urban 0 Yes Urban URML Urban 

2027 Greenhouse 0 No Urban URML Urban 

2100 Urban 0 Yes Urban URML Urban 

2110 Commercial 0 No Urban URML Urban 

2111 Offices 0 No Urban URML Urban 

2112 Hotels 0 No Urban URML Urban 

2113 Motels 0 No Urban URML Urban 

2114 RV Parking 0 No Urban URML Urban 

2115 Institutions 0 No Urban URML Urban 

2116 Schools 0 No Urban URML Urban 

2117 Municipal buildings 0 No Urban URML Urban 

2118 Miscellaneous high 
water use 

0 No Urban URML Urban 

2120 Industrial 0 No Urban URML Urban 
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2121 Manufacturing 0 No Urban URML Urban 

2122 Extractive Industries 0 No Urban URML Urban 

2123 Storage and 
distribution 

0 No Urban URML Urban 

2126 Saw Mills 0 No Urban URML Urban 

2127 Oil refineries 0 No Urban URML Urban 

2128 Paper mills 0 No Urban URML Urban 

2129 Meat Packing Plants 0 No Urban URML Urban 

2130 Urban landscape 0 Yes Urban URML Urban 

2131 Lawn - irrigated 0 No Urban URML Urban 

2132 Golf course 0 No Urban URML Urban 

2133 Ornamental 
landscape 

0 No Urban URML Urban 

2134 Cemeteries - 
irrigated 

0 No Urban URML Urban 

2135 Cemeteries - non-
irrigated 

0 No Urban URML Urban 

2140 Residential 0 No Urban URML Urban 

2141 Single family > 1 
acre 

0 No Urban URML Urban 

2142 Single family 1-8 
units/acre 

0 No Urban URML Urban 

2143 Multiple family 0 No Urban URML Urban 

2144 Trailer Courts 0 No Urban URML Urban 

212910 Steel mill 0 No Urban URML Urban 

212911 Fruit and Vegetable 
cannery 

0 No Urban URML Urban 

212912 Miscellaneous high 
water use 

0 No Urban URML Urban 
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212913 Sewage treatment 
plant 

0 No Urban URML Urban 

212914 Waste accumulation 
sites 

0 No Urban URML Urban 

212915 Wind farms/solar 
farms 

0 No Urban URML Urban 

2 Natural Vegetation 
(backcasted) 

0 No Range Grass RNGE Native Vegetation 

4 Alkali Desert Scrub 0 No Range Grass RNGE Native Vegetation 

5 Aspen 0 No Evergreen Forest FRSE Native Vegetation 

7 Bitterbrush 0 No Range Grass RNGE Native Vegetation 

8 Blue Oak-Foothill 
Pine 

0 No Pine Trees PINE Native Vegetation 

9 Blue Oak Woodland 0 No Evergreen Forest FRSE Native Vegetation 

10 Coastal Oak 
Woodland 

0 No Evergreen Forest FRSE Native Vegetation 

11 Closed-Cone Pine-
Cypress 

0 No Pine Trees PINE Native Vegetation 

12 Chamise-Redshank 
Chaparral 

0 No Range - Brush RNGB Native Vegetation 

13 Coastal Scrub 0 No Range - Brush RNGB Native Vegetation 

14 Douglas-Fir 0 No Pine Trees PINE Native Vegetation 

15 Desert Riparian 0 No Wetlands WETL Native Vegetation 

17 Desert Scrub 0 No Range - Brush RNGB Native Vegetation 

18 Desert Succulent 
Shrub 

0 No Range - Brush RNGB Native Vegetation 

20 Eastside Pine 0 No Pine Trees PINE Native Vegetation 

22 Freshwater 
Emergent Wetland 

0 No Wetlands WETL Native Vegetation 



 

