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Abstract

Forest fires affect hydrology in number of ways ranging from making the soil hydropho-

bic to removing the canopy and thus raising energy inputs to a below-canopy surface.

There is a range of approaches to study the impact of canopy removal on streamflow.

In this study, a model based change detection approach was implemented in order to

evaluate the impact of the McLure Forest Fire on the streamflow of Fishtrap Creek,

which burned 60% of the catchment in the summer of 2003. Following the fire, the

burned area was salvage logged. Apart from the change detection, a second aim was to

evaluate the uncertainty linked to the change of forest cover through time. Six different

land cover data sets representing forest cover for the whole pre-fire study period from

1970 to 2003 were used to calibrate an HBV-EC model family for Fishtrap Creek using

two different calibration algorithms. By comparing resultant calibrated parameter sets,

it was shown that the different calibration sets led to a substantial variability in pa-

rameters. This indicates that the specification of land cover can be a significant source

of parameter uncertainty. The model with the best performance was then selected to

be used in the change detection analysis. For this purpose, a regression model was

fitted between observed and simulated discharge using only pre-fire data. With the

help of this regression model post-fire streamflow was predicted in order to simulate a

non disturbed runoff. By comparing the simulated and observed time series, an earlier

onset of the melt seasons with no increase in peak flows was identified, with a higher

consistency following the salvage logging. Two more regression models were set up in

order to test the effect of the fire statistically. The ”full” model accounted for the effect

of the period (pre-fire and post-fire), the ”reduced” model was based on the discharge

values. When comparing them by an ANOVA, two main periods of change were iden-

tified: early winter linked to pre-harvest runoff events and early spring freshet linked

to post-harvest events. Apart from these melt dominated seasons, no change in runoff

was detected.



Zusammenfassung

Waldbrände beeinflussen die Hydrologie eines Einzugsgebietes in verschiedenster Weise,

von der Hydrophobisierung der Böden bis hin zum Entfernen der Baumkrone, wodurch

eine erhöhte Energiezufuhr in das System ermöglicht wird. Es existieren viele verschie-

dene Methoden, um die Auswirkungen von Waldbränden und Holzernte zu untersuchen.

In dieser Masterarbeit wird ein modellbasiertes Verfahren angewendet um die Ände-

rung im Abfluss nach einem Waldbrand zu evaluieren. Es werden die Auswirkungen

des McLure Forest Fires auf das Einzugsgebiet des Fishtrap Creek untersucht, welches

im Jahr 2003 zu 60% abbrannte. In den folgenden zwei Jahren wurde das Einzugsge-

biet zusätzlich zu dem Waldbrand, durch das Abernten der verbrannten Flächen noch

weiter beeinflusst. Neben dieser Evaluation wurde in der vorliegenden Arbeit die Aus-

wirkung von veränderter Landnutzung während des Modellierungszeitraumes auf die

Modellperformance untersucht. Hierfür wurden sechs verschiedene Landnutzungsdaten-

sätze, die den gesamten Modellierungszeitraum von 1970 bis 2003 abdecken, genutzt

um mithilfe zweier verschiedener Algorithmen eine HBV-EC basierte Modellfamilie zu

kalibrieren. Im Vergleich der kalibrierten Parametersätze zeigte sich eine hohe Varia-

bilität die mit den verschiedenen Landnutzungsdaten verknüpft werden kann und als

bisher nicht untersuchte Ursache für Parameterunsicherheit interpretiert wurde. Um

die Änderungen im Abfluss zu evaluieren, wurde das am besten kalibrierte Modell aus

der Modellfamilie gewählt. Anhand dessen wurde ein Regressionsmodel zwischen den

observierten und simulierten Daten auf den Zeitraum vor dem Waldbrand kalibriert.

Mithilfe dieses Modells wurde für den Zeitraum nach dem Waldbrand Abfluss für ein

ungestörtes Einzugsgebiet simuliert. Im Vergleich des simulierten Abflusses mit dem

gemessenen Abfluss konnte eine vorzeitige schmelzwasserdominierte Hochwasserspitze

ausgemacht werden. Eine Vergrößerung des maximalen Abflusses wurde nicht sichtbar.

Dieser Effekt zeigte sich verstärkt nach dem die Waldbrandflächen abgeholzt wurden.

