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ALBERT LUDWIGS UNIVERSITY FREIBURG

Abstract
Faculty of Environment and Natural Resources

Department of Hydrology

Master of Science

Assessing Climate Impacts Against Groundwater Pumping Impacts on Stream
Flow with Statistical Analysis

by Jonas PYSCHIK

Declining summer streamflow is observed in Pacific Northwest catchments, impact-
ing endangered salmon species which need sufficient flow to reach their spawn-
ing grounds. Groundwater pumping for irrigation is generally considered to cause
lower summer flow. However, it is unclear, how much water is lost due to water
use or climatic factors, as there often is no data on pumping-volume. In this study
we assess the lost amount of streamflow during summer low flows and quantify the
shares attributable to climate change and agricultural water-consumption, only us-
ing streamflow data. As a case study we focused on the Scott River catchment, Cal-
ifornia, having 7% agricultural land use. We compared summer streamflow, snow
water equivalent and precipitation betweenhistoric (pre-development: 1940-1976),
intermediate (post-development: 1977-1999), and modern (potential mega-drought:
2000-2020) timeframes. Snow water equivalent showed negative significant trends
at lower elevations (1600-1800 m). We also observed significant negative trends in
mean and minimum streamflow as well as earlier starting and longer lasting low
flow season. Using a paired-basin approach we were able to detect a mean 38.5%
(37.5 +/- 3 Mm³) streamflow decrease from historic to modern timeframe years,
where 14.6% (14.25 +/- 1.4 Mm³) were attributable to increased agricultural water
consumption and 23.9% (23.2 +/- 1.4 Mm³) to climate change. These results demon-
strate that agriculture substantially impacts streamflow; however, the influence of
climate change dominates. Therefore, base flow restoration during the critical dry
period cannot be achieved by pumping curtailments alone. A possibility to ensure
enough flow for endangered salmon could be artificial aquifer recharge during high
flows to top of low flow season.

Keywords: Streamflow, Climate Change, Groundwater, Agriculture, Snow, Califor-
nia
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Abstract German

In den Einzugsgebieten des pazifischen Nordwestens wird ein abnehmender Som-
merabfluss beobachtet, der sich auf gefährdete Lachsarten auswirkt, welche genü-
gend Abfluss benötigen, um ihre Laichgründe zu erreichen. Grundwasserpumpen
zur Bewässerung werden als Ursache für niedrige Sommerabflüsse aufgeführt. Un-
klar ist allerdings, wie viel Wasser durch Wasserverbrauch oder klimatische Fak-
toren verloren geht, da es oft keine Daten zum Wasserverbrauch durch landwirt-
schaftliche Pumpen gibt. In dieser Studie ermitteln wir die verlorene Menge an
Abfluss während sommerlicher Niedrigwassermengen und quantifizieren die An-
teile, die auf den Klimawandel und den landwirtschaftlichen Wasserverbrauch zurück-
zuführen sind, nur unter Verwendung von Abflussdaten. Als Fallstudie konzentri-
erten wir uns auf das Scott River-Einzugsgebiet in Kalifornien, das 7% landwirt-
schaftliche Landnutzung aufweist. Wir haben Sommerabfluss, Schneewasseräquiv-
alent und Niederschlag zwischen historischen (1940-1976), mittleren (1977-1999) und
modernen (2000-2020) Zeiten verglichen. Das Schneewasseräquivalent zeigte neg-
ative signifikante Trends in niedrigeren Lagen (1600-1800 m). Wir beobachteten
auch signifikante negative Trends beim mittleren und minimalen Abfluss sowie eine
früher beginnende und länger anhaltende Niedrigwassersaison. Mit einem Paired
Catchment Ansatz konnten wir einen durchschnittlichen Rückgang des Sommer-
abflusses um 38,5% (37,5 +/- 3 Mm³) von historischen bis zu modernen Zeiträumen
feststellen, wobei 14,6% (14,25 +/- 1,4 Mm³) auf den landwirtschaftlichen Wasserver-
brauch und 23,9% (23,2 +/- 1,4 Mm³) auf den Klimawandel zurückzuführen waren.
Diese Ergebnisse zeigen, dass die Landwirtschaft den Abfluss erheblich beeinflusst;
der Einfluss des Klimawandels dominiert jedoch. Daher ist es nicht ausreichend,
den Wasserverbrauch im Sommer zu stoppen, um niedrige Flüsse zu erhöhen. Eine
Möglichkeit, einen ausreichenden Durchfluss für gefährdete Lachse zu gewährleis-
ten, könnte die künstliche Grundwasserneubildung bei hohen Abflüssen bis zur
Niedrigwassersaison sein.
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1

1 Introduction

1.1 Introduction

Since the start of the industrial revolution in 1880 the climate warmed by 1.1◦C, be-
ing on a warming trajectory of 0.15 to 0.2◦C each decade since 1975 (NASA, 15.02.2022).
This in turn has major hydrological influences. Studies suggest, that dry areas turn
drier and wet areas become wetter. According to the Clausius-Clapeyron relation-
ship, the warming trend also causes an enhanced water vapor uptake by air, in-
creasing 7% every 1◦C. This leads to more intense rainstorms, even though total
precipitation may decrease (Trenberth, 2011; Rhoades, Ullrich, and Zarzycki, 2018).

Another effect of warming is the shift of snow to rain and earlier snowmelt, leading
to increased discharge earlier in the spring and to lower summer baseflow (Tren-
berth, 2011; Ashfaq et al., 2013; Berghuijs, Woods, and Hrachowitz, 2014). Snowpack
accumulates over the winter season when precipitation falls as snow and tempera-
tures are below freezing. This water storage is released starting in spring when
temperature rises over meltingpoint (Mote, 2006; Kapnick and Hall, 2012). As this
increase happens gradually along elevation contour, lower altitudes melt earlier
than higher, causing a steady meltwater supply. This water either feeds streams
directly or infiltrates in the soil, recharging underlying groundwater (Godsey, Kirch-
ner, and Tague, 2014). In Mediterranean climate regions, where precipitation is cen-
tered in winter and summers are rather dry, this meltwater substantially contributes
to streamflow by increasing baseflow (Li et al., 2017). Due to climate change, in-
creased winter temperatures, exceeding freezing-point, cause less precipitation to
fall as snow but rather rain (Ashfaq et al., 2013; Rhoades, Ullrich, and Zarzycki,
2018). This leads to increased winter discharge, exacerbating floods (Kim and Jain,
2010; Yarnell et al., 2015). Even if snow accumulates in winter, warming either leads
to snowmelt or the occurrence of "rain-on-snow" events earlier in the year, shifting
runoff of meltwater towards spring start (Gleick and Chalecki, 1999; Stewart, Cayan,
and Dettinger, 2005; Mote, 2006; Barnhart et al., 2016; Mote et al., 2018; Xiao, Udall,
and Lettenmaier, 2018). Therefore, warming causes earlier discharges without con-
tributing to summer baseflow, causing lower dry-season flows (Mote et al., 2005;
Ashfaq et al., 2013; Berghuijs, Woods, and Hrachowitz, 2014; Vano, Nijssen, and
Lettenmaier, 2015; Asarian and Walker, 2016).

Climate warming also increases evaporation, causing surface drying which leads to
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prolonged and intensified droughts (Trenberth, 2011). Droughts start as precipita-
tion deficits (metrological droughts), which causes a soil moisture deficit (agricultural
drought) over shorter, and runoff and groundwater deficits (hydrologic drought) over
longer timespans (Cook, Mankin, and Anchukaitis, 2018; AghaKouchak et al., 2021).
These stages however are influenced by anthropogenic factors like climate change,
causing shifted precipitation regimes (Ashfaq et al., 2013; Pathak et al., 2018; Allen
et al., 2020), increased evaporation decreasing soil moisture (Trenberth, 2011), and
lower snowpack reducing summer runoff (Drake, Tate, and Carlson, 2000, Beguería
et al., 2003, Mote et al., 2005, Mote, 2006, van Kirk and Naman, 2008, Luce and
Holden, 2009, Berghuijs, Woods, and Hrachowitz, 2014, Vano, Nijssen, and Letten-
maier, 2015, Barnhart et al., 2016, Asarian and Walker, 2016, Li et al., 2017, Xiao,
Udall, and Lettenmaier, 2018). AghaKouchak et al., 2021 also linked land use and
land cover changes to both agricultural and hydrological drought by altering in-
filtration and runoff generation. Increased water consumption also heavily affects
the hydrologic cycle with decreased streamflow caused by dams and reservoirs and
lowered groundwater table due to pumping.

In many semi-arid and arid regions, people rely on groundwater for irrigation, es-
pecially during agricultural and hydrological drought, as aquifer storage provides
perceived resilience (Thomas et al., 2017). Often, against scientific evidence, ground-
water and streamwater are treated as different entities and not as a single, inter-
connected resource (Famiglietti, 2014). When pumps extract groundwater, the hy-
draulic head decreases and a cone of depression forms around the well, creating
an hydraulic gradient in its direction (Barlow and Leake, 2012). This impacts river
discharge by either lowering the watertable, causing streamflow to seep in the un-
derlying aquifer, or by extracting water which would otherwise have fed the stream
(Tabidian and Pederson, 1995; Fleckenstein et al., 2004; Jasechko et al., 2021). In both
cases, discharge decreases relative to no groundwater outtake. The stream is still
influenced by precipitation with rising and falling discharge, however flowrates are
not as high as they would be (Barlow and Leake, 2012).

California has been affected by a drought starting in 2000 which is unprecedented
in the reliable instrumental records period (Richman and Leslie, 2015), caused by
a multi-year midtropospheric high pressure region (also coined the "Ridiculously
Resilient Ridge") at the Pacific coast blocking cold, wet air from reaching California
(Swain, 2015). The western United States have always been impacted by variable
temperatures and precipitation (Meko, Woodhouse, and Touchan, 2014), however
the recent drought is special due to its anthropogenic influence (Diffenbaugh, Swain,
and Touma, 2015). Williams et al., 2020 used a 1200 year tree-ring soil moisture
reconstruction (years 1200 - 2018) and hydrologic model of California to show that
only a megadrought in 1500 was drier and persisted longer than the drought in
2000-2018. The model showed the drought would not be as severe as it was, if no
anthropogenic warming occurred. However due to climate change, this drought
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is on a trajectory towards becoming the next megadrought. This is underlined by
Williams, Cook, and Smerdon, 2022 recent study in which they find that 2000-2021
now evolved to be the driest 22 year drought. Their simulations also show, that with
a probability of 75% the drought will outlast the 30 year mark due to anthropogenic
climate warming.

Since the start of year 2000, multiple years were exceptionally dry and hot. Mann
and Gleick, 2015 analyzed discharge and precipitation in Sacramento and San Joaquin
river basin and found that 10 of the years 2000-2014 were below average with 2012-
2014 being the hottest and driest since instrumental records started. In a similar
study, Richman and Leslie, 2015 ranked the cool season precipitation from wettest
to driest and coldest to hottest since 1895. Their analysis showed, that the hottest
and driest 3 year lasting periods all happened after the turn of the millennium. This
deficit in winter precipitation and higher winter temperatures caused lowered snow
accumulation. As this snow storage however is the largest component of water stor-
age in many Californian catchments (Mote, 2006), the decrease caused Californian
residents to switch to groundwater as their watersource. In wet years, about one-
third of water is supplied by aquifers, however in 2014, one of the driest years,
groundwater accounted for nearly two-thirds (Harter and Dahlke, 2014). These
amounts however far exceed natural recharge, overdrafting the aquifer (Gleick and
Palaniappan, 2010). This results in watertable declines, causing land subsidence
(Famiglietti, 2014) and wells to dry up at rates never seen before (Harter and Dahlke,
2014).