54 
 

24 Jeffrey Pine 0 No Pine Trees PINE Native Vegetation 

25 Joshua Tree 0 No Pine Trees PINE Native Vegetation 

26 Juniper 0 No Evergreen Forest FRSE Native Vegetation 

27 Klamath Mixed 
Conifer 

0 No Evergreen Forest FRSE Native Vegetation 

29 Lodgepole Pine 0 No Pine Trees PINE Native Vegetation 

30 Low Sage 0 No Range - Brush RNGB Native Vegetation 

32 Mixed Chaparral 0 No Range - Brush RNGB Native Vegetation 

34 Montane Chaparral 0 No Range - Brush RNGB Native Vegetation 

35 Montane 
Hardwood-Conifer 

0 No Evergreen Forest FRSE Native Vegetation 

36 Montane Hardwood 0 No Evergreen Forest FRSE Native Vegetation 

37 Montane Riparian 0 No Wetlands WETL Native Vegetation 

40 Pinyon-Juniper 0 No Range - Brush RNGB Native Vegetation 

41 Palm Oasis 0 No Range - Brush RNGB Native Vegetation 

42 Ponderosa Pine 0 No Pine Trees PINE Native Vegetation 

44 Redwood 0 No Evergreen Forest FRSE Native Vegetation 

45 Red Fir 0 No Evergreen Forest FRSE Native Vegetation 

48 Subalpine Conifer 0 No Evergreen Forest FRSE Native Vegetation 

49 Saline Emergent 
Wetland 

0 No Wetlands WETL Native Vegetation 

50 Sagebrush 0 No Range - Brush RNGB Native Vegetation 

51 Sierran Mixed 
Conifer 

0 No Evergreen Forest FRSE Native Vegetation 

55 Valley Oak 
Woodland 

0 No Evergreen Forest FRSE Native Vegetation 

56 Valley Foothill 
Riparian 

0 No Evergreen Forest FRSE Native Vegetation 

58 White Fir 0 No Evergreen Forest FRSE Native Vegetation 
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59 Wet Meadow 0 No Evergreen Forest FRSE Native Vegetation 

62 Undetermined 
Shrub Type 

0 No Range - Brush RNGB Native Vegetation 

63 Undetermined 
Conifer Type 

0 No Range - Brush RNGB Native Vegetation 

77 Eucalyptus 0 No Range - Brush RNGB Native Vegetation 

310 Eucalyptus 0 No Range - Brush RNGB Native Vegetation 

1420 Native Vegetation 
(unsegregated) 

0 No Range Grass RNGE Native Vegetation 

1430 Riparian Vegetation 0 No Wetlands WETL Native Vegetation 

1431 Riparian Marsh 0 No Wetlands WETL Native Vegetation 

1432 Riparian Meadow 0 No Wetlands WETL Native Vegetation 

1433 Riparian Tree 0 No Wetlands WETL Native Vegetation 

1434 Riparian seasonal 
duck marsh 

0 No Wetlands WETL Native Vegetation 

1435 Riparian permanent 
duck marsh 

0 No Wetlands WETL Native Vegetation 

1450 Native Vegetation 0 No Range - Brush RNGB Native Vegetation 

1452 Light Brush 0 No Range - Brush RNGB Native Vegetation 

1453 Medium Brush 0 No Range - Brush RNGB Native Vegetation 

1454 Heavy Brush 0 No Range - Brush RNGB Native Vegetation 

1455 Brush and Timber 0 No Range - Brush RNGB Native Vegetation 

1456 Forest 0 No Evergreen Forest FRSE Native Vegetation 

3 Annual Grassland 0 No Non Irrigated Pasture PASN† Pasture 

39 Perennial Grassland 0 No Non Irrigated Pasture PASN† Pasture 

72 Non-Irrigated 
Pasture 

0 No Non Irrigated Pasture PASN† Pasture 

1451 Grassland 0 No Non Irrigated Pasture PASN† Pasture 

1457 Oak grassland 0 No Non Irrigated Pasture PASN† Pasture 
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1600 Pasture 1 Yes Pasture PAST Pasture 

1414 Salt Flats 0 No Barren BARR Barren 

1415 Sand dunes 0 No Barren BARR Barren 

2150 Vacant 0 No Barren BARR Barren 

1603 Mixed pasture 1 Yes Low Productive 
Pasture; Moderate 
Pasture; High 
Productive Pasture, 
Grass 

PASL†;PASM†; 
PASI†; HAY 

Pasture 

1604 Native Pasture 0 No Non Irrigated Pasture PASN† Pasture 

1605 Induced high water 
table native pasture 

0 No Non Irrigated Pasture PASN† Pasture 

1606 Miscellaneous 
grasses 

0 No Non Irrigated Pasture PASN† Pasture 

1607 Turf farms 0 No Low Productive 
Pasture; Moderate 
Pasture; High 
Productive Pasture 

PASL†;PASM†; 
PASI†; 