Anhand zwei weiterer Regressionsmodelle wurde die Auswirkung des Waldbrandes sta-

tistisch überprüft. Eine ANOVA wurde zwischen den beiden Modellen durchgeführt,

wobei ein Modell den Einfluss des Zeitraumes (vor dem Waldbrand im Vergleich zu

nach dem Waldbrand) berücksichtigte, während das zweite lediglich den Zusammen-

hang zwischen Abflüssen berücksichtigt. Hier zeigte sich, dass besonders zwei Zeiträume

beeinflusst wurden: im frühen Winter passend zu den erhöhten Abflüssen vor der Ab-

holzung und der Zeitraum der vorzeitigen Schmelzwasserabflüsse im Frühling. Neben

diesen beiden Perioden zeigte die statische Auswirkung keine weiteren beeinflussten

Zeiträume.
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1Introduction

Forests influence hydrology in a number of key ways. Forests generally have higher inter-

ception loss and transpiration compared to open sites with low vegetation (Rothacher,

1963; Hewlett, 1961). Through the effects of shading and sheltering from the wind,

forests reduce energy inputs to a below-canopy snow surface and reduce melt rates

(Winkler et al., 2005). Forest soils, especially in temperate climatic zones, typically

have sufficiently high infiltration capacities. This means that infiltration-excess over-

land flow rarely, if ever, occurs at undisturbed sites (Cheng, 1988; Wondzell & King,

2003).

Reduction or removal of forest canopies modifies processes such as interception loss

and snow dynamics, which, in turn, modifies streamflow patterns (Winkler et al., 2005;

Dhakal & Sidle, 2004). In addition, forest disturbance, harvesting, and other related

activities can modify runoff generation processes. For example, intense fires can make

the soil hydrophobic and they increase the risk of infiltration-excess overland flow, at

least for the first year or two following the fire. Letey (2001) concluded forest fires can

make soil hydrophobic by producing volatile organic gases, which condense in cooler

layers below the surface. Although it has been shown, that post wildfire response is

linked to the varying alteration of the soil. Bento-Gonçalves et al. (2012) studied erosion

following wildfires and found low erosion values within a year after the fire. They linked

the low erosion to the duff coverage being only partially consumed while the remaining

duff provided detention storage, therefore preventing surface flow.

Logging practices such as yarding with skidders can cause soil compaction, which en-

hances overland flow production (La Marche & Lettenmaier, 2001; Jones et al., 2000) .

Logging roads modify runoff generation in two ways: first, their surfaces tend to have

low infiltration capacity and thus generate overland flow on a regular basis (Tague &

Band, 2001) and, second, roads and their ditches tend to intercept subsurface storm-

flow, convert it to overland flow in the ditch or over the road surface (Sidle & Onda,

2004). Depending on the connectivity of the road and the drainage network to the

channel network, road-related overland flow may be routed more rapidly to a channel,

thus generating a flashier hydrograph response and higher peak flows (La Marche &

Lettenmaier, 2001).

Decades of research has focused on the effects of forest disturbance and harvesting on

streamflow, and has led to a number of generalizations. Disturbance and harvesting

generally increase annual water yield and also increase late summer-autumn baseflow.

Also, peak flows typically increase, although the magnitude, frequency and persistence

of effects varies on both catchment characteristics and the spatial pattern of distur-
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bance/harvesting intensity in the catchment.

In medium to large catchments (e.g., 10 to 100 km2 and larger), forest cover conditions

are rarely uniform. Instead, there is typically a mosaic of stands of different ages, species

and tree densities that reflects the spatial and temporal patterns of disturbance and

harvesting within a catchment. This shifting nature of forest cover within a catchment

has implications for hydrologic modelling. Most hydrologic models treat land cover

characteristics as static, despite the fact that they can change substantially over decadal

time scales. When calibrating a model, using land cover information from one point in

time may result in biased parameters. It may be that different parameter sets would

result from using land cover determined at different times during the calibration period,

introducing a source of parameter uncertainty on top of those associated with model

structure and errors in input and streamflow data, which have been the focus of much

research over the last two decades. Beven (1989) and Beven (1993) pointed out the

importance of respecting the limitations of hydrological models and of keeping in mind

model uncertainty, which is linked to the heterogeneous reality and input data.

In small headwater catchments (e.g., up to a few km2 in area), paired-catchment

studies have been successfully used to estimate the effects of forest cover changes on

streamflow (Bates, 1921; Hewlett, 1982; Owens et al., 2006). The paired catchment

approach utilizes two catchments located near each other and being a similar in land

use, climate, size and physiogeography (Hewlett, 1971). A statistical relationship is

established between the catchment outlet responses before treatments are applied to

one catchment. The control catchment remains undisturbed and is used to account

for meteorological influences. When looking at larger catchments, finding a nearby

catchment which would be sufficiently similar in characteristics such as hypsometry,

soils, geology, vegetation and exposure to the same weather systems and then being

able to use it as a control in a paired catchment study is rare. And it is even rarer to find

a potentially useful control catchment that is gauged. Therefore, our understanding

of the effects of forest cover changes on streamflow is not as developed as that for

headwater catchments.