As deficits in precipitation, increased evaporation and lowered hydraulic head lead
to declined streamflow, this also effected renewable hydropower generation. With
steadily rising electric power demand, California therefore increased its natural gas
power production. This combustion however produces more greenhouse gasses,
further contributing to anthropogenic climate change (Christian-Smith, Levy, and
Gleick, 2015).

The lower Klamath Basin in northern California and southern Oregon is also affected
by changing climate. Warmer winters (Mote et al., 2018), less snowpack (Mote, 2006),
hotter summers, decreased summer precipitation (Asarian and Walker, 2016) and
increased evapotranspiration (Tang, Rosenberg, and Lettenmaier, 2009) lead to low-
ered summer streamflow. This is exacerbated by agricultural water use in some of
its tributaries (van Kirk and Naman, 2008). Decreased summer discharge however
heavily restrict species like Chinook (Oncorhynchus tschawytscha) and endangered
Coho salmon (Oncorhynchus kisutch) (Coates, 2005). These anadromous fish migrate
up the Klamath tributaries to reach their spawning grounds (Drake, Tate, and Carl-
son, 2000). After mating, the eggs develop in the streambed gravel during winter,
hatching in spring and emerging as fry in next years summer (Kim and Jain, 2010).
However, due to low streamflow induced by climate change and anthropogenic wa-
ter use, some tributaries become disconnected. In some years Scott River, which is
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the most important spawning and rearing ground for coho salmon, only remains as
warm, stagnant pools in the riverbed (van Kirk and Naman, 2008). These conditions
are insufficient for the endangered salmons, causing declines of their population
(CDFW, 18.02.2022).

To counteract low summer streamflow in Scott River, the California Water Board set
Curtailment Orders in place, which limits agricultural water use to a minimum once
river discharge falls below a certain, monthly defined, threshold. Based on a water-
right hierarchy, farmers are prohibited to extract water until the stream exceeds the
threshold flow (Nolan, 2021).

1.2 Related Work

The influence of climate change and anthropogenic factors on lower Klamath tribu-
taries, especially Scott river was studied by a few researchers:

Drake, Tate, and Carlson, 2000 analyzed Scott river streamflow, snow and pre-
cipitation with the first two showing negative trends. By formulating an equation
of snow course and precipitation data predicting total September discharge, they
concluded, that nearly 80% of the variance in streamflow can be explained by the
climatic factors of snow water content and precipitation during the prior 12 months.

van Kirk and Naman, 2008 also studied streamflow and snow trends in five lower
Klamath basins. They used permutation tests for hypothesis trend testing, splitting
their data into two periods, defining a historic (1940s-1976) and modern (1977-2005)
period. To attribute flowdeclines to groundwater pumping and climate change, they
chose a paired approach, estimating flow in Scott River based on unimpaired flow
in Salmon River. They found decreasing April 1 snow storage at lower altitudes
and increasing at higher. Summer low flow also showed negative trends, however
none of these were significant. Attributing the flowdecline, they concluded, that
from historic to modern times, summer discharge decreased by 10 Mm3. Roughly
halve of the decline was associated with climate change or agricultural water use
respectively. Their flow-attribution methodology, with some modifications, will also
be used in our study, futher described later in this thesis.

Asarian and Walker, 2016 focused on multiple catchments in northern California
and southern Oregon, also including the lower Klamath basins. Analyzing precipita-
tion and streamflow, they mostly found decreases. Annual precipitation showed no
trends, whereas September precipitation significantly declined in most catchments.
This was also true for discharge in catchments without reservoirs and dams. In
catchments without reservoirs and anthropogenic water use they found no trends.
Therefore their analysis concluded, that flowdeclines originate from human water
use rather than the climatic factor precipitation.
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1.3 Research Approach & Objectives

The goal of this study is to analyze climatic trends and assess groundwater pumping
impacts by agriculture on streamflow to provide insight in the declines of summer
discharge in anthropogenic-influenced, snow reliant catchments. Thus we seek to
differentiate between flow-declines caused by larger climatic factors and regional
agricultural influences. This should help water agencies and decision makers in
finding appropriate, effective measures against low summer discharges. As a case
study we focus on the lower Klamath basin, concentrating on the Scott River water-
shed and its surrounding basins.

The results from preceding studies lead us to the following hypotheses:

• Due to climate warming, April 1 SWE is declining in all catchments, but trends
are different between altitudes. Also snowmelt occurs earlier each year, espe-
cially in lower elevations.

• As the catchments lie in a region where only shifts in center of precipitation is
predicted, there is no trend in annual, wateryear precipitation.

• Resulting from higher temperatures due to climate change, evaporation in-
creased in the more recent years.

• Due to all the climatic factors which alter the hydrologic circle and change the
water balance of a catchment, mean summer discharge is trending lower with
longer lasting low-flow season.

• According to the findings of van Kirk and Naman, 2008 we hypothesize that
due to increased warming relative to their analysis, streamflow-declines have
further exacerbated. However, due to higher temperatures which lead to in-
creased evaporation, resulting in higher irrigational water use, the share of
decreases attributable to agriculture and climate change stayed the same.

Our objectives therefore are to (1) analyze local trends in precipitation, vapor pres-
sure, snow storage and streamflow for catchments in the lower Klamath basin, (2)
quantify summer streamflow declines in Scott River basin, associated with climate
change or agricultural water consumption, (3) get qualitative estimates of relative
influences from climatic factors on summer streamflow, and (4) investigate yearly
snowmelt occurrence in each catchment. We will also discuss our results against
those of the three previously described papers and further review current manage-
ment practices and their benefits to endangered fish species.
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2 Study Area

2.1 Study Area

Our study area is located in Northern California and Southern Oregon in the western
United States. The catchments are predominantly mountainous with steep slopes
and heights from 1700 to 4300 meters. The highest point is Mount Shasta (4300 me-
ters). Climate is Mediterranean with dry summers and wet winters (Asarian and
Walker, 2016). The annual precipitation sum is 500 to 2000 mm, predominately
in winter and spring. Over 1500 m, precipitation falls almost exclusively as snow,
which stores the water until melting season in spring. Consequently flow regime is
dominated by snow/rain with winter peak flows, spring recession, summer base-
flow and fall flush flows (Yarnell et al., 2015). Lane et al., 2018 classified the catch-
ments as "Low Snowmelt and Rain" with variable winter and spring flows. This
high variability results from rapid runoff due to the steep slopes and impermeable
bedrock.

Subsequently to our objective to test for climate change impacts, only catchments
in the lower Klamath basin area with gauging longer than 60 Years were selected.
Gauges which meet these requirements are shown in a table 2.1 with their respective
catchment information.

All watersheds are sparsely populated, the major vegetation is coniferous forest.
The area is very fire-prone with major parts of Salmon (USGS ID: 115122500) being
burned in the last century. Sacramento headwaters (USGS ID: 11342000) and Shasta
(USGS ID: 11517500) have large reservoir storage, altering streamflow (data obtained
from DWR1 and Oregon State2). In Scott (USGS ID: 11519500) and Shasta Catchment,
valley plains with shallow alluvial aquifers near the rivers are used for agriculture
and pasture (van Kirk and Naman, 2008).

Succeeding the California Gold Rush in the 1850s, agriculture developed in Scott
Valley, mostly focussing on cattle ranching and crop production (Grain and Alfalfa).
Irrigated area increased from 29.000 acres in 1959 to 34.000 acres today. Prior to
1960s, about halve of the cultivation area were flood irrigated by diverting discharge
from Scott river; only little groundwater pumping for irrigation occurred. In the
1960s-1970s, irrigation sprinklers became popular in Scot Valley. These required high

1https://gis.data.ca.gov/datasets/DWR::california-jurisdictional-dams/about
2https://spatialdata.oregonexplorer.info/geoportal/details;id=523fed781b444e278e86fd0c63fd7c53
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water pressure, which was provided by groundwater pumps. This led to increased
water use, as acreage could now be irrigated at times when prior flood irrigation was
no possible as the Scott River did not carry enough water (Siskiyou County Flood
Control and Water District Groundwater Sustainability Agency, 2021).



2.1. Study Area 9

Sources: Esri, HERE, Garmin, USGS,
Intermap, INCREMENT P, NRCan,
Esri Japan, METI, Esri China (Hong
Kong), Esri Korea, Esri (Thailand),
NGCC, (c) OpenStreetMap
contributors, and the GIS User
Community

Elevation4275

1766,82

¯

0 20 4010 Km

(A) Topography

!n

!n
!n

!n

!n

!n!n!n

!n!n

!n

!n

!n

!n

!n

!n!n

!n!n

!n

!n
!n

!h

!h

!h

!h

!h

!h

!h

!h

!h

11530000

11517500

11528700

11522500

11519500

14377100

11342000
11523200

11521500

!h Gauge
!n Dam

Streams

¯

0 20 4010 Km

(B) Catchment Hydrology

Landuse
Agriculture
Water
Developed
Barren
Forest
Grass/Pasture

¯

0 20 4010 Km

(C) Landuse

1\1\1\
1\1\ 1\1\
1\1\ 1\1\1\1\
1\1\ 1\1\1\1\1\1\

1\

1\1\1\1\
LSH

ETNSWJ SWTPRK MSHSFTDDFNFS
DYMMB3
MBL GYR

WLC
MUM

WHN
HIGBFT
SLTRRM

SHMBBS

23G0523G04
23G16
23G17

DOY no SnowcoverHigh : 206

Low : 1

1\ Snow-Course

¯

0 20 4010 Km

(D) Snow

FIGURE 2.1: Study area overview with (A) elevation, (B) rivers,
gauges and reservoir locations, (C) landuse and (D) snow course lo-
cations and first day in year with all snow melted. (Maps generated by

the authors with data from USGS, DWR, NCRS, NASA)



10 Chapter 2. Study Area

T
A

B
L

E
2.1:C

atchm
entO

verview

B
asin

N
am

e
B

asin
ID

R
eservoir

C
apacity

A
rea

M
ean

Elevation
FirstM

easuring
Year

Percentage
of

A
griculture

N
um

ber
of

snow
courses

[aft]
[km

2]
[m

a.s.l.]