Pasture 

6 Barren 0 No Barren BARR Barren 

901 Idle – Cropped Past 
3 Years 

0 Yes Idle BARR Barren 

902 Idle – New Lands 0 Yes Idle BARR Barren 

1410 Barren and 
Wasteland 

0 No Idle BARR Barren 

1411 Dry stream channels 0 No Idle BARR Barren 

1412 Mine Tailings 0 No Idle BARR Barren 

1413 Barren Land 0 No Idle BARR Barren 

2151 Unpaved 0 No Idle BARR Barren 

2152 Vacant unlisted 0 No Idle BARR Barren 
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2153 Railroad right of way 0 No Idle BARR Barren 

2154 Paved areas 0 No Idle BARR Barren 

2156 Airport runways 0 No Idle BARR Barren 

19 Desert Wash 0 No Idle BARR Water 

21 Estuarine 0 No Managed Wetland WETL Water 

28 Lacustrine 0 No Managed Wetland WETL Water 

31 Marine 0 No Managed Wetland WETL Water 

43 Riverine 0 No Managed Wetland WETL Water 

57 Water 0 No Managed Wetland WETL Water 

1460 Water Surface 0 No Managed Wetland WETL Water 

1461 River 0 No Managed Wetland WETL Water 

1462 Water channel 0 No Managed Wetland WETL Water 

1464 Freshwater lake, 
reservoir 

0 No Managed Wetland WETL Water 

1465 Brackish water 0 No Managed Wetland WETL Water 

300 Citrus and 
Subtropical (Also 
Miscellaneous 
subtropical and 
jojoba) 

2 Yes Citrus (per Table 4) ORAN** Citrus and Subtropical 

301 Grapefruit 2 No Citrus ORAN** Citrus and Subtropical 

302 Lemons 2 No Citrus ORAN** Citrus and Subtropical 

303 Oranges 2 No Citrus ORAN** Citrus and Subtropical 

304 Dates 0 Yes Citrus (per Table 4) ORAN** Citrus and Subtropical 

305 Avocados 2 Yes Citrus (per Table 4) ORAN** Citrus and Subtropical 

306 Olives 2 Yes Olives OLIV Citrus and Subtropical 

308 Kiwis 2 Yes Kiwis GRAK† Citrus and Subtropical 
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400 Deciduous Fruits 
and Nuts 

2 Yes Almonds (see Table 4: 
Miscellaneous 
Deciduous) 

ALMD Decidious Fruits and Nuts 

401 Mixed deciduous 
(Apples) 

2 Yes Apple APPL Decidious Fruits and Nuts 

402 Apricots 2 Yes Plums, Prunes and 
Apricots 

ALML Decidious Fruits and Nuts 

403 Cherries 2 Yes Cherries ALMC* Decidious Fruits and Nuts 

405 Peaches and 
Nectarines 

2 Yes Peaches and 
Nectarines 

ALMP* Decidious Fruits and Nuts 

406 Pears 2 Yes Apple (see Table 4: 
Pears) 

APPL Decidious Fruits and Nuts 

407 Plums 2 Yes Plums, Prunes and 
Apricots 

ALML* Decidious Fruits and Nuts 

408 Prunes 2 Yes Plums, Prunes and 
Apricots 

ALML Decidious Fruits and Nuts 

409 Figs 2 No Bush Berries AGBR** Decidious Fruits and Nuts 

412 Almonds 2 Yes Almonds; Almonds 
Young 

ALMD; ALMY Decidious Fruits and Nuts 

414 Pistachios 2 Yes Pistachios ALMI* Decidious Fruits and Nuts 

413 Walnuts 2 Yes Walnuts WALN Decidious Fruits and Nuts 

600 Field Crops (includes 
Flax, Hops, Castor 
Beans, 
Miscellaneous Field, 
and Millet) 

1 Yes Corn, Sorghum and 
Sudan (see Table 4: 
Miscellaneous Field 
Crops) 

CORN Field Crops 

601 Cotton 1 Yes Cotton COTS Field Crops 

602 Safflower 2 Yes Safflower SUNS* Field Crops 

605 Sugar Beets 1 No Bush Berries AGBR** Field Crops 
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610 Beans (dry) 2 Yes Beans (dry) PTBB** Field Crops 