Recognizing these challenges to applying the paired-catchment approach to medium

to large catchments, a number of researchers have advocated the use of simulation

models. Some researchers have applied a process-based model using different forest

cover scenarios (e.g., fully forested versus partially harvested) and then assumed that

the difference between the simulations is a valid estimate of the effect of forest harvest-

ing (Schnorbus & Alila, 2013). Seibert & McDonnell (2010) calibrated a hydrological

model to different periods before and after a forest fire, and interpreted differences in

the calibrated parameters in relation to hydrologic changes associated with the fire.

Bowling et al. (2000) calibrated a model to a period with relatively slow forest cover

change and then ran the model for the entire period using those calibrated parameters.
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They then conducted a paired-catchment analysis by treating the simulated stream-

flows as a ”virtual control.” The analysis was conducted using streamflow measures at

an annual time step, so temporal autocorrelation should not have been an issue. Ze-

gre et al. (2010) used a model in a similar way but, owing to the short periods of

record available, analyzed daily time series, for which temporal autocorrelation cannot

be ignored. To address this problem, they applied generalized least squares regression,

which can explicitly incorporate the effects of autocorrelation.

The objective of this research is two-fold. The first is to explore the magnitude of

parameter uncertainty associated with uncertainty in or lack of accounting for forest

cover changes through time. The second is to quantify the effects of a severe wildfire and

follow-up salvage logging on streamflow in a snow-dominated catchment. To accomplish

the second objective, a new variation on model-based change detection is developed and

applied.

3



2Method

2.1 Study site description

The study focused on Fishtrap Creek, which drains into the North Thompson River

southwest of Barriére, British Columbia. Fishtrap Creek and its main tributary Skull

Creek drain a rolling hill plateau in the headwaters with steep incised slopes along

the lower reaches of both creeks. The catchment vegetation is dominated by the Mon-

tane Spruce biogeoclimatic zone. The hydrologic regime is snow-dominated, with the

spring freshet typically beginning late March to mid-April and extending into June or

July. Following the freshet, the hydrograph is dominated by a gradual recession from

late summer to late winter, with occasional responses to late-summer or autumn rain

events.

Water Survey of Canada has maintained a streamflow gauging station, ”Fishtrap Creek

near McLure”, instrumented with a concrete v-notch weir. At the gauging station, the

catchment area is 140 km2. Elevation within the catchments ranges from 610 m at the

weir to 1660 m (Figure 2.1).

In August 2003, the McLure Forest Fire burnt an area of over 260 km2 southwest of

the city of Barrière (Eaton et al., 2010). It was classified as a Rank 6 fire, which is

the highest and most hazardous category in the BC Wildfire Services Wildfire Rank.

The fire spread over 62% of the area of the Fishtrap Creek Catchment, which was

severely burned. The burned area includes the riparian zone along the lower reaches.

Subsequent to the forest fire in 2003, salvage logging occurred on an area estimated as

20% of the catchment in 2004 to 2005 (Owens et al., 2013).

2.2 Data

In this section basic information, gathering and preparation of data will be discussed.

2.2.1 Hydrometeorological Data

Daily streamflow data are available from September 1970 to present, and were down-

loaded from Environment Canada. Water Survey of Canada quality checks all stream-

flow data prior to publication. Missing values due to technical failure and ice conditions

are estimated by interpolation, extrapolation, comparison with other streams or by cor-

relation with meteorological data. Infilled data due to ice conditions are coded as ”B”;
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2.2. Data
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Figure 2.1: Digital Elevation Model of Fishtrap Creek Catchment with catchment
outline

other estimated values are coded as ”E.”A total of 1591 missing values and 143 partially

missing daily values were present in the streamflow record.

Table 2.1 summarizes the parameters measured and periods of records for weather

stations located near Fishtrap Creek. The McLure station was chosen because of its

proximity to the catchment and the relatively long record. To infill gaps in precipita-

tion and temperature, data collected at the stations Barrière, Darfield and Kamloops

Airport were used. All are located within the North Thompson River valley east and

southeast of the catchment and are operated by Meteorological Service of Canada. For

missing data at the McLure station, a regression model was used to predict precipita-

tion and temperature at McLure station based on values at the other stations. Separate

regression models were fit for each month.