Sacram
ento

(D
elta)

11342000
26000

1099.32
1,263

1944
0.1%

6

Shasta
(Y

reka)
11517500

57110
2047.28

1,228
1933

11.4%
3

Scott
(FortJones)

11519500
350

1713.7
1,321

1941
7.3%

5

Trinity
(H

yam
pom

)
11528700

887
1980.61

1,123
1965

0.0%
0

Trinity
(H

oopa)
11530000

945
1683.77

958
1911

0.0%
8

Illinois
(K

erby)
14377100

233
985.2

881
1961

0.1%
4

Indian
(H

appy
C

am
p)

11521500
0

309.5
1,128

1956
0.0%

0

Salm
on

(Som
es

Bar)
11522500

0
1944.28

1,299
1911

0.0%
0



11

3 Methods

3.1 Data Overview and Seperation into Timeframes
All statistical and geographical analyses were computed in R (R Core Team, 2021)
using the packages tidyverse (Wickham et al., 2019) for data-wrangling, sf (Pebesma,
2018) and RPyGeo (Brenning, Polakowski, and Becker, 2018) for geographical anal-
yses and ggplot2 (Wickham, 2016) for visualizing data. Streamflow, snow-water-
equivalent (SWE), precipitation, maximum vapor pressure deficit and snow cover
data was analyzed (Table 3.1). To quantify the influencing factors such as climate
change and agricultural water use, the data time series were divided into 3 time-
frames (TF) and defined as:

• "Historic" timeframe (synonymously referred to as "TF 1") starting in 1940 un-
less data acquisition began later, ending in 1976. In the Scott Valley, almost no
groundwater pumping occurred during this period.

• "Intermediate" timeframe (synonymously referred to as "TF 2") beginning in
1977 with the PDO change from a cold to a warm phase and ending in 1999.
The start of this period coincides with the switch in Scott River from agricul-
tural surface water to groundwater use due to changed irrigation practices
(flood to sprinkler irrigation)

• "Modern" timeframe (synonymously referred to as "TF 3") starting in 2000 with
the beginning of severe drought (Williams et al., 2020; Williams, Cook, and
Smerdon, 2022) and ending depending on data availability in 2020 or 2021

TABLE 3.1: Data Overview

Data Type Unit Interval Source Agency Available Year Range

Streamflow m3/s day USGS 1940s - 2021
Snow SWE month NRCS 1940s - 2021

Precipitation mm month PRISM 1940 - 2021
Max. Vapor Pressure Deficit hPa month PRISM 1940 - 2021
MODIS NDSI Snow Cover DOY year NASA 2000 – 2021
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3.2 Precipitation and Vapor Pressure Deficit

Precipitation and maximum vapor pressure deficit (VPD) was retrieved from the
PRISM datasets. PRISM calculates climate variables by combining measurement
station observations with a so called "expert algorithm" which extrapolates mea-
surements to a grid based on elevation effects (Daly and Bryant, 2013; Asarian and
Walker, 2016). Monthly means for the whole period of interest of this study were
available as raster with 4 km grid-resolution for the whole continental United States.
They were cropped and averaged to each catchment (shapes obtained from USGS 1).
Next, data was transformed to water year means.

3.3 Snow

To asses our snowpack hypothesis, we used NRCS snow-course data which was
obtained using the RNRCS R-Package by Lee and Roberti, 2018. Snow-courses are
fixed sites where snow water equivalent (SWE) and snowdepth are manually mea-
sured monthly from January to June. SWE is a measurement for water-content of
snowpack and is therefore a proxy for snow-storage. We evaluated April 1 SWE at
all snow courses inside the catchments (Figure 2.1d). Elevations of included stations
ranged from 1200 m to 2100 m (Table 3.2).

1https://water.usgs.gov/GIS/metadata/usgswrd/XML/streamgagebasins.xml



3.3. Snow 13

TA
B

L
E

3.
2:

Sn
ow

co
ur

se

B
as

in
N

am
e

U
SG

S
C

at
ch

m
en

tI
D

N
R

C
S

Sn
ow

co
ur

se
ID

El
ev

at
io

n
in

m
M

ea
n

SW
E

H
is

to
ri

c
M

ea
n

SW
E

In
te

rm
ed

ia
te

M
ea

n
SW

E
M

od
er

n

Sa
cr

am
en

to
11

34
20

00
SL

T
17

37
29

.5
7

28
.1

8
20

.0
3

(D
el

ta
)

H
IG

18
38

34
.0

0
35

.0
5

26
.3

9
G

Y
R

18
90

44
.6

8
47

.9
0

41
.1

5
SF

T
20

73
42

.8
7

41
.8

0
38

.7
1

N
FS

21
03

24
.5

6
25

.1
5

21
.6

1
Sh

as
ta

11
51

75
00

SW
T

17
83

14
.8

1
11

.2
7

12
.7

9
(Y

re
ka

)
LS

H
18

90
21

.1
0

16
.4

4
14

.0
5

PR
K

20
42

37
.2

9
34

.6
1

28
.9

3
Sc

ot
t

11
51

95
00

SW
J

16
76

41
.3

0
27

.8
0

22
.4

0
(F

or
tJ

on
es

)
D

Y
M

17
37

19
.4

5
17

.1
7

14
.5

8
ET

N
17

98
37

.6
2

20
.8

6
20

.2
7

M
B3

18
90

28
.0

0
28

.1
4

24
.6

7
M

BL
20

12
31

.8
2

31
.8

7
26

.6
1

Tr
in

it
y

11
53

00
00

BF
T

15
54

15
.8

6
10

.5
3

8.
86

(H
oo

pa
)

W
H

N
16

46
21

.9
6

18
.7

5
14

.7
6

M
U

M
17

22
26

.5
2

20
.1

9
14

.2
1

W
LC

18
75

35
.6

4
36

.1
0

29
.1

2
SH

M
19

51
50

.8
8

49
.0

0
40

.7
7

BB
S

19
81

37
.9

1
38

.6
3

30
.4

0
R

R
M

20
42

43
.7

4
43

.4
3

35
.4

1
D

D
F

21
95

33
.0

7
33

.7
3

26
.7

7
Il

lin
oi

s
14

37
71

00
23

G
05

12
34

4.
00

0.
92

0.
65

(K
er

by
)

23
G

04
13

93
7.

55
3.

24
5.

09
23

G
16

15
00

14
.0

4
13

.4
7



14 Chapter 3. Methods

3.4 Streamflow
Daily mean discharge of all 9 selected catchmments was downloaded from USGS
using the dataRetrieval R-Package by Cicco et al., 2018. The data was then separated
into the three timeframes (Figure 3.1) and the summer low flow season was eval-
uated. Unlike van Kirk and Naman, 2008, who analyzed a set period of days, we
defined the low flow summer period by a runoff limit. As a threshold, we used
the 0.15 percentile of flows in the Historic timeframe. The threshold ranged from 1.1
m3/s in Shasta River to 16.0 m3/s in the large Trinity catchment (USGS ID 11530000).
For all timeframes, the summer phase was defined by falling below and exceeding
this value for 7 consecutive days and will further be referred to as “Summer Flows”.
Subsequently, we determined the following metrics for this phase:

• Mean discharge (MEAN [m3/s])

• Minimum discharge (MIN [m3/s])

• Start-Datum (FDOY [DOY])

• End-Datum (LDOY [DOY])

• Duration of Summer Flows (DURATION [days])

• Mean discharge after exceeding the 0.15 percentile until the end of the year
(MEAN. A.T [m3/s])

3.5 Trend Hypothesis Analysis

To quantify differences between the timeframes of all data, we used the non-parametric
Kruskal-Wallis test. This test examines whether the three groups correspond to the
same data population or whether their mean range is significantly different (signifi-
cance level α = 0.05). The advantage of the Kruskal-Wallis test is that the data do not
have to correspond to a certain distribution (Helsel and Hirsch, 2002). For example
an ANOVA test requires normally distributed data, but a Shapiro-Wilk-Normality
test showed that some of the data used in this study did not meet this criterion. Since
the Kruskal Wallis test only indicates whether there are significant differences be-
tween the groups, a non-parametric Dunn-Bonferoni post-hoc test was added. This
test produces differentiated results of group differences (Helsel and Hirsch, 2002).

3.6 Attribute Summer Flow Decline to Climate Change and
Agriculture

We determine how much water is lost in Scott River in summer months (May-
October, DOY 150-300) due to climate change and agriculture by means of a paired-
catchment approach. The paired catchment should not have agricultural land use or
larger reservoirs and thus only be influenced by climate change. Flows in Scott and
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suitable Study-Catchments were mean normalized (Formula 3.1). The flow of each
summer day was divided by the mean of the total summer flows (DOY 150 -300).

Qnorm = Qobs/mean(Qobssummer) (3.1)

The Salmon River catchment adjacent to Scott in the west, which was also used in
van Kirk and Naman, 2008 study, had the best fit (lowest total difference). Both
Basins show lower flows in the Intermediate and Modern timeframe relative to His-
toric. We assume that the runoff in Salmon is only affected by climate change, but
the decreases in Scott are due to a mix of climate change and agriculture. We also
assume that both catchments are affected by climate change to a comparable extent.
Thus, the proportion of runoff decrease due to climate should be the same in both
areas.

In the first timeframe, where the agricultural influence in Scott had no substantial
impact, the normalized flows of both rivers were very close to each other with the
same peaks and general regime (Figure 3.2). However, since we see lower runoff
in Scott relative to Salmon in Intermediate and Modern timeframes during the sum-
mer months, we can conclude that this deviation results solely from agricultural use.

We established a relationship between flows in Salmon and those in Scott using a line
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of organic correlation (LOC) regression for each timeframe. LOC, also known as "re-
duced major axis" regression, is often used in hydrological data extension (Kruskal,
1953; Khalil and Adamowski, 2012; Helsel and Hirsch, 2002), as it better represents
the variance of the data in contrast to conventional linear regression. This is achieved
by minimizing the triangle-areas formed by horizontal and vertical extending lines
in X and Y direction. The slope of LOC is determined by the ratio of both standard
deviations (sy/sx) and is therefore identical for regression of X Y and Y X.

To receive a runoff-estimate for Scott without agricultural influence, we applied
the Historic LOC relationship to the observed Intermediate and Modern flows of
Salmon. Deviation of predicted and measured flows in Scott are therefore attributable
to agricultural water consumption. Difference to the measured Historic flows is due
to climate change.

3.7 Boosted Regression Trees
To qualitatively assess the relative importance of individual climatic factors we build
boosted regression trees (BRT) for Scott and Salmon River summer flow. BRT is a ma-
chine learning algorithm which combines Regression/Classification Trees (CART)
with the boosting technique (Hastie, Friedman, and Tibshirani, 2001; Elith, Leath-
wick, and Hastie, 2008; Ransom et al., 2017). In CART analysis, predictions are
based on a decision tree. This tree is generated by partitioning the response variable
into groups which behave similarly to the predictors. Predictors can be categorical
or quantitative. Each tree-branch, symbolizing an response group, separates into
two, based on a threshold value of the predictor variable which best explains the
variance in this group. As each partition is based on the higher hierarchical split
of another predictor, their interactions are automatically represented (Elith, Leath-
wick, and Hastie, 2008). Boosting is a technique which improves prediction accu-
racy by successively combining multiple models or trees as in BRT (Schapire, 2003;
Elith, Leathwick, and Hastie, 2008). To conduct BRT to predict mean August and
September flows in Scott and Salmon River we used the gbm R-Package by Greenwel,
Boehmke, and Cunningham, 2020. Our explanatory variables were:

• Mean monthly Precipitation /Vapor Pressure Deficit in catchment (in each wa-
teryear) (“P.Jan”, “V.Jan”)

• Wateryear Precipitation Mean (“P.YMEAN”, “V.YMEAN”)

• Winter Precipitation Mean (“P.WMEAN”, “V.WMEAN”)

• Summer Precipitation Mean (“P.SMEAN”, “V.SMEAN”)

• April 1 SWE at the Stations MBL, SWJ, ETN, MB3 (Give Timeframe and Eleva-
tion)

• Timeframe 1-3 ("TF")
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High : 2584.04
Low : 805.535
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FIGURE 3.3: Routine for finding snowcover-free day of year in each
catchment. First, a DEM (A) is reclassified and converted to 100 m
elevation polygons (B). Next, the FNS raster (C) is intersected with
the elevation polygons (B) to achieve mean melt day for each altitude

zone

3.8 First Day No Snow

We calculated the first day a raster-pixel is no longer snow covered in a year using
Modis snow cover satellite data 2 and data retrieval routine developed by Amanda
Armstrong, 2020 (eg. Figure 3.3c shows FNS for Year 2020). Next, a digital-elevation-
model (DEM raster obtained from USGS 3) is cropped to each catchment (Figure
3.3a) and reclassified into 100 m elevation-zone polygons (Figure 3.3b). With these
elevation-zones of each catchment, the FNS-Raster is masked, and mean values are
extracted. This process was repeated for every available year and the resulting time-
series was evaluated with a linear regression of each elevation zone FNS.