612 Sunflowers 1 Yes Sunflower SUNF Field Crops 

606 Corn (Field and 
Sweet) 

1 Yes Corn CORN "Corn, Sorghum, Sudan" 

607 Grain sorghum 1 No Corn CORN "Corn, Sorghum, Sudan" 

608 Sudan 1 No Corn CORN "Corn, Sorghum, Sudan" 

700 Grain and Hay 
(includes 
miscellaneous) 

1 Yes Miscellaneous Grain 
and Hay 

HAY Grain 

701 Barley 1 No Miscellaneous Grain 
and Hay 

HAY Grain 

702 Wheat 1 Yes Winter Wheat WWHT Grain 

703 Oats 1 No Miscellaneous Grain 
and Hay 

HAY Grain 

1601 Alfalfa 2 Yes Alfalfa ALFA† Alfalfa 

1602 Clover 2 No Alfalfa ALFA† Alfalfa 

1901 Farmstead (with 
residence) 

0 No Urban URML Semiagricultural and Incidental to 
Agriculture 

1902 Livestock feedlot 
operation 

0 No Urban URML Semiagricultural and Incidental to 
Agriculture 

1903 Dairy farm 0 No Urban URML Semiagricultural and Incidental to 
Agriculture 

1904 Poultry farm 0 No Urban URML Semiagricultural and Incidental to 
Agriculture 

1905 Farmstead (without 
residence) 

0 No Urban URML Semiagricultural and Incidental to 
Agriculture 
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2000 Truck,Nursery, 
Berry Crops 
(includes cole mix, 
mixed, and misc. 
truck crops) 

2 Yes Pepper (see Table 4: 
Miscellaneous Truck 
Crops) 

PEPP "Truck, Nursery, and Berry Crops" 

2001 Artichokes 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2002 Asparagus 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2003 Beans (green) 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2006 Carrots 2 Yes Carrots CRRT "Truck, Nursery, and Berry Crops" 

2007 Celery 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2008 Lettuce 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2009 Melons, squash, 
cucumbers 

2 Yes Melons, Squash and 
Cucumbers 

CUCM "Truck, Nursery, and Berry Crops" 

2010 Onions and garlic 2 Yes Onions ONIO "Truck, Nursery, and Berry Crops" 

2011 Peas 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2012 Potatoes 2 Yes Potatoes and Sweet 
Potatoes 

POTA "Truck, Nursery, and Berry Crops" 

2013 Sweet Potatoes 2 Yes Potatoes and Sweet 
Potatoes 

POTA "Truck, Nursery, and Berry Crops" 

2014 Spinach 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2015 Tomatoes 
(processing) 

2 Yes Tomato TOMA "Truck, Nursery, and Berry Crops" 

2016 Flowers, nursery, 
Christmas tree 
farms 

0 Yes Flowers, Nursery, and 
Christmas Tree Farms 

MAPL** "Truck, Nursery, and Berry Crops" 

2019 Bush berries 2 Yes Bush Berries AGBR** "Truck, Nursery, and Berry Crops" 

2020 Strawberries 2 Yes Pepper (see Table 4: 
Strawberries) 

PEPP "Truck, Nursery, and Berry Crops" 

2021 Peppers 2 Yes Peppers PEPP "Truck, Nursery, and Berry Crops" 

2022 Broccoli 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 
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2023 Cabbage 2 No Cabbage CABG "Truck, Nursery, and Berry Crops" 

2024 Cauliflower 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

2025 Brussels Sprouts 2 No Lettuce/Leafy Greens LETT "Truck, Nursery, and Berry Crops" 

1800 Rice (includes rice & 
wild rice subclasses) 

2 Yes Rice; Wild Rice RICE; RICW Rice 

2200 Vineyards (includes 
table grapes, wine 
grapes, and raisins) 

2 No Grape High Tonnage; 
Grape Low Tonnage; 
Table Grape 

GRAH†; 
GRAL†; GRAT† 

Vineyards 
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Land use conversion coefficient for CV-SWAT 

Table A - 2: Conversion coefficient from yield to N content for crops in CV-SWAT. 