Another input variable required for hydrological modelling is potential evapotranspi-

ration data, which was calculated within the Raven hydrological framework, described

in section 2.3. The evapotranspiration is calculated by using the empirical Hamon

Equation Hamon (1961), which utilizes monthly mean and daily temperature as fol-

lows:
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2.2. Data

Figure 2.2: Extension of the McLure Forest Fire, altered from Owens et al. (2013)

PET = 1115 ∗
esat ∗ L2

d

Tave
(2.1)

where esat is the saturated vapor pressure [kPa], Tave the daily temperature [K], Ld

is the day length [d].

2.2.2 Spatial Data

To determine hydrological response units for modelling, elevation and land cover data

are required. For elevation, the Canadian Digital Elevation Model was used. It can be

downloaded from the Natural Resources Canadas Website. The catchment outline was

derived from a shapefile provided by Water Survey of Canada.
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2.3. Model

Table 2.1: Hydrometeorological Data

Station Climate-ID Parameter Range Missing Values

McLure 1165030 Temperature 01.10.1983 - 29.11.2009 303
Precipitation 01.04.1967 - 29.11.2009 303

Barrière 1160670 Temperature 12.11.1955 - 31.10.1996 1126
Precipitation 12.11.1955 - 31.10.1996 1126

Darfield 1162265 Temperature 17.11.1962 - 13.11.2015 62
Precipitation 01.04.1956 - 13.11.2015 62

Kamloops Airport 1163780 Temperature 01.01.1951 - 12.06.2013 0
Precipitation 01.01.1951 - 12.06.2013 0

Land cover was represented as three different classes: forest, open and lake. Six aerial

photograph data sets from 1974, 1981, 1986, 1990, 1995 and 2000 were used to map

forest cover by M. Chuang (pers. comm.). Chuang distinguished three forest cover

types: fresh clearcut, young forest and old forest. In this study, the young forest and

old forest were grouped together.

Lakes were classified using shapefiles downloaded from the Atlas of Canada, an online

data base for multiple spatial data by Natural Resources Canada. Remaining areas,

not classified as forest or lake, were defined as open areas. By combining the three land

cover types, an area-wide continuous shape file was created.

Hydrological response units (HRUs) for modelling were defined using the DEM and

rasterized land-cover data. HRU classes are defined based on elevation band (in 100 m

steps), slope and aspect (computed from the DEM) and the land cover classes. Aspect

was categorized following three classes: less than 20◦, between 20◦ and 45◦ and steeper

than 45◦. For the slope, HRUs were categorized as facing North (0◦ to 180◦) or South

(180◦ to 360◦). A focal filter was used to lower the resolution in order to reduce the

number of resulting HRU’s to reduce computation times. Figure 2.3 shows the resulting

HRU for 1974 land cover as an example.

2.3 Model

This study used an emulation of HBV-EC, which is Environment Canada’s version of

Hydrologiska Byr̊ans Vattenbalansavdelning model (HBV) (Bergström et al., 1995) and

its structure is described in detail in Hamilton et al. (2000). It is a semi-distributed

lumped parameter precipitation-runoff model. Required parameters are listed in Table

2.2.

The model operates on a daily time step. Precipitation and temperature are extrap-
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2.3. Model

Figure 2.3: Hydrologic Response Units;Exemplary result from processing spatial data
using 1974 land cover; Colors responding to a combined parameter value
derived from

olated from the weather station to the center of each HRU to include lapse rate effects.

The model accounts for interception loss from forest canopy, and simulates the accu-

mulation and melt of snow, including calculation of snowpack cold content and water

retention. Snow melt is computed using a temperature-index approach, with the melt

factor allowed to vary as a function of time of year, land cover, and slope-aspect. Rain

and/or meltwater are added to the soil moisture storage. The soil routine regulates

drainage based on the ratio of soil moisture to field capacity, and evapotranspiration is

a function potential evapotranspiration and the ratio of soil moisture to field capacity.

Drainage of water from the soil moisture storages for each HRU is routed through

lumped reservoirs. In the configuration used here, the model features two parallel

reservoirs. The fast reservoir, which can be nonlinear depending on the value of a

coefficient, represents fast flow paths such as overland flow and shallow subsurface flow,

8



2.3. Model

Table 2.2: Parameter used in the Raven Emulation of HBV-EC

Parameter Description

RFCF Rainfall correction factor
SFCF Snowfall correction factor
TFrain Fraction of rainfall not lost ot interception
TFsnow Fraction of snowfall not lost ot interception
Tlapse Temperature lapse rate
TT Threshold temperature limit for snow/rain [◦C]
TTi Temperature interval for mixture of snow and rain [◦C]
Cmin Minimum Melt factor [mm/◦C/d]
Cmax Maximum Melt factor [mm/◦C/d]
MRF Ratio between the melt factor in forest to open areas
CRFR Melt factor for freezing of liquid water in snow
WHC Maximum liquid water content of snow
AM Aspect melt factor
FC Field capacity [mm]
Lp Limit for potential evaporation
β Exponent in soil drainage function
f Fraction of catchment contributing to slow runoff
K1 Outflow coefficient for fast reservoir
α Exponent in outflow for fast reservoir
K2 Outflow coefficient for slow reservoir
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2.4. Calibration and validation

while the slow reservoir conceptually represents baseflow associated with discharge of

deeper groundwater.