2https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD10A1
3https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10m
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4 Results & Discussion

4.1 Precipitation Trends

Yearly mean precipitation showed slight negative trends in all catchments between
the timeframes, however none of them were significant. The Kruskal-Wallis Test
indicated a slight mean precipitation increase between Historic and Intermediate
with the later also having higher variance. Nevertheless, mean in Modern was lower
compared to the previous timeframes in all catchments.

Drake, Tate, and Carlson, 2000 who analyzed year precipitation sum of a precipi-
tation station in Scott Valley during our Historic and Intermediate timeframes, also
observed no significant trends. A more recent study by Asarian and Walker, 2016
concerning long term trends in precipitation, which also included our Modern time-
frame, found decreasing but non significant trend in our evaluated basins as well.
Nonetheless, their analysis showed significantly lower mean precipitation in Septem-
ber in most of our catchments. These findings match simulations using climate mod-
els. Predicting future precipitation under warming scenarios, they forecast wetter
winters and dryer summers for California, maintaining the prevalent Mediterranean
climate (California Department of Water Resources, 2015, Mann and Gleick, 2015
Pathak et al., 2018, Allen et al., 2020).

4.2 Vapor Pressure Deficit Trends

A trend towards a higher Maximum Vapor Pressure Deficit (VPD) was visible in
all catchments (Figure 4.2), yet only Scott and Trinity showed significant increases.
In the Intermediate timeframe, VPD variance was larger with a mean similar to
Intermediate. This pattern was also visible in precipitation trend analysis (Figure
4.1). Therefore, the greater variability probably originates from wetter and drier
than Historic-average years, resulting in a decrease or increase of water available
for evaporation. This can also explain the significant difference between the His-
toric/Intermediate and Modern timeframe. In Modern, precipitation had lower
means compared to the other timeframes, thus also limiting evaporation-water avail-
ability, increasing VPD.

With climate warming, evaporation is predicted to increase. The main cause can
be explained with the Clausius-Clapeyron relationship, in which every 1◦C warmer
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(C) Trinity

FIGURE 4.1: Left: Comparison of mean monthly precipitation regime
in each timeframe, dashed lines representing .975 and .025 quantile
Middle: Mean yearly precipitation (black) and trend line (blue), Right:
Kruskal-Wallis test of mean yearly precipitation between timeframes.

Top to bottom: Scott, Salmon and Trinity catchment
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air can hold 7% more water, increasing atmospheric vapor uptake (Trenberth, 2011;
Rhoades, Ullrich, and Zarzycki, 2018). Consequently, Cook, Mankin, and Anchukaitis,
2018 found that evaporative losses due to climate warming attributed to 5-27% of
recent California drought anomaly. Additionally, a study by Zhang et al., 2016 fore-
casts rises in evaporation of intercepted water and higher transpiration by plants
due to increased greening of vegetation. Furthermore, the study by Sorooshian,
AghaKouchak, and Li, 2014 who investigated influence of irrigation on land hy-
drology concluded that irrigation causes increased evapotranspiration, additionally
water-stressing agricultural basins. The described precipitation decrease in summer
months (Figure 4.1) and more water leaving the basins as vapor, changes the catch-
ments hydrological balance towards less water available for streamflow or ground-
water recharge.

4.3 April 1 SWE Trends

We observed that lower elevation snow courses had stronger negative trends com-
pared to higher elevations, nevertheless all showed declines in April 1 SWE. Trends
were only significant at some courses with altitudes lower 1900 m. SWJ and ETN
(Figure 4.3c & 4.3b), situated on east-facing hillslopes in Scott Valley, declined sig-
nificantly between Historic-Intermediate and Historic-Modern timeframes. At both
sites, mean April 1 SWE decreased from about 35 to 25 to 20, from Historic to Inter-
mediate to Modern times respectively.

The findings by Drake, Tate, and Carlson, 2000 and van Kirk and Naman, 2008,
who analyzed the same Scott Valley snow courses until 2000 and 2005 respectively,
seem to be superseded by climate change. Their analyses showed negative trends
at lower elevations but positive trends at higher elevation snow courses. This was
also observed by Mote et al., 2005 who reported large declines in snowpack in the
western US by 50% up to 75% in lower altitudes. However in a more recent study,
Mote et al., 2018 also found negative trends at nearly all snow courses analyzed,
independent of altitude. Therefore our trend analysis results are consistent with
those of other regional studies. van Kirk and Naman, 2008 discussed the possibility,
that reduced snowpack at the significant courses SWJ and ETN might result from
changes in adjacent vegetation. While a possibility, we would argue, that even if
this effect might influence these snow courses, the generally observed declines at all
stations is largely climate-related.

Kapnick and Hall, 2012 showed the decrease in April 1 SWE over the past few
decades was due to higher temperatures in March-June. This decreased snow accu-
mulation and provoked earlier snowmelt. At high elevation stations which showed
a positive trend, this was only due to higher accumulation in December-February.
Using a modeling approach, Mote et al., 2018 was also able to confirm that ear-
lier snowmelt and lower snowpack are caused by higher winter temperature due
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(C) Trinity

FIGURE 4.2: Left: Comparison of mean monthly maximum vapor
pressure deficit regime in each timeframe, dashed lines representing
.975 and .025 quantileMiddle: Mean yearly maximum vapor pressure
deficit (black) and trend line (blue), Right: Kruskal-Wallis test of mean
yearly maximum vapor pressure deficit between timeframes. Signif-
icance indicated by connected lines between boxes with significance
code (* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001) Top

to bottom: Scott, Salmon and Trinity catchment
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to climate warming. This shifts precipitation from snow to rain which prevents
snow from accumulating. When they removed the warming trend in their simu-
lation, the SWE trend reversed to more accumulation. This means snowpack de-
clines are caused by changes in temperature and not by lower winter precipitation
(see our Chapter 4.1). These findings were backed by Rhoades, Ullrich, and Zarzy-
cki, 2018 whose simulations of SWE implementing the RCP8.5 scenario in multiple
snow models indicated a snowpack decrease of up to 38% by 2065 in the western
US. By the year 2100 their simulations predict a decrease of snowfall by -30%, snow
cover by -44% and SWE by -69%. Rhoades, Ullrich, and Zarzycki, 2018 concluded,
that due to 20-40% of snow in the western US falling just below freezing, small rises
in temperature will further lead to substantially more precipitation falling as rain.

The declines in April 1 SWE due to higher winter temperatures show that even
though winter precipitation is predicted to increase, its not stored in the catchment
as snowpack but rather discharges more or less directly. Xiao, Udall, and Letten-
maier, 2018 were able to show that only a relatively small part of their study catch-
ment, which accumulates snow in winter, is responsible for large amounts of sum-
mer discharge. With SWE trending lower in these subbasins, summer streamflow
drastically deceased. These finidings are underlined by hydrological simulations of
Li et al., 2017 who calculated that despite only 37% of precipitation falling as snow,
53% - 70% of total discharge in the western United States originates from snowmelt.

4.4 Streamflow Trends

All Catchments (Appendix A) with less than 900 aft Reservoir Capacity (see Table
2.1) had negative trends for mean (MEAN) and minimum (MIN) discharge during
Summer Flow season and mean flow after the threshold is crossed again (MEAN.A.T).
We also observed positive trends in duration (DURATION) of Summer Flow season
with earlier starting (FDOY) and later ending (LDOY) Days. Only in Scott trends
were significant (Figure 4.4 & 4.5) for the mean (p = <0.0001), min (p = <0.0001),
duration (p = <0.00045) and first day (p = <0.0001) between the Historic (1) and
Intermediate (2) and Historic (1) and Modern (3) timeframe. There was no signifi-
cant difference between Intermediate (2) and Modern (3) timeframe. The duration of
Summer Flows in Scott increased by 50 days from 75 to 125 days between Historic
and Modern, starting about 30 days earlier. Mean flows decreased from 1.5 m3/s
in timeframe 1 to 0.75 m3/s in timeframe 2. Additionaly, in Scott minimum flows,
a jump is visible in 1977, the first year with streamflow droping to nearly 0 m3/s.
Occuring multiple times in Intermediate and Modern times, this never happened
during the Historic period. As this jump is not visible in the other catchments (A), a
climatic origin like the shift of PDO can be excluded and is rather caused by the shift
in irrigation-water-source.
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(C) Snow course ETN

FIGURE 4.3: Left: April 1 SWE (black) and trend line (blue), Right:
Kruskal-Wallis test of April 1 SWE between timeframes. Significance
indicated by connected lines between boxes with significance code (*
= p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001) Top to Bottom:
snow courses MBL, SWJ and ETN all lying in Scott River catchment
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A trend towards lower summer streamflow was also observed by Drake, Tate, and
Carlson, 2000 and van Kirk and Naman, 2008, who only found a larger decrease in
Scott River. Still, none of these trends were significant and their included data ended
in 2005. van Kirk and Naman, 2008 also found a longer lasting low-flow period in
Scott River. During their summer period (July 1 - October 22), discharge was less
than 1 m3/s on 4.3% in the Historic period (1940-1976) rising to 46.2% of these days
in their Modern period (1977-2005).

Gleick and Chalecki, 1999; Drake, Tate, and Carlson, 2000; Beguería et al., 2003;
Mote et al., 2005; Mote, 2006; van Kirk and Naman, 2008; Luce and Holden, 2009;
van Vliet et al., 2013; Berghuijs, Woods, and Hrachowitz, 2014; Vano, Nijssen, and
Lettenmaier, 2015; Barnhart et al., 2016; Asarian and Walker, 2016; Li et al., 2017;
Xiao, Udall, and Lettenmaier, 2018; Mote et al., 2018; Cho, McCrary, and Jacobs,
2021 attribute the decline in summer streamflow to reduced snowpack by shifting
precipitation from snow to rain and by earlier snowmelt which shifts meltseason
runoff. These changes result in earlier occurring, higher peakflows (Stewart, Cayan,
and Dettinger, 2005; Barnett et al., 2008; Kim and Jain, 2010; Trenberth, 2011; Geor-
gakakos et al., 2014; Barnhart et al., 2016; Rhoades, Ullrich, and Zarzycki, 2018). Liu
et al., 2021 simulated that climate change increases highflows by 0.5 to 4 times in
central California with peak streamflow occuring 2-4 month earlier. Accordingly, in
Scott River, where we observed significantly decreasing summer flows with signifi-
cantly earlier setting in of lowflow season, we also observed significantly lower SWE
at ETN and SWJ. Ashfaq et al., 2013 used an ensemble of climate and hydrologic
models to show that increased climate warming will result in even less precipitation
falling as snow, accelerating spring snowpack decrease.