LAND USE CODE (CV-SWAT) CONVERSION FACTOR 

AGRB 15.91 
AGRC 25 
AGRL 19.9 
AGRR 14 
ALFA 30 
ALMC 12.5 
ALMD 19 
ALMI 26.6 
ALML 11.25 
ALMP 11 
ALMY 22.5 
APPL 4.4 
ASPR 63 
BANA 6.4 
BARL 21 
BARR 23.4 
BBLS 16 
BERM 23.4 
BLUG 16 
BROC 51.2 
BROM 23.4 
BROS 23.4 
CABG 29.09 
CANA 38 
CANP 38 
CANT 20 
CASH 1.9 
CASS 24.6 
CAUF 41.1 
CELR 19.9 
CLVA 60 
CLVR 65 
CLVS 65 
COCB 65 
COCO 1.5 
COCT 1.15 
COFF 1.5 
CORN 14 
COTP 23.3 
COTS 23.3 
CRRT 17 
CSIL 14 
CUCM 21.9 
CWDC 12.75 
CWDW 17 
CWGR 50 
CWPS 42.7 
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CWRC 12.75 
CWRW 17 
DCWH 14 
DLFA 30 
DWHT 26.3 
EGAM 16 
EGGP 21.8 
EUCA 1.9 
FESC 23.4 
FLAX 40 
FPEA 37 
FRSD 1.5 
FRSE 1.5 
FRST 1.5 
GRAH 7 
GRAK 8.33 
GRAL 20 
GRAL 21.25 
GRAP 20 
GRAR 1.5 
GRAT 7 
GRBN 29.9 
GRSG 19.9 
HAY 17.7 
HMEL 7.1 
INDN 16 
JHGR 20 
LBLS 16 
LENT 50.6 
LETT 30 
LIMA 36.8 
MAPL 8 
MESQ 1.5 
MINT 13.5 
MUNG 42 
OAK 1.5 
OATS 31.6 
OILP 1.9 
OLIV 13 
ONIO 15 
ORAN 11 
ORCD 1.9 
ORCP 13.076 
PAPA 500 
PART 65 
PASI 23 
PASL 23 
PASM 23 
PASN 23 
PASO 23 
PAST 23 
PEAS 41 
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PEPP 21.25 
PEPR 18.8 
PINE 1.5 
PINP 6.4 
PLAN 6.4 
PMIL 20 
PNUT 50.5 
POPL 1.5 
POTA 17 
PTBB 180 
PTBN 65 
RADI 13.5 
RICE 13.6 
RICW 13.6 
RNGB 16 
RNGE 16 
RUBR 1.9 
RYE 28.4 
RYEA 23 
RYEG 22 
RYER 23 
SCRN 21.4 
SEPT 23.4 
SESB 65 
SGBT 13 
SGHY 19.9 
SIDE 16 
SOYB 65 
SPAS 23.4 
SPIN 54.3 
SPOT 9.7 
STRW 11.6 
SUGC 0 
SUNF 45.4 
SUNS 30 
SWCH 16 
SWGR 50 
SWHT 23.4 
SWRN 16 
TEFF 23.4 
TIMO 23.4 
TOBC 14 
TOMA 24 
WALN 16.36 
WATR 0 
WBAR 25 
WETF 1.5 
WETL 16 
WETN 16 
WILL 1.5 
WMEL 11.7 
WPAS 23.4 
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WWGR 50 
WWHT 24.22 

 

Selection of crops 

Table A - 3: Selection of compared crops and their corresponding codes in each model. 