This study used an emulation of the HBV-EC model within the Raven modelling plat-

form Craig & the Raven development team (2016). The Raven platform has a flexible

structure that allows the user to build a model by choosing among a range of spatial

structures and process representations. Within Raven, model equations are framed as

differential equations that are solved using robust and fast numerical schemes.

2.4 Calibration and validation

In order to calibrate the model, two different approaches were used, Particle Swarm

Optimization (PSO) and Dynamically Dimensioned Search (DDS).

Particle Swarm Optimization (Kennedy & Eberhart, 1995) is a population based op-

timisation algorithm, which does not utilize selection like evolutionary algorithms. It

starts with a group of random parameters and searches optima by updating genera-

tions. It finds the best solution by adjusting the particles postion based on its own

and its companions’ position. The Dynamically Dimensioned Search Algorithm Tol-

son & Shoemaker (2007) is a search algorithm, which is designed for calibrations with

many parameters. It was demonstrated to be more efficient and more robust than

common evolutionary algorithms like SCE Duan et al. (1993) when using more than 10

parameters for watershed model calibration. DDS starts searching globally and then

transitions into a more local search towards the iteration limit defined by the user, by

dynamically reducing the number of dimensions in the neighborhood.

Both approaches were used to calibrate models using the six land cover data sets,

resulting in a model family of 12 calibrated models. The Nash-Sutcliffe Efficiency

(NSE, Nash & Sutcliffe (1970)) was used as an objective function for all calibrations.

The calibration procedures were executed within the Ostrich (Matott (2005) platform, a

multi algorithm and model independent optimization software application. To calibrate

the set-up Raven HBV-EC model, parameter ranges for all parameters were defined.

The objective function NSE was calculated by Raven and then evaluated by Ostrich to

determine model fit and select parameters for the next model run.

The calibration/validation procedure was based on a split sample approach, in which

the modelling period was split into a 2/3 calibration phase (1970 to 1992) and a 1/3

validation period (1992 to 2003).
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2.5. Change detection

2.5 Change detection

In the following section, the change detection approach is described. The method is

loosely based on the method presented in Zégre et al. (2010). In broad terms, the

approach involves calibrating a hydrological model to pre-disturbance data, then using

the calibrated model to simulate streamflow for both the pre- and post-disturbance

periods. The simulated streamflow is then treated as a ”virtual control” in a paired-

catchment analysis.

As a first step, each year was split into consecutive 5-day periods, and the simulated

and observed discharge series were averaged within each of the 73 5-day periods each

year. Averaging the runoff into these ”pentads” smooths out timing differences be-

tween the simulated and observed runoff, while retaining sufficient resolution to detect

changes in runoff timing of a week or more. Prior to the change detection analysis,

discharge was log-transformed in order to satisfy the assumptions underlying linear

regression, specifically linearity of the relation and homogeneity of variance. For each

of the pentads, observed discharge was regressed against simulated discharge for the

pre-fire period:

ypre = b0 + b1xpre + e (2.2)

where ypre is the log-transformed observed discharge for the pre-fire period, xpre is the

log-transformed simulated discharge for the pre-fire period, b0 and b1 are coefficients

estimated by ordinary least squares regression, and e is the residual.

The regression model was then used to generate a predicted time series of log-transformed

discharge:

ŷ = b0 + b1x (2.3)

where x is the log-transformed simulated discharge (for both pre- and post-fire pe-

riods). The value of ŷ represents, for the post-fire period, an estimate of what the

log-transformed discharge would have been had the fire not occurred.

To test statistically for the effect of the fire, two regression models were fit between the

observed log-transformed streamflow (y) and the log-transformed streamflow predicted

by the regression model. The first is a reduced model, which is consistent with the null

hypothesis that the fire and salvage logging did not influence streamflow:

ŷ = b0 + b1ŷ (2.4)
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2.5. Change detection

The second, called the ”full” model, includes a categorical variable to distinguish the

pre-fire and post-fire periods. In terms of R syntax, the model can be expressed as

follows:

ŷ ∼ ŷ ∗ period (2.5)

where period is a categorical variable with two values, representing the two data

periods, and the product ”∗” indicates that all main effects of both variables and all

their interactions are included. An analysis of variance (ANOVA) is conducted to

compare the two models. If the p-value of the test is less than 0.05, then the full model

explains significantly more variance than the reduced model, and the null hypothesis

is rejected. The accepted hypothesis is that the fire and/or the salvage logging had a

statistically significant influence on discharge for a given pentad.