4.5 Attribute Summer Flow Decline to Climate Change and
Agriculture

Using the line of organic correlation (LOC regression) of Historic flows predicting
Scott river discharge based on Salmon river discharge (Figure 4.6 left), we were able
to predict discharges in Scott during Intermediate and Modern times if it had no
enlarged agricultural water consumption. Figure 4.7 shows mean observed flows
in red and mean predicted flows in blue (with grey uncertainty margins) of Inter-
mediate and Modern timeframes respectively. In both plot facets, the green line
represents mean flows observed in the Historic timeframe.

Predicted flows lie between the observed from each timeframe and the observed His-
toric. In July, the predicted flows lie close to the observed Historic flows, showing a
minor climate and instead a higher agricultural influence. Nonetheless in Septem-
ber and October, the predicted flows match the observed flows of Intermediate and
Modern more closely, indicating a stronger climate effect.
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FIGURE 4.4: Left: summer low flow season metrics (black) and trend
line (blue), Right: Kruskal-Wallis test of summer low flow season met-
rics between timeframes. Significance indicated by connected lines
between boxes with significance code (* = p < 0.05, ** = p < 0.01, ***
= p < 0.001, **** = p < 0.0001) Top to bottom: Scott River (USGS ID

11519500) Mean, Min and Duration of Summer flows
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FIGURE 4.5: Left: summer low flow season metrics (black) and trend
line (blue), Right: Kruskal-Wallis test of summer low flow season met-
rics between timeframes. Significance indicated by connected lines
between boxes with significance code (* = p < 0.05, ** = p < 0.01, ***
= p < 0.001, **** = p < 0.0001) Top to bottom: Scott River (USGS ID
11519500) First Day (FDOY), Last Day (LDOY) and Mean Discharge

after the summer flow threshold is crossed (MEAN.A.T.)
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FIGURE 4.6: Regression of Salmon and Scott River summer discharge
for each timeframe. Regression functions: Historic y = 0.42x-1.35; In-

termediate y = 0.42x-2.05; Modern y = 0.41x-2.24

Table 4.1 shows that the day of year when a discharge threshold is crossed, hap-
pens earlier in more recent timeframes, underlining the trend analysis findings. As
the climatic influence in the recession period is not as strong as in the later summer
month, predominately agriculture is responsible for earlier, lower flows. This is es-
pecially visible in the Modern timeframe where the 10 m3/s threshold is crossed 8
days earlier with 6 days due to agriculture. The lower flows are even more affected.
The flow limit of 3 m3/s occurs 17 days earlier in Modern timeframes compared to
Historic with 13 days attributable to agriculture (Grey dashed lines in 4.7).

Comparing the predicted and observed discharges we were able to estimate the
amount of streamflow lost due to climate change and agricultural water consump-
tion (Figure 4.8). Comparing Historic and Intermediate timeframe (1 & 2), we calcu-
lated a decrease of about 20 Mm3 over the course of June to October. Climate change
and agricultural water use had about the same share in attributable loss. Analyzing
Historic and Modern (1 & 3) the decline developed to 38 Mm3, nearly doubling in
just 20 years. Attributable agricultural amount increased by 50% while flow reduc-
tion associated with climatic factors rose by 250% over the summer month.

The increase in agricultural water consumption from Historic to Intermediate can
be explained with an extended irrigation season due to the switch from surface to
groundwater as irrigation source. This allowed growers to extend their alfalfa har-
vest from two cuttings to three cuttings per year, increasing the irrigation period by
about one month. Consequently, this practice increased water use, thus leading to
a higher evapotranspiration. DWR reported an Alfalfa cultivation area of roughly
5500 ha in Scott Valley in 2017 (Siskiyou County Flood Control and Water District
Groundwater Sustainability Agency, 2021). For Alfalfa, local farmers reported an
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m3/s and 3 m3/s thresholds from table 4.1, grey band around pre-

dicted flow (blue) indicates error margins (.975 and .025 quantile)

average irrigation amount of 550 mm per year Foglia et al., 2018. Attibuting one
third of the wateruse to the third cutting achieved by the switch to groundwater,
this accounts for 180 mm * 5500 ha = 9.9 Mm3 additional water use per year, closely
matching our estimate in 4.8. Even though sprinkler irrigation used in Scott, has
a higher irrigation efficiency relative to flood irrigation, some water still percolates
and feeds groundwater. Thus not the complete irrigation amount is directly related
to the summer flow decrease in Scott River, but a large part is.

Our findings underline results by van Kirk and Naman, 2008 who found a 10 Mm3

streamflow decline in 1977-2005 relative to 1943-1976 summer period. They only
analyzed July-October but also attributed 39% decrease to climatic factors, a value
within our uncertainty range in the Intermediate (TF 2) period (light grey in Figure
4.8). Our findings are similar to those of Vano, Nijssen, and Lettenmaier, 2015 whose
simulations of basins in the pacific northwest predicted 31%, 21%, and 7% flow-
decrease per 1°C warming for July, August, and September, respectively.

As shown by Williams et al., 2020, the current California megadrought is exacerbated
by human induced climate change. However, it is only responsible for 47%, the
remainder being explained by natural variability. The same goes for our findings on
streamflow declines due to climate change. Where agricultural attribution is robust,
as this is the main difference between the paired catchments, climate impact needs
to be differentiated between human induced change and natural variability. Both
human induced change and natural variability affect a regional scale, therefore all
studied catchments. Yet it is save to say, that without human induced warming, the
declines in streamflow would not be as severe as observed.
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TABLE 4.1: Mean day of the year when a flow threshold is crossed

Timeframe
10 m3

Measured
10 m3

Predicted
3 m3

Measured
3 m3

Predicted

[DOY] [DOY] [DOY] [DOY]

Historic 183 212
Intermediate 182 185 207 213

Modern 175 181 195 208
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0

5

10

15

20

25

intermediate modern
compared to historic

D
ec

re
as

e 
in

 M
m

3/
ye

ar

Attribution AG Climate Change

FIGURE 4.8: Streamflow loss by agriculture (red) or climate change
(blue) within each timeframe in Scott River
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Analyzing each individual month and relating its flow decrease to measured flows
in the Historic timeframe, we were able to differentiate when each factor influences
discharge (Figure 4.9). During August to October, declines seem quantitatively low
compared to May and June. However, in proportion to Historic measured flows, this
decrease constitutes to a decrease of 30-40% in August to October discharge. This is
exacerbated when comparing Historic and Modern with declines of up to 70%.

In timeframe 2 we observed positive climatic influence increasing flow in November
and December but also slightly in July. This is probably attributable to some wetter
years in Intermediate times, also visible in the higher mean and greater variability
of precipitation in our trend analysis (Figure 4.1a).

Also, agricultural influence seems to lag behind climatic factors. Even though irriga-
tion withdrawals happen in the summer month, the largest decreases attributable to
agriculture happen after the onset of fall flush flows (Figure 4.9). The response to the
onset of fall precipitation is lower compared to flowrates which would be observed
if no groundwater was withdrawn. This is due to either:

1. rainwater recharging the aquifer, which was depleted over summer month,
without producing discharge. Groundwater and streamwater are at an equilib-
rium state where neither gains from or loses to the other until enough precip-
itation replenished the aquifer and it feeds the river again (Barlow and Leake,
2012).

2. more streamwater percolating to groundwater when available during fall flush
flows, recharging the aquifer, which was depleted over summer month. This
happens until the water table is sufficiently increased again that the hydraulic
gradient is reversed (Tabidian and Pederson, 1995; Fleckenstein et al., 2004;
Barlow and Leake, 2012) .

4.6 Boosted Regression Trees

We used a Boosted Regression Tree (BRT) to predict mean flows in August / Septem-
ber in Scott and Salmon River, implementing climatic variables as predictors. Our
goal was to get a qualitative assessment of relative influence of each predictor on
summer flows. Figure 4.10 shows both rivers are primarily influenced by precipita-
tion, vapor pressure deficit is of minor importance.

Snow reflected by snow courses has a major effect on discharge in Scott River. Most
influential stations are SWJ, ETN and MBL. SWJ and ETN also showed significant
negative SWE decreases in our trend analysis (Figure 4.3b & 4.3c), underlining the
importance of snowpack on streamflow as previously observed by Drake, Tate, and
Carlson, 2000, Beguería et al., 2003, Mote et al., 2005, Mote, 2006, van Kirk and Na-
man, 2008, Luce and Holden, 2009, Ashfaq et al., 2013, Berghuijs, Woods, and Hra-
chowitz, 2014, Vano, Nijssen, and Lettenmaier, 2015, Barnhart et al., 2016, Asarian
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and Walker, 2016, Li et al., 2017, Xiao, Udall, and Lettenmaier, 2018. Since Salmon
has no snow courses in its catchment, the highest ranking values were December
and total winter precipitation, also reflecting snow and snow storage. However,
their relative influence, indicating its explanatory power, is lower than that of snow
courses in Scott, by only indirectly representing snowpack.

In Scott, timeframes have a relatively high influence, being ranked 9th, where in
Salmon it is only ranked 29th. This matches our trend analysis with a significant
difference in Scott between summer low flows at each timeframe which did not exist
in Salmon.

4.7 First Day no Snow

Analyzing MODIS snow cover satellite data, we observed earlier snowmelt trends
in all catchments at almost all elevations. Matching the observations of SWE stations
with greater snow accumulation at higher snow courses, lower altitudes are earlier
snow-cover-free than higher altitudes. Especially the elevation zones where the sig-
nificant negative snow courses are stationed in Scott (SWJ 1700 m & ETN 1800 m)
show a more rapid decline in snow cover compared to the lower and higher zones
(Figure 4.11a).
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Earlier snowmelt shifts meltseason flows, discharging earlier in spring. First day in
the year with no snow occurred by May - June at the start of the millennium, but
until 2020 it decreased to March - April. Therefore, meltwater discharges during
times of high precipitation (see Figure 4.1), increasing peakflows, not contributing
to lowflow season anymore. This phenomenon was observed by Ashfaq et al., 2013
who investigated center of mass of discharge, onset of spring pulse flows and sea-
sonal fractional flows in 302 catchments in the western US. Their trend analysis in-
dicated earlier springtime snowmelt and streamflow, resulting in increased fractions
of annual flow occurring 1–4 weeks earlier.

Data was only available from year 2000 on in our study, which coincides with the
onset of the prolonged California drought. One could argue, that it therefore does
not represent general future trends, as the data was recorded during specific cir-
cumstances. This is partially true if the drought ends, however this period gives a
good estimate on how snowmelt and snow storage will behave if climate continues
to warm and droughts occur more often.