CROPS GNLM-OLD (LU 
CODE) 

GNLM-NEW SWAT 

1. ALMONDS 412 ALMOND HULLS 
ALMONDS ALL 

ALMD; ALMY 

2. PISTACHIOS 414 PISTACHIOS ALMI* 
3. TOMATOES 2015 TOMATOES FRESH MARKET 

TOMATOES PROCESSING 
TOMATOES UNSPECIFIED 

TOMA 

4. WALNUTS 413 WALNUTS ENGLISH WALN 
5. VINEYARDS 
(WINE, TABLE & RAISIN 
GRAPES)  

2200 GRAPES RAISIN 
GRAPES TABLE 
GRAPES WINE 
GRAPES UNSPECIFIED 

GRAH†; GRAL†; GRAT† 

6. ORANGES 303 ORANGES NAVEL 
ORANGES VALENCIA 
ORANGES UNSPECIFIED 

ORAN** 

7. COTTON 601 COTTON LINT PIMA 
COTTON LINT UNSPECIFIED 
COTTON LINT UPLAND 
COTTON SEED PLANTING 
COTTONSEED 

COTS 
 No results 

 

8. CORN (SILAGE) 606 (Corn & 
Grain) 
608 (Corn, Sudan, 
Grain) 

CORN GRAIN 
CORN SILAGE 
CORN SWEET ALL 

CORN 

9. WHEAT (SILAGE)   SILAGE 
SORGHUM SILAGE 

 

10. ONION & GARLIC 2010 GARLIC ALL 
ONIONS 
ONIONS GREEN & SHALLOT 

ONIO 

11. MANDARINS -  TANGERINES & MANDARINS  
12. BEANS 610 BEANS BLACKEYE (PEAS) 

BEANS DRY EDIBLE UNSPECIFIED 
BEANS FAVA 
BEANS FRESH UNSPECIFIED 
BEANS LIMA BABY DRY 
BEANS LIMA LARGE DRY 
BEANS LIMA UNSPECIFIED 
BEANS SEED 
BEANS SNAP UNSPECIFIED 

PTBB** 

13. PEACHES 405 PEACHES CLINGSTONE 
PEACHES FREESTONE 
PEACHES UNSPECIFIED 

ALMP* 

14. WHEAT GRAIN 702 (Wheat) 
700 (Grain & Hay) 

WHEAT ALL 
WHEAT SEED 

WWHT 

15. CARROT 2006 CARROTS FOOD SERVICE 
CARROTS FRESH MARKET 
CARROTS PROCESSING 
CARROTS UNSPECIFIED 

CRRT 

16. SUNFLOWER  612 SUNFLOWER SEED PLANTING SUNF 
17. POMEGRANATES -  POMEGRANATES  
18. OATES 703 OATS GRAIN HAY 
19. NECTARINES -  NECTARINES ALMP* 
20. CHERRIES 403 CHERRIES SWEET ALMC* 
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Appendix B: Crop Results 

Almonds 

Balance 

 

Figure B - 1: Boxplot N mass balance comparison - Almonds. 

Comparison 

 

Figure B - 2: Variable comparison - Almonds. 
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Harvest  

 

Figure B - 3: Boxplot of harvest rates comparison - Almonds. 

 

Application 

Table B - 1: Statistical analysis of fertilizer application - Almonds. 
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Beans 

Balance 

 

Figure B - 4: Boxplot N mass balance comparison - Beans. 

 

Comparison 

 

Figure B - 5: Variable comparison - Beans. 
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Harvest 

 

Figure B - 6: Boxplot of harvest rates comparison - Beans. 

 

 

Application 

Table B - 2: Statistical analysis of fertilizer application - Beans. 
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Carrots 

Balance 

 

Figure B - 7: Boxplot N mass balance comparison - Carrots. 

 

Comparison 

 

Figure B - 8: Variable comparison - Carrots. 
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Harvest 

 

Figure B - 9: Boxplot of harvest rates comparison - Carrots. 

 

 

Application 

Table B - 3: Statistical analysis of fertilizer application - Carrots. 
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Cherries 

Balance 

 

Figure B - 10: Boxplot N mass balance comparison - Cherries. 

 

Comparison 

 

Figure B - 11: Variable comparison - Cherries. 
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Harvest 

 

Figure B - 12: Boxplot of harvest rates comparison - Cherries. 

 

 

Application 

Table B - 4: Statistical analysis fertilizer application - Cherries. 
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Corn 

Balance 

 

Figure B - 13: Boxplot N mass balance comparison - Corn. 