Following the change detection, both time series were back-transformed to compare

the discharge time series. To account for transformation bias, the discharge series were

corrected following Baskerville (1972). Differences between predicted and observed

post-fire discharge are then compared to assess the direction and magnitude of change

in the streamflow regime after the forest fire.
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3Results

3.1 Overview of the studyperiod

In this section, a brief overview of the study period is given. The data presented here

was processed, as described in Section 2.2.
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Figure 3.1: Timeseries of hydrometeorological data; the upper part of the figurepanel
displays the daily temperature [◦C], Precipitation [mm] as blue bars and
Discharge [m3s−1] as cyan line are shown in the lower part; the continuous
vertical line marks the separation between calibration and validation while
the dashed line shows the period of the forest fire.
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3.1. Overview of the studyperiod

Figure 3.2: Landcover derived from the the six different datasets

Figure 3.1 presents time series of Hydrometeorological data used for the model cal-

ibration/testing and the change detection. The daily air temperature is illustrated in

the upper part, precipitation and streamflow in the lower part. The spring snowmelt

freshet is the dominant signal in the streamflow hydrograph, although there is substan-

tial variability in the timing and magnitude.

Figure 3.2 shows the forest cover interpreted from the air photographs. It is clear that

progressive forest harvesting and consequent regeneration produced substantial shifts

in forest cover conditions over the study period which, in turn, had a clear effect on

the HRUs (Figure 2.3).
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3.2. Calibration and Testing

3.2 Calibration and Testing

In the following section, results of the model calibration are displayed.
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Figure 3.3: Hydrograph comparison for the validation period; Each colour indicates
a different combination of optimization method and forest cover, and the
dashed line is observed streamflow

Each of the 12 models resulting from the different calibration methods generated

Nash-Sutcliffe efficiencies in the range 0.74 to 0.82 for calibration and 0.77 to 0.89

for validation (Table 3.1). Fig. 3.3 compares validation-period hydrographs of all

calibrated models. The reduction to the calibration period is due to visual reasons. All

model families generated similar hydrographs, with the greatest variability associated

with autumn rain events. In general, most of these events were overpredicted, while

a minority of the events were reproduced to a sufficient level, e.g. the autumn event

in 2001 and 1995. All models matched the timing and shape of the freshet period

hydrograph, but underestimated streamflow in winter. The freshet was underpredicted

or matched for most of the years, and only in 2000 and 2001 did the majority of

the models generate a peakflow higher than the observed. The underestimation of

streamflow in winter is consistent throughout the calibration period for all models and

streamflow is declining constantly from the last rain event in autumn until the first

peak in spring caused by the freshet.
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3.2. Calibration and Testing

Table 3.1: NSE values for calibration and validation periods

Calibration NSEcal NSEval

DDS1974 0.75 0.81
DDS1981 0.78 0.85
DDS1986 0.76 0.82
DDS1990 0.74 0.77
DDS1995 0.79 0.86
DDS2000 0.78 0.87
PSO1974 0.81 0.88
PSO1981 0.8 0.87
PSO1986 0.81 0.88
PSO1990 0.8 0.86
PSO1995 0.82 0.89
PSO2000 0.79 0.85

Figure 3.4 illustrates the variability of each parameter as a function of land cover and

calibration approach. To facilitate plotting on a single graph, the parameter estimates

were normalized as follows:

Pi∗ = Pi/max(Pi) (3.1)

where Pi represents the parameter estimate for a single combination of calibration

method and forest cover. With this scaling, a clustering of points near 1 indicates

little parameter variability, and an increasing range between 0 and 1 indicates higher

variability.