4.8 Implications for Fish

van Kirk and Naman, 2008 already reported that low streamflow causes some tribu-
taries of Scott River to disconnect, leaving stagnant pools. This heavily disrupts the
salmon live-cycle as adult fish cant reach their spawning grounds. Even if spawn-
ing is successful, the next years salmonids are also impacted by low discharge.
Salmonids rely on cold water and can survive even in disconnected pools if enough
cool water is supplied from groundwater (Power et al., 2015). However our anal-
yses show, that stream-connectivity to groundwater is heavily impaired by agricu-
tural water consumption. Therefore the pools become stagnant, with shallow, sun
exposed ones continuously warming over summer. Additional to the problematic
temperature and lentic water, this combination also provides ideal conditions for
cyanobacteria to thrive. These harmful prokaryota rapidly multiply in warm river
pools, excreting toxic substances, further decreasing salmonide survival (Power et
al., 2015).

Warming conditions not only affect salmons but about all native fish species in Cal-
ifornia. A study by Moyle et al., 2013 showed, that increased temperature due to
climate change over-proportionally impact native species, especially those requir-
ing cold temperatures (< 22◦C) or those already endangered. Neobiota on the other
side are more robust to changes and often better adapted to a wider range of envi-
ronmental conditions, therefore further repressing natives. Their study concluded,
if climate change persists, multiple native fish species will become extinct.
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4.9 Management

To counteract these summer conditions, agricultural water use is limited by gov-
ernment curtailment (Nolan, 2021), if flows in Scott fall under a monthly defined
threshold. The prohibition only allows for a minimal outtake, sufficient enough to
water livestock. In 2021 curtailment regulations took effect during late August and
September. Our analyses however show, the declines in this month relative to His-
toric is mostly ( 70%) attributable to climate causes, therefore being relatively inef-
ficient. Even if all water which is lost, would directly return by inset of the curtail-
ment, increases would only yield 20% more relative to flows observed in the Historic
period. Yet such rapid flow-reaction is unrealistic, as agricultural irrigation water is
rarely diverged riverwater but rather pumped groundwater. When the pumps are
shut off by the curtailment, the hydraulic gradient towards the cone of depression,
caused by pumping around each well, will first strive towards an equilibrium state.
Therefore the water will still flow towards the well, not contributing to the stream-
flow, delaying discharge response. To assess the time needed to reach equilibrium,
measurements of permeability and transmissivity of the aquifer would be needed to
parametrize a hydrogeologic model (Tolley, Foglia, and Harter, 2019).

Even the goal to increase the probability of sufficient flows in the fall and an earlier
onset of fall flows is hard to achieve with the current curtailment system. As shown
in figure 4.7, the predicted streamflow (aka discharge if Scott was only affected by
climate change) and observed streamflow in Modern have a similar flush start in
the third quarter of September. Still, both onsets of fall flows are delayed by about
10 days relative to Historic. However, fall flush discharge only affected by climate
change peaks substantially higher compared to observed flows. Therefore curtail-
ments have the potential to increase the discharge amount of fall flows, yet the onset
is mostly dictated by climate change.

With continued climate warming, the observed trends towards decreased SWE, ear-
lier meltseason, lowered summer precipitation and higher evapotranspiration will
lead to further declines in summer streamflow. Additionally, declines in summer
precipitation and intensified evapotranspiration will also cause higher agricultural
water demands. This was already visible in our analysis, showing the enhanced
discharge-decrease due to agriculture from Intermediate to Modern timeframes (Fig-
ure 4.8). Therefore the curtailment can effect summer streamflow to a certain degree,
nevertheless, as most water is lost due to climatic factors, gaining enough flows only
due to stopped pumping is unrealistic.
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5 Conclusion

5.1 Conclusion

Our study found negative trends in snowpack and summer streamflow and longer
lasting lowflow seasons due to increased climate warming, underlines findings of
prior research. We were also able to attribute streamflow decline amounts directly
to agricultural consumption and climate change using a paired catchment approach.
This further validates the method by van Kirk and Naman, 2008 for estimating agri-
cultural influence on streamflow when no data on extracted irrigational water is
available. With the presented workflow we were able to show that climate change
has become responsible for the largest portion of declines in late summer discharges
in our case study catchment. Additionally our analyses revealed, that agricultural
water consumption influences streamflow even after pumping stops and precipita-
tion increases in early fall. We attribute this lag time to groundwater transit times,
slowing its reaction to external influences. In consequence, we conclude, that the
current curtailment regulatory system in our case study basin is ineffective for di-
rectly returning summer flows when only applied in critical low discharge month.
As the streamflow exhibits a strong interaction with groundwater, further research
could focus on artificial aquifer recharge during high flow winter month. This could
increase the groundwater-table enough to potentially buffer declines due to summer
pumping, thereby increasing summer flow. However, our study showed, that effects
of human induced warming heavily and increasingly influence hydrologic systems.
Therefore, regional scale management efforts have limited effectiveness and should
be enhanced by national and global efforts in mitigation and adaptation to climate
change.
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A Appendix Streamflow Trend
Graphics

A.1 Streamflow

For information on how to read these figures see caption of Figures 4.4 and 4.4
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B Appendix SWE Trend Graphics

B.1 April 1 SWE snow courses

For information on how to read these figures see caption of Figure 4.3
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FIGURE B.2: HIG snow course
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FIGURE B.3: GYR snow course
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FIGURE B.4: SFT snow course
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FIGURE B.5: NFS snow course
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FIGURE B.6: SWT snow course
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FIGURE B.8: PRK snow course
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FIGURE B.9: DYM snow course
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FIGURE B.10: DDF snow course
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FIGURE B.11: BFT snow course
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FIGURE B.12: WHN snow course
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FIGURE B.13: MUM snow course
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FIGURE B.14: WLC snow course
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FIGURE B.15: SHM snow course
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FIGURE B.16: BBS snow course



B.1. April 1 SWE snow courses 63

0

25

50

75

1960 1980 2000 2020
Year

S
W

E

Elevation: 2042 m

RRM

0

25

50

75

historic intermediate modern

S
W

E

his: < 1977 int: 1977−2000 mod: > 2000

Kruskal−Wallis, χ2(2) = 1.18, p = 0.55, n = 66

pwc: Dunn test ; p.adjust: Bonferroni

FIGURE B.17: RRM snow course
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FIGURE B.18: 23G05 snow course
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FIGURE B.19: 23G04 snow course
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C Appendix Precipitation Trend
Graphics

C.1 Precipitation

For information on how to read these figures see caption of Figure 4.1
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FIGURE C.1: Sacramento (Delta) Catchment (11342000) Precipitation
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FIGURE C.2: Shasta (Yreka) Cacthment (11517500) Precipitation
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FIGURE C.3: Trinity (Hyampom) Catchment (11528700) Precipitation
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FIGURE C.4: Trinity (Hoopa) Catchment (11530000) Precipitation



C.1. Precipitation 67

0

250

500

750

Jan Mar May Jul Sep Nov

P
re

ci
pi

ta
tio

n 
[m

m
]

historic intermediate modern

100

150

200

250

1940 1960 1980 2000 2020
Year

P
re

ci
pi

ta
tio

n 
[m

m
]

100

150

200

250

historic intermediate modern

P
re

ci
pi

ta
tio

n 
[m

m
]

< 1977 1977−2000 > 2000

Kruskal−Wallis, χ2(2) = 3.05, p = 0.22, n = 78

pwc: Dunn test ; p.adjust: Bonferroni

FIGURE C.5: Illinois (Kerby) Catchment (14377100) Precipitation
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FIGURE C.6: Indian (Happy Camp) Catchment (11521500) Precipita-
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D Appendix Maximum Vapor
Pressure Deficit Trend Graphics

D.1 Maximum Vapor Pressure Deficit

For information on how to read these figures see caption of Figure 4.2
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FIGURE D.1: Sacramento (Delta) Catchment (11342000) Maximum
Vapor Pressure Deficit
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FIGURE D.2: Shasta (Yreka) Cacthment (11517500) Maximum Vapor
Pressure Deficit
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FIGURE D.3: Trinity (Hyampom) Catchment (11528700) Maximum
Vapor Pressure Deficit
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FIGURE D.4: Trinity (Hoopa) Catchment (11530000) Maximum Vapor
Pressure Deficit
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FIGURE D.5: Illinois (Kerby) Catchment (14377100) Maximum Vapor
Pressure Deficit
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FIGURE D.6: Indian (Happy Camp) Catchment (11521500) Maximum
Vapor Pressure Deficit





73

Bibliography

AghaKouchak, Amir et al. (2021). “Anthropogenic Drought: Definition, Challenges,
and Opportunities”. In: Reviews of Geophysics 59.2. ISSN: 8755-1209. DOI: 10.1029/
2019RG000683.

Allen, Robert J. et al. (2020). “Assessing California Wintertime Precipitation Responses
to Various Climate Drivers”. In: Journal of Geophysical Research: Atmospheres 125.12.
ISSN: 2169-897X. DOI: 10.1029/2019JD031736.

Amanda Armstrong (2020). Identifying Annual First Day of No Snow Cover. URL: https:
//developers.google.com/earth-engine/tutorials/community/identifying-

first-day-no-snow.
Asarian, J. Eli and Jeffrey D. Walker (2016). “Long-Term Trends in Streamflow and

Precipitation in Northwest California and Southwest Oregon, 1953-2012”. In: JAWRA
Journal of the American Water Resources Association 52.1, pp. 241–261. ISSN: 1093474X.
DOI: 10.1111/1752-1688.12381.

Ashfaq, Moetasim et al. (2013). “Near-term acceleration of hydroclimatic change in
the western U.S”. In: Journal of Geophysical Research: Atmospheres 118.19, pp. 10,676–
10,693. ISSN: 2169-897X. DOI: 10.1002/jgrd.50816.

Barlow, Paul M. and S. A. Leake (2012). Streamflow depletion by wells: Understanding
and managing the effects of groundwater pumping on streamflow. Vol. 1376. Circular.
Reston Va.: U.S. Geological Survey. ISBN: 9781411334434.

Barnett, Tim P. et al. (2008). “Human-induced changes in the hydrology of the west-
ern United States”. In: Science (New York, N.Y.) 319.5866, pp. 1080–1083. DOI: 10.
1126/science.1152538.

Barnhart, Theodore B. et al. (2016). “Snowmelt rate dictates streamflow”. In: Geophys-
ical Research Letters 43.15, pp. 8006–8016. ISSN: 0094-8276. DOI: 10.1002/2016GL069690.

Beguería, Santiago et al. (2003). “Assessing the effect of climate oscillations and
land-use changes on streamflow in the central Spanish Pyrenees”. In: Ambio 32.4,
pp. 283–286. ISSN: 0044-7447. DOI: 10.1579/0044-7447-32.4.283.

Berghuijs, W. R., R. A. Woods, and M. Hrachowitz (2014). “A precipitation shift from
snow towards rain leads to a decrease in streamflow”. In: Nature Climate Change
4.7, pp. 583–586. ISSN: 1758-678X. DOI: 10.1038/nclimate2246.