 

Comparison 

 

Figure B - 14: Variable comparison - Corn. 
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Harvest 

 

Figure B - 15: Boxplot of harvest rates comparison - Corn. 

 

 

Application 

Table B - 5: Statistical analysis fertilizer application - Corn. 
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Oats 

Balance 

 

Figure B - 16: Boxplot N mass balance comparison - Oats. 

 

Comparison 

 

Figure B - 17: Variable comparison - Oats. 
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Harvest 

 

Figure B - 18: Boxplot of harvest rates comparison - Oats. 

 

 

Application 

Table B - 6: Statistical analysis fertilizer application - Oats. 
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Onion & Garlic 

Balance 

 

Figure B - 19: Boxplot N mass balance comparison - Onion & Garlic. 

 

Comparison 

 

Figure B - 20: Variable comparison - Onion & Garlic. 
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Harvest 

 

Figure B - 21: Boxplot of harvest rates comparison - Onion & Garlic. 

 

 

Application 

Table B - 7: Statistical analysis fertilizer application - Onion & Garlic. 
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Oranges 

Balance 

 

Figure B - 22: Boxplot N mass balance comparison - Oranges. 

 

Comparison 

 

Figure B - 23: Variable comparison - Oranges. 
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Harvest 

 

Figure B - 24: Boxplot of harvest rates comparison - Oranges. 

 

 

Application 

Table B - 8: Statistical analysis fertilizer application - Oranges. 
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Peaches 

Balance 

 

Figure B - 25: Boxplot N mass balance comparison - Peaches. 

 

Comparison 

 

Figure B - 26: Variabel comparison - Peaches. 
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Harvest 

 

Figure B - 27: Boxplot of harvest rates comparison - Peaches. 

 

 

Application 

Table B - 9: Statistical analysis fertilizer application - Peaches. 
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Pistachios 

Balance 

 

Figure B - 28: Boxplot N mass balance comparison - Pistachios. 

 

Comparison 

 

Figure B - 29: Variable comparison - Pistachios. 
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Harvest

 

Figure B - 30: Boxplot of harvest rates comparison - Pistachios. 

 

 

Application 

Table B - 10: Statistical analysis fertilizer application - Pistachios. 
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Sunflower 

Balance 

 

Figure B - 31: Boxplot N mass balance comparison - Sunflower. 

Comparison 

 

Figure B - 32: Variable comparison - Sunflowers. 
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Harvest 

 

Figure B - 33: Boxplot of harvest rates comparison – Sunflower.  

 

 

Application 

Table B - 11: Statistical analysis fertilizer application - Sunflower. 
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Tomatoes 

Balance 

 

Figure B - 34: Boxplot N mass balance comparison - Tomatoes. 

 

Comparison 

 

Figure B - 35: Variable comparison - Tomatoes. 
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Harvest 

 

Figure B - 36: Boxplot of harvest rates comparison – Tomatoes. 

 

 

Application 

Table B - 12: Statistical analysis fertilizer application - Tomatoes. 
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Vineyards 

Balance 

 

Figure B - 37: Boxplot N mass balance comparison - Vineyards. 

 

Comparison 

 

Figure B - 38: Variable comparison - Vineyards. 
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Harvest 

 

Figure B - 39: Boxplot of harvest rates comparison – Vineyards. 

 

 

Application 

Table B - 13: Statistical analysis fertilizer application - Vineyards. 
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Walnuts 

Balance 

 

Figure B - 40: Boxplot N mass balance comparison - Walnuts. 

 

Comparison 

 

Figure B - 41: Variable comparison – Walnuts. 
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Harvest 

 

Figure B - 42: Boxplot of harvest rates comparison – Walnuts. 

 

 

Application 

Table B - 14: Statistical analysis fertilizer application - Walnuts. 
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Wheat – Grain 

Balance 

 

Figure B - 43: Boxplot N mass balance comparison - Wheat - Grain. 

 

Comparison 

 

Figure B - 44: Variable comparison - Wheat-Grain. 
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Harvest 

 

Figure B - 45: Boxplot of harvest rates comparison – Wheat-Grain. 

 

 

Application 

Table B - 15: Statistical analysis fertilizer application - Wheat-Grain. 
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