The parameters that influence precipitation – including the rainfall and snowfall cor-

rection factors (RFCF and SFCF ) and the throughfall fractions (TFrain and TFsnow)

– exhibit relatively little variability. Most of the other parameters exhibit substantial

variability, although it should be noted that the temperature thresholds for the rain-

snow transition (TT ) can take negative values, making the scaled values more difficult

to interpret. Some parameters tend to separate into clusters (e.g. Cmin and FC), while

no calibration method leads to a values in between those clusters. But overall, there

is no obvious separation based on the calibration method which would be either land

cover or algorithm related, which suggests that most of the parameter variability is

driven by the use of different forest covers to define HRUs.
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3.3. Change detection
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Figure 3.4: Comparison of parameter values generated by the different combinations of
optimization method and forest cover

3.3 Change detection

Figure 3.5 displays a sample of scatterplots of observed versus modeled discharge, both

in log-transformation. Each panel shows a pentad at the end of each month. The

regression fit for the pre-fire period is shown as a solid line, while the dashed lines are

the 95% prediction intervals. The pre-fire pentads, drawn as green dots, stay within

the 95% prediction interval in the majority of the scatterplots, as expected. The few

pre-fire predictions exceeding the 95% interval are outliers linked to high or low flows.

To evaluate the impact of salvage logging, post-fire predictions were separated into pre-

harvest and post-harvest predictions and drawn as yellow squares and red diamonds

respectively. All of the four post-harvest predictions in April and two years of high flow

in March show elevated values exceeding the 95% prediction and indicating an earlier

snow melt dominated peakflow in spring. In contrast, the pre-harvest points tend to

plot high from December to March, but follow the regression in spring and summer.

Figure 3.6 shows the results of the ANOVA change detection described in 2.5. The

upper part of the figurepanel shows r2 based on the pre-fire regression representing the

model fit, the lower panel shows the p-values of the ANOVA, the main part of the

change detection. The p-value drops below 0.05 for three periods, indicating a change

in the runoff regime for these pentads. The first and third drop are persistent for

multiple days and they both match the results of the scatterplots in Figure 3.5 for the

pre-harvest and post-harvest early melt periods respectively. The findings are weakened
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3.3. Change detection
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Figure 3.5: Sample of scatterplots of observed versus simulated discharge (both log-
transformed) for 12 pentads distributed throughout the year. The date
shown is the centre of the 5-day pentad. Green dots represent pre-fire data
(1970-2003), yellow squares are post-fire and pre-logging (2004, 2005) and
red diamonds are post-logging (2006-2009). The regression fit for the pre-
fire period is shown as a solid line and the dashed lines are 95% prediction
limits.
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3.3. Change detection

by the low r2 in late February and late April, indicating a bad model fit during the

early melt period.
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Figure 3.6: Results of the ANOVA change detection; the upper part of the figurepanel
shows R2 associated with the pre-fire regression; the lower part panel shows
the p-value of for the ANOVA

Figure 3.7 displays the pre-fire predictions and observed streamflow in the upper and

their difference in the lower panel. Both show the 95% prediction interval as a grey line.

The upper panel suggests that the predicted streamflow follows the observed stream-

flow and matches its timing while the observed streamflow does not exceed the 95%

prediction interval. The difference in models reveals the later prediction of peak flows in

1992 and 1997, while in other years peak flow is timed correctly but overpredicted (e.g.

1991,1993 and 2000). The difference does not exceed the 95% prediction interval.

Figure 3.8 presents the post-fire runoff, predicted streamflow and difference in the

same way as the pre-fire discharge in Figure 3.7. The post-harvest discharge shows

earlier peaks than the predicted runoff and an exceedance of 95% in 2006 and 2007.

The difference shows that there is not only an earlier melt, but also a longer period

of high flow. In the winter of 2004-2005 the observed runoff exceeded the prediction

interval beginning in December 2004 and showing two minor peaks in early 2005, while

the peak was overpredicted. In 2004 and 2008 relatively low peak flows occurred which

did not exceed the prediction interval.
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3.3. Change detection
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Figure 3.7: Predicted and observed streamflow in the pre-fire period, with 95% predic-
tion limits.
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3.3. Change detection

As seen in Figure 3.5, the post-fire data tend to plot higher than the pre-fire data

in late winter and through April. This result is confirmed by the ANOVA (Figure

3.6), which indicates the effect of the fire was statistically significant for those periods

at a 5% significance level. Consistent with these results, Figure 3.8 shows that, in

many years, the spring freshet began earlier than predicted with predicted flow in April

sometimes exceeding the 95% prediction limit. Of particular note is 2005, in which it

appears that warm weather in late winter generated early rises in the hydrograph that

are not apparent in the pre-fire period. By contrast, observed streamflow generally

remained within the 95% prediction limits for the pre-fire period, with a less consistent

occurrence of observed flow exceeding predicted on the rising limb of the freshet (Figure

3.8).
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4Discussion

This study demonstrated that many of the calibrated parameters in the HBV-EC model

are sensitive to which land cover from within the calibration period was used to set up

the model and define the HRUs. To the author’s knowledge, this source of uncertainty

has not been identified and quantified by previous research. Although time did not

allow an assessment of other sources of uncertainty in this study, it would be valuable

to extend the current study to quantify those other sources of uncertainty – model

structure, input data, and streamflow data – to provide a more complete understanding

of parameter uncertainty.