Brenning, Alexander, Fabian Polakowski, and Marc Becker (2018). RPyGeo: ArcGIS
Geoprocessing via Python. URL: https://CRAN.R-project.org/package=RPyGeo.

https://doi.org/10.1029/2019RG000683
https://doi.org/10.1029/2019RG000683
https://doi.org/10.1029/2019JD031736
https://developers.google.com/earth-engine/tutorials/community/identifying-first-day-no-snow
https://developers.google.com/earth-engine/tutorials/community/identifying-first-day-no-snow
https://developers.google.com/earth-engine/tutorials/community/identifying-first-day-no-snow
https://doi.org/10.1111/1752-1688.12381
https://doi.org/10.1002/jgrd.50816
https://doi.org/10.1126/science.1152538
https://doi.org/10.1126/science.1152538
https://doi.org/10.1002/2016GL069690
https://doi.org/10.1579/0044-7447-32.4.283
https://doi.org/10.1038/nclimate2246
https://CRAN.R-project.org/package=RPyGeo


74 Bibliography

California Department of Water Resources (2015). “California Climate Science and
Data for Water Resources Management”. In: URL: http://www.water.ca.gov/
climatechange/docs/CA-ClimateScienceandDataFinalReleaseJune2015.pdf.

CDFW (18.02.2022). Scott River Juvenile Coho Salmon. URL: https://wildlife.ca.
gov/Drought/Projects/Scott-River-Coho.

Cho, Eunsang, Rachel R. McCrary, and Jennifer M. Jacobs (2021). “Future Changes
in Snowpack, Snowmelt, and Runoff Potential Extremes Over North America”. In:
Geophysical Research Letters 48.22. ISSN: 0094-8276. DOI: 10.1029/2021GL094985.

Christian-Smith, Juliet, Morgan C. Levy, and Peter H. Gleick (2015). “Maladapta-
tion to drought: a case report from California, USA”. In: Sustainability Science 10.3,
pp. 491–501. ISSN: 1862-4065. DOI: 10.1007/s11625-014-0269-1.

Cicco, Laura A. de et al. (2018). dataRetrieval. DOI: 10.5066/P9X4L3GE.
Coates, Donald A. (2005). Staffreport for the action plan for the Scott River watershed

sediment and temperature total maximum daily loads: Executive Summary. DOI: 10.
1787/450154556467.

Cook, Benjamin I., Justin S. Mankin, and Kevin J. Anchukaitis (2018). “Climate Change
and Drought: From Past to Future”. In: Current Climate Change Reports 4.2, pp. 164–
179. DOI: 10.1007/s40641-018-0093-2.

Daly, Christopher and Kirk Bryant (2013). “The PRISM Climate and Weather System
– An Introduction”. In.

Diffenbaugh, Noah S., Daniel L. Swain, and Danielle Touma (2015). “Anthropogenic
warming has increased drought risk in California”. In: Proceedings of the National
Academy of Sciences of the United States of America 112.13, pp. 3931–3936. DOI: 10.
1073/pnas.1422385112.

Drake, Daniel J., Kenneth W. Tate, and Harry Carlson (2000). “Analysis shows climate-
caused decreases in Scott River fall flows”. In: California Agriculture 54.6, pp. 46–
49. ISSN: 0008-0845. DOI: 10.3733/ca.v054n06p46.

Elith, J., J. R. Leathwick, and T. Hastie (2008). “A working guide to boosted regres-
sion trees”. In: The Journal of animal ecology 77.4, pp. 802–813. DOI: 10.1111/j.
1365-2656.2008.01390.x.

Famiglietti, J. S. (2014). “The global groundwater crisis”. In: Nature Climate Change
4.11, pp. 945–948. ISSN: 1758-678X. DOI: 10.1038/nclimate2425.

Fleckenstein, Jan et al. (2004). “Managing Surface Water-Groundwater to Restore Fall
Flows in the Cosumnes River”. In: Journal of Water Resources Planning and Manage-
ment 130.4, pp. 301–310. ISSN: 0733-9496. DOI: 10.1061/(ASCE)0733-9496(2004)
130{\%}3A4(301).

Foglia, Laura et al. (2018). “Modeling guides groundwater management in a basin
with river–aquifer interactions”. In: California Agriculture 72.1, pp. 84–95. ISSN:
0008-0845. DOI: 10.3733/ca.2018a0011.

Georgakakos, A. et al. (2014). “Ch. 3: Water Resources. Climate Change Impacts in
the United States: The Third National Climate Assessment”. In: DOI: 10.7930/
J0G44N6T.

http://www.water.ca.gov/climatechange/docs/CA-ClimateScience andDataFinalReleaseJune2015.pdf
http://www.water.ca.gov/climatechange/docs/CA-ClimateScience andDataFinalReleaseJune2015.pdf
https://wildlife.ca.gov/Drought/Projects/Scott-River-Coho
https://wildlife.ca.gov/Drought/Projects/Scott-River-Coho
https://doi.org/10.1029/2021GL094985
https://doi.org/10.1007/s11625-014-0269-1
https://doi.org/10.5066/P9X4L3GE
https://doi.org/10.1787/450154556467
https://doi.org/10.1787/450154556467
https://doi.org/10.1007/s40641-018-0093-2
https://doi.org/10.1073/pnas.1422385112
https://doi.org/10.1073/pnas.1422385112
https://doi.org/10.3733/ca.v054n06p46
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1038/nclimate2425
https://doi.org/10.1061/(ASCE)0733-9496(2004)130{\%}3A4(301)
https://doi.org/10.1061/(ASCE)0733-9496(2004)130{\%}3A4(301)
https://doi.org/10.3733/ca.2018a0011
https://doi.org/10.7930/J0G44N6T
https://doi.org/10.7930/J0G44N6T


Bibliography 75

Gleick, Peter H. and Elizabeth L. Chalecki (1999). “THE IMPACTS OF CLIMATIC
CHANGES FOR WATER RESOURCES OF THE COLORADO AND SACRAMENTO-
SAN JOAQUIN RIVER BASINS”. In: JAWRA Journal of the American Water Re-
sources Association 35.6, pp. 1429–1441. ISSN: 1093474X. DOI: 10.1111/j.1752-
1688.1999.tb04227.x.

Gleick, Peter H. and Meena Palaniappan (2010). “Peak water limits to freshwater
withdrawal and use”. In: Proceedings of the National Academy of Sciences of the United
States of America 107.25, pp. 11155–11162. DOI: 10.1073/pnas.1004812107.

Godsey, S. E., J. W. Kirchner, and C. L. Tague (2014). “Effects of changes in winter
snowpacks on summer low flows: case studies in the Sierra Nevada, California,
USA”. In: Hydrological Processes 28.19, pp. 5048–5064. ISSN: 0885-6087. DOI: 10.
1002/hyp.9943.

Greenwel, Brandon, Bradley Boehmke, and Jay Cunningham (2020). gbm R-Package.
URL: https://github.com/gbm-developers/gbm.

Harter, Thomas and Helen E. Dahlke (2014). “Out of sight but not out of mind: Cal-
ifornia refocuses on groundwater”. In: California Agriculture 68.3, pp. 54–55. ISSN:
0008-0845. DOI: 10.3733/ca.v068n03p54.

Hastie, Trevor, Jerome Friedman, and Robert Tibshirani (2001). “The Elements of
Statistical Learning”. In: DOI: 10.1007/978-0-387-21606-5.

Helsel, Dennis R. and Robert M. Hirsch (2002). Statistical methods in water resources:
Hydrologic Analysis and Interpretation. DOI: 10.3133/twri04A3.

Jasechko, Scott et al. (2021). “Widespread potential loss of streamflow into under-
lying aquifers across the USA”. In: Nature 591.7850, pp. 391–395. DOI: 10.1038/
s41586-021-03311-x.

Kapnick, Sarah and Alex Hall (2012). “Causes of recent changes in western North
American snowpack”. In: Climate Dynamics 38.9-10, pp. 1885–1899. ISSN: 0930-
7575. DOI: 10.1007/s00382-011-1089-y.

Khalil, B. and J. Adamowski (2012). “Record extension for short-gauged water qual-
ity parameters using a newly proposed robust version of the Line of Organic Cor-
relation technique”. In: Hydrology and Earth System Sciences 16.7, pp. 2253–2266.
DOI: 10.5194/hess-16-2253-2012.

Kim, Jong-Suk and Shaleen Jain (2010). “High-resolution streamflow trend analysis
applicable to annual decision calendars: a western United States case study”. In:
Climatic Change 102.3-4, pp. 699–707. ISSN: 0165-0009. DOI: 10.1007/s10584-010-
9933-3.

Kruskal, William H. (1953). “On the Uniqueness of the Line of Organic Correlation”.
In: Biometrics.

Lane, Belize A. et al. (2018). “Beyond Metrics? The Role of Hydrologic Baseline
Archetypes in Environmental Water Management”. In: Environmental management
62.4, pp. 678–693. DOI: 10.1007/s00267-018-1077-7.

Lee, Robert and Josh Roberti (2018). RNRCS: Download NRCS Data. URL: https :
//CRAN.R-project.org/package=RNRCS.

https://doi.org/10.1111/j.1752-1688.1999.tb04227.x
https://doi.org/10.1111/j.1752-1688.1999.tb04227.x
https://doi.org/10.1073/pnas.1004812107
https://doi.org/10.1002/hyp.9943
https://doi.org/10.1002/hyp.9943
https://github.com/gbm-developers/gbm
https://doi.org/10.3733/ca.v068n03p54
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.3133/twri04A3
https://doi.org/10.1038/s41586-021-03311-x
https://doi.org/10.1038/s41586-021-03311-x
https://doi.org/10.1007/s00382-011-1089-y
https://doi.org/10.5194/hess-16-2253-2012
https://doi.org/10.1007/s10584-010-9933-3
https://doi.org/10.1007/s10584-010-9933-3
https://doi.org/10.1007/s00267-018-1077-7
https://CRAN.R-project.org/package=RNRCS
https://CRAN.R-project.org/package=RNRCS


76 Bibliography

Li, Dongyue et al. (2017). “How much runoff originates as snow in the western
United States, and how will that change in the future?” In: Geophysical Research
Letters 44.12, pp. 6163–6172. ISSN: 0094-8276. DOI: 10.1002/2017GL073551.

Liu, Zhu et al. (2021). “Identifying climate change impacts on surface water supply
in the southern Central Valley, California”. In: The Science of the total environment
759, p. 143429. DOI: 10.1016/j.scitotenv.2020.143429.

Luce, C. H. and Z. A. Holden (2009). “Declining annual streamflow distributions
in the Pacific Northwest United States, 1948–2006”. In: Geophysical Research Letters
36.16. ISSN: 0094-8276. DOI: 10.1029/2009GL039407.

Mann, Michael E. and Peter H. Gleick (2015). “Climate change and California drought
in the 21st century”. In: Proceedings of the National Academy of Sciences of the United
States of America 112.13, pp. 3858–3859. DOI: 10.1073/pnas.1503667112.

Meko, David M., Connie A. Woodhouse, and Ramzi Touchan (2014). “Klamath/San
Joaquin/Sacramento Hydroclimatic Reconstructions from Tree Rings”. In.

Mote, Philip W. (2006). “Climate-Driven Variability and Trends in Mountain Snow-
pack in Western North America”. In: American Meterological Society.

Mote, Philip W. et al. (2005). “Declining Mountain Snowpack in Western America”.
In: Bulletin of the American Meteorological Society.

Mote, Philip W. et al. (2018). “Dramatic declines in snowpack in the western US”. In:
npj Climate and Atmospheric Science 1.1, p. 4384. DOI: 10.1038/s41612-018-0012-1.

Moyle, Peter B. et al. (2013). “Climate change vulnerability of native and alien fresh-
water fishes of California: a systematic assessment approach”. In: PloS one 8.5,
e63883. DOI: 10.1371/journal.pone.0063883.

NASA (15.02.2022). World of Change: Global Temperatures. URL: https://earthobservatory.
nasa.gov/world-of-change/decadaltemp.php.

Nolan, Riley (2021). Scott River and Shasta River Curtailment Response Assistance Webi-
nar. Ed. by California Water Boards.

Pathak, Tapan et al. (2018). “Climate Change Trends and Impacts on California Agri-
culture: A Detailed Review”. In: Agronomy 8.3, p. 25. DOI: 10.3390/agronomy8030025.

Pebesma, Edzer (2018). Simple Features for R: Standardized Support for Spatial Vector
Data. DOI: 10.32614/RJ-2018-009.

Power, Mary E. et al. (2015). “The Thirsty Eel: Summer and Winter Flow Thresh-
olds that Tilt the Eel River of Northwestern California from Salmon-Supporting to
Cyanobacterially Degraded States”. In: Copeia 103.1, pp. 200–211. ISSN: 0045-8511.
DOI: 10.1643/CE-14-086.

R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna,
Austria. URL: https://www.R-project.org/.

Ransom, Katherine M. et al. (2017). “A hybrid machine learning model to predict and
visualize nitrate concentration throughout the Central Valley aquifer, California,
USA”. In: The Science of the total environment 601-602, pp. 1160–1172. DOI: 10.1016/
j.scitotenv.2017.05.192.

https://doi.org/10.1002/2017GL073551
https://doi.org/10.1016/j.scitotenv.2020.143429
https://doi.org/10.1029/2009GL039407
https://doi.org/10.1073/pnas.1503667112
https://doi.org/10.1038/s41612-018-0012-1
https://doi.org/10.1371/journal.pone.0063883
https://earthobservatory.nasa.gov/world-of-change/decadaltemp.php
https://earthobservatory.nasa.gov/world-of-change/decadaltemp.php
https://doi.org/10.3390/agronomy8030025
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1643/CE-14-086
https://www.R-project.org/
https://doi.org/10.1016/j.scitotenv.2017.05.192
https://doi.org/10.1016/j.scitotenv.2017.05.192


Bibliography 77

Rhoades, Alan M., Paul A. Ullrich, and Colin M. Zarzycki (2018). “Projecting 21st
century snowpack trends in western USA mountains using variable-resolution
CESM”. In: Climate Dynamics 50.1-2, pp. 261–288. ISSN: 0930-7575. DOI: 10.1007/
s00382-017-3606-0.

Richman, Michael B. and Lance M. Leslie (2015). “Uniqueness and Causes of the
California Drought”. In: Procedia Computer Science 61, pp. 428–435. ISSN: 18770509.
DOI: 10.1016/j.procs.2015.09.181.

Schapire, Robert E. (2003). “The Boosting Approach to Machine Learning: An Overview”.
In: Nonlinear Estimation and Classification. Ed. by P. Bickel et al. Vol. 171. Lecture
Notes in Statistics. New York, NY: Springer New York, pp. 149–171. ISBN: 978-0-
387-95471-4. DOI: 10.1007/978-0-387-21579-2{\textunderscore}9.

Siskiyou County Flood Control and Water District Groundwater Sustainability Agency
(2021). “Scott River Valley Groundwater Sustainability Plan (Public Draft)”. In:
URL: https://www.co.siskiyou.ca.us/naturalresources/page/sustainable-
groundwater-management-act-sgma.

Sorooshian, Soroosh, Amir AghaKouchak, and Jialun Li (2014). “Influence of irri-
gation on land hydrological processes over California”. In: Journal of Geophysical
Research: Atmospheres 119.23, pp. 13,137–13,152. ISSN: 2169-897X. DOI: 10.1002/
2014JD022232.

Stewart, Iris T., Daniel R. Cayan, and Michael D. Dettinger (2005). “Changes toward
Earlier Streamflow Timing across Western North America”. In: Journal of Climate
18.8, pp. 1136–1155. ISSN: 0894-8755. DOI: 10.1175/JCLI3321.1.

Swain, Daniel L. (2015). “A tale of two California droughts: Lessons amidst record
warmth and dryness in a region of complex physical and human geography”. In:
Geophysical Research Letters 42.22, pp. 9999–10,003. ISSN: 0094-8276. DOI: 10.1002/
2015GL066628.

Tabidian, M. and Darryll T. Pederson (1995). “IMPACT OF IRRIGATION WELLS
ON BASEFLOW OF THE BIG BLUE RWER, NEBRASKA”. In: JAWRA Journal of
the American Water Resources Association 31.2, pp. 295–306. ISSN: 1093474X. DOI:
10.1111/j.1752-1688.1995.tb03381.x.

Tang, Q., E. A. Rosenberg, and D. P. Lettenmaier (2009). “Use of satellite data to
assess the impacts of irrigation withdrawals on Upper Klamath Lake, Oregon”.
In: Hydrology and Earth System Sciences 13.5, pp. 617–627. DOI: 10.5194/hess-13-
617-2009.

Thomas, Brian F. et al. (2017). “GRACE Groundwater Drought Index: Evaluation of
California Central Valley groundwater drought”. In: Remote Sensing of Environment
198, pp. 384–392. ISSN: 00344257. DOI: 10.1016/j.rse.2017.06.026.

Tolley, D., L. Foglia, and T. Harter (2019). “Sensitivity Analysis and Calibration of an
Integrated Hydrologic Model in an Irrigated Agricultural Basin With a Groundwater–
Dependent Ecosystem”. In: Water Resources Research 55.9, pp. 7876–7901. ISSN:
00431397. DOI: 10.1029/2018WR024209.

https://doi.org/10.1007/s00382-017-3606-0
https://doi.org/10.1007/s00382-017-3606-0
https://doi.org/10.1016/j.procs.2015.09.181
https://doi.org/10.1007/978-0-387-21579-2{\textunderscore }9
https://www.co.siskiyou.ca.us/naturalresources/page/sustainable-groundwater-management-act-sgma
https://www.co.siskiyou.ca.us/naturalresources/page/sustainable-groundwater-management-act-sgma
https://doi.org/10.1002/2014JD022232
https://doi.org/10.1002/2014JD022232
https://doi.org/10.1175/JCLI3321.1
https://doi.org/10.1002/2015GL066628
https://doi.org/10.1002/2015GL066628
https://doi.org/10.1111/j.1752-1688.1995.tb03381.x
https://doi.org/10.5194/hess-13-617-2009
https://doi.org/10.5194/hess-13-617-2009
https://doi.org/10.1016/j.rse.2017.06.026
https://doi.org/10.1029/2018WR024209


78 Bibliography

Trenberth, K. E. (2011). “Changes in precipitation with climate change”. In: Climate
Research 47.1, pp. 123–138. ISSN: 0936-577X. DOI: 10.3354/cr00953.

van Kirk, Robert W. and Seth W. Naman (2008). “Relative Effects of Climate and
Water Use on Base-Flow Trends in the Lower Klamath Basin”. In: JAWRA Journal
of the American Water Resources Association 44.4, pp. 1035–1052. ISSN: 1093474X.
DOI: 10.1111/j.1752-1688.2008.00212.x.

van Vliet, Michelle T.H. et al. (2013). “Global river discharge and water temperature
under climate change”. In: Global Environmental Change 23.2, pp. 450–464. ISSN:
09593780. DOI: 10.1016/j.gloenvcha.2012.11.002.

Vano, Julie A., Bart Nijssen, and Dennis P. Lettenmaier (2015). “Seasonal hydrologic
responses to climate change in the P acific N orthwest”. In: Water Resources Research
51.4, pp. 1959–1976. ISSN: 00431397. DOI: 10.1002/2014WR015909.

Wickham, Hadley (2016). ggplot2: Elegant graphics for data analysis. Switzerland. DOI:
10.1007/978-3-319-24277-4.

Wickham, Hadley et al. (2019). Welcome to the Tidyverse. DOI: 10.21105/joss.01686.
Williams, A. Park, Benjamin I. Cook, and Jason E. Smerdon (2022). “Rapid inten-

sification of the emerging southwestern North American megadrought in 2020–
2021”. In: Nature Climate Change. ISSN: 1758-678X. DOI: 10.1038/s41558- 022-
01290-z.

Williams, A. Park et al. (2020). Large contribution from anthropogenic warming to an
emerging North American megadrought (NCEI Accession 0209529). DOI: 10.25921/
2VBE-8092.

Xiao, Mu, Bradley Udall, and Dennis P. Lettenmaier (2018). “On the Causes of De-
clining Colorado River Streamflows”. In: Water Resources Research 54.9, pp. 6739–
6756. ISSN: 00431397. DOI: 10.1029/2018WR023153.

Yarnell, Sarah M. et al. (2015). “Functional Flows in Modified Riverscapes: Hydro-
graphs, Habitats and Opportunities”. In: BioScience 65.10, pp. 963–972. ISSN: 0006-
3568. DOI: 10.1093/biosci/biv102.

Zhang, Yongqiang et al. (2016). “Multi-decadal trends in global terrestrial evapo-
transpiration and its components”. In: Scientific reports 6, p. 19124. DOI: 10.1038/
srep19124.

https://doi.org/10.3354/cr00953
https://doi.org/10.1111/j.1752-1688.2008.00212.x
https://doi.org/10.1016/j.gloenvcha.2012.11.002
https://doi.org/10.1002/2014WR015909
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.21105/joss.01686
https://doi.org/10.1038/s41558-022-01290-z
https://doi.org/10.1038/s41558-022-01290-z
https://doi.org/10.25921/2VBE-8092
https://doi.org/10.25921/2VBE-8092
https://doi.org/10.1029/2018WR023153
https://doi.org/10.1093/biosci/biv102
https://doi.org/10.1038/srep19124
https://doi.org/10.1038/srep19124

	Declaration of Authorship
	Abstract
	Introduction
	Introduction
	Related Work
	Research Approach & Objectives

	Study Area
	Study Area

	Methods
	Data Overview and Seperation into Timeframes
	Precipitation and Vapor Pressure Deficit
	Snow
	Streamflow
	Trend Hypothesis Analysis
	Attribute Summer Flow Decline to Climate Change and Agriculture
	Boosted Regression Trees
	First Day No Snow

	Results & Discussion
	Precipitation Trends
	Vapor Pressure Deficit Trends
	April 1 SWE Trends
	Streamflow Trends
	Attribute Summer Flow Decline to Climate Change and Agriculture
	Boosted Regression Trees
	First Day no Snow
	Implications for Fish
	Management

	Conclusion
	Conclusion

	Appendix Streamflow Trend Graphics
	Streamflow

	Appendix SWE Trend Graphics
	April 1 SWE snow courses

	Appendix Precipitation Trend Graphics
	Precipitation

	Appendix Maximum Vapor Pressure Deficit Trend Graphics
	Maximum Vapor Pressure Deficit

	Bibliography