The finding that streamflow increases appeared to be confined to late winter and spring

is broadly consistent with the results of Eaton et al. (2010), who used a purely statistical

approach. They found an increase in annual runoff and a strong increase in April, but

no apparent change in peak flow. Eaton et al. (2010) hypothesized that the fire and

salvage harvesting desynchronized snowmelt runoff between disturbed and undisturbed

portions, such that snow in disturbed areas began melting earlier, and made less of

a contribution during May and early June, when most pre-fire peak flows occurred.

The results of this thesis provide further support for this hypothesis by showing that,

from May onward, there was no detectable increase in 5-day averaged streamflow. The

change detection approach applied in this study was successful in detecting periods of

increased streamflow in late winter and spring. However, the power of the test was

likely limited by the relatively weak pre-harvest regressions, especially in winter, and it

must be remembered that an inability to detect a change does not mean that a change

did not occur. The lack of power was caused by an inability of the calibrated model

to reproduce with high accuracy the interannual variations in streamflow. This was

especially the case in winter, when r2 dropped to about 0.5.

The changes of streamflow within the pre-harvesting, which differ from the changes in

the post-harvesting period might be linked to different reasons. The different findings

of effects of forest fire on soil hydrophobicity (Letey, 2001; Bento-Gonçalves et al., 2012)

makes these changes hard to interpret. They can be also linked to the high temperature

during the early winter of 2005.

Some of this uncertainty is likely associated with extrapolating precipitation data

from a valley bottom location to the higher elevations on the plateau, which dominate

the hydrology of Fishtrap Creek. However, some of the error is likely associated with

model structure – in particular, inability to reproduce winter baseflow. It would be

interesting to repeat this study using a different model, structured so as to reproduce

winter baseflow more accurately. Another avenue for potentially improving the model
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would be to use additional information to assist in calibration. For example, the Min-

istry of Forests, Lands and Natural Resource Operations has monitored snowpack water

equivalent at disturbed and undisturbed sites just outside the Fishtrap Creek catch-

ment (Winkler et al., 2005), and these could be used to help calibrate the parameters

governing snow accumulation and ablation.
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5Conclusions

5.1 Summary of key findings

5.1.1 Calibration

The HBV-EC model calibration using the DDS and PSO optimization algorithms with

six different land cover data sets resulted in a model family of 12 models. All of

them produced discharge of a similar regime, with minor differences in total volume.

Neither the land cover data set nor the calibration algorithm had a major effect on

daily discharge simulations. All combinations of land cover and optimization algorithm

tended to underestimate winter stream flows, likely because the model structure did

not represent the aquifer structure correctly. All calibrations accurately reproduced the

timing of the spring snow melt peak flow response, but underestimated the volume.

This analysis indicates that specification of land cover can be a significant source

of parameter uncertainty, in addition to the effects of uncertainties in meterological

and streamflow and model structure, which have been the subject of previous research

(e.g.,Beven (1993); Beven & Freer (2001)).

5.1.2 Change detection

The change detection method applied in this thesis successfully detected change in

the runoff regime of Fishtrap Creek after the McLure Forest Fire. The key changes

included an earlier onset of the spring freshet in many years, and statistically significant

higher streamflow between mid-March and early June. Streamflow changes were more

consistent in the years following extensive salvage logging. The lack of a significant

change in streamflow in late winter may reflect a lack of statistical power due to the

weaker pre-fire regressions for that period.

The model-based change detection method developed and applied in this study is

capable of detecting change in forest fire affected catchments, and shows promise as an

effective tool for medium to large scale catchments for which effective control catch-

ments are generally not available. The main challenge in applying the method is the

need for long and complete records of air temperature and precipitation from a single

weather station with a homogeneous record.
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5.2. Recommendations for further research

5.2 Recommendations for further research

The model-based change detection approach should be tested with different calibration

methods to explore further the magnitude of this source of uncertainty. In addition,

applying the approach with different model structures might improve its performance

by allowing a better fit to the pre-disturbance streamflow data.

Another avenue for further research would be to use a process-based model to sim-

ulate directly the effects of the disturbance by modifying the land cover and HRUs

to represent disturbed conditions. It would be interesting to compare simulations for

a disturbed land-cover scenario to those for a control scenario, with pre-disturbance

land cover to assess whether the model can reproduce the observed post-disturbance

streamflow.
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