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Abstract  

The spatial distribution of snow is complex and difficult to capture as it depends on multiple 

factors. In order to assess the water resource potential and to understand interactions between 

land and atmosphere, a precise quantification of the latter is desirable. While earlier but still, 

studies in snow science addressing the prediction of snow depth (HS) and its distribution 

focused on the extrapolation of sparse station data measurements, during the latest years high 

resolution and continuous data of Terrestrial and Airborne laser scanning found wide 

application. Those however are costly and only sporadic available. Lately, the potential of 

digital photogrammetry in capturing the small scale variability of HS is utilized and poses an 

economic method to map snow parameters on high temporal frequencies on the catchment 

scale. In order to improve statistical modeling of HS distribution in a high alpine terrain, five 

digital surface models (DSM) with an unmanned aerial system (UAS) in combination with 

structure-from-motion photogrammetry were generated. A catchment of 3 km
2
 with a mean 

elevation of 1994 m a.s.l in the Swiss Alps was chosen as a study site. In comparison to other 

studies the present focusses on the ablation season and captures HS after its peak accumulation. 

In this context the target is to find out whether and to which extent the remaining characteristic 

snow distribution can be linked to topographic parameters, and if so, the captured status of the 

snow cover and its spatial distribution can be predicted with multiple linear regressions. Snow 

depth was retrieved by subtracting the snow-free DSM from the snow-covered DSMs. A high 

precision of the subsequent and co-registered DSMs with a geolocation accuracy of ±20 cm 

could be determined. The validation of the modeled HS against more than 250 hand-probed 

measurements produced a RMSE of 0.62, though has to be considered as rather inappropriate 

dimension due to a GPS geolocation error of 10 m. From the high-resolution DSMs and snow 

density measurements (up to 590 kg m
-3
), snow water equivalent and total volume loss between 

each survey could be determined in high accuracy. The collected RGB data was inappropriate 

for automatic snow cover classification. This study found that UAS surveys in karstified areas, 

represent a challenge in discrimination of karst- and snow pixels because of their spectral 

similarity. From the retrieved model outcomes (1 m resolution), it can be concluded that late 

seasonal HS distribution cannot be linked significantly to topography impeding its precise 

prediction on that scale. However, the results clearly show the importance of a wind shelter 

parameter and elevation in explaining HS distribution, and thus highlight their importance in 

future snow studies. Utilizing satellite data (10 m resolution) to calculate snow cover extent and 

subsequently link those areas to topographic parameters (derived from a high resolution DSM) 

resulted in comparable findings, since snow cover could not be modeled in great detail. 

Keywords: remote sensing, photogrammetry, UAS, satellite imagery, snow depth distribution, 

snow cover area, snow cover modeling, multiple regression, ablation, snow hydrology 
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Kurzzusammenfassung  

Die räumliche Verteilung von Schnee ist komplex und schwer zu erfassen, da sie von mehreren 

Faktoren abhängt. Um Aussagen über die Wasserverfügbarkeit treffen zu können sowie die 

Wechselwirkungen zwischen Boden und Atmosphäre nachzuvollziehen, sind präzise 

Informationen über die Schneehöhe (HS) im Einzugsgebiet erstrebenswert. Die Modellierung 

von HS in vergangenen, aber auch rezenten schneehydrologischen Studien basiert meistens 

maßgeblich auf der Extrapolation von vereinzelten Stationsdatenmessungen. In den letzten 

Jahren fanden (jedoch) vermehrt durch Airborne und Terrestrial Laser Scanning erhobene, 

kontinuierliche und hochaufgelöste HS Daten eine breite Anwendung. Diese Methode ist jedoch 

kostenintensiv (und nur sporadisch verfügbar), weshalb zunehmend das Potential von digitaler 

Photogrammmetrie zur Erfassung der kleinräumigen Variabilität von HS an Bedeutung 

gewinnt. Dies stellt eine wirtschaftliche Methode dar, um Schneeparameter mit hoher zeitlicher 

Auflösung auf Einzugsgebietsebene zu kartieren. Um die statistische Modellierung der HS in 

hochalpinem Gelände zu verbessern, wurden in dieser Studie fünf digitale Oberflächenmodelle 

(DOM) mit einer Starrflügler-Drohne in Kombination mit structure-from-motion Prozessen 

generiert. Als Versuchsgebiet wurde eine etwa 3 km
2
 große Fläche mit einer mittleren Höhe von 

1994 m ü. NN in den Schweizer Alpen ausgewählt. Im Vergleich zu anderen Studien 

konzentrierte sich die vorliegende Arbeit auf den Ablationszeitraum und erfasst die HS deutlich 

nach dem Akkumulationsmaximum. Ein Ziel der Arbeit war es zu untersuchen, ob sich die 

erfasste Schneebedeckung und Schneehöhenverteilung mit topographischen Parametern in 

Zusammenhang setzten lässt und ob dieser Zusammenhang mittels multipler linearer Regression 

modelliert werden kann. Schneehöhe wurde durch die Differenz von schneebedecktem und 

schneefreiem DOM ermittelt. Für die zeitlich aufeinander folgenden und koregistrierten DOMs 

konnte eine hohe Präzision mit einer Schneehöhen-Genauigkeit von ±20 cm festgestellt werden. 

Die Validierung der modellierten HS gegen mehr als 250 Handmessungen ergab einen RMSE 

von 0,62, der allerdings aufgrund des GPS-Geolokalisierungsfehlers von 10 m als eher 

ungeeignetes Maß zu betrachten ist. Auf Basis der hochaufgelösten Information über HS und 

den durchgeführten Schneedichtemessungen (bis zu 590 kg m
-3
) konnte das 

Schneewasseräquivalent und das Volumen der Schneeschmelze zwischen den jeweiligen 

Befliegungszeitpunkten mit hoher Genauigkeit bestimmt werden. Die Informationen der 

erhobenen RGB-Bilder waren für eine automatische Schneeklassifizierung ungeeignet. Eine 

zusätzliche Herausforderung in der Diskriminierung von schneebedeckten und schneefreien 

Bereichen mittels RGB-Daten stellt die spektrale Ähnlichkeit von Karst- und Schneepixeln dar. 

Die Modellergebnisse (1 m Auflösung) zeigen, dass keine signifikanten Korrelationen zwischen 

topografischen Parametern und der Schneehöhenverteilung im Ablationszeitraum bestehen, was 

eine präzise Modellierung der HS verhindert. Nichtsdestotrotz konnte die Relevanz der 

Geländehöhe und des Windparameters Sx bei der Modellierung der Schneehöhenverteilung
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gezeigt werden. Die Verwendung von Informationen aus Satellitenbildern (10 m Auflösung) zur 

Berechnung der Schneebedeckung und die anschließende Verknüpfung dieser Gebiete mit aus 

einem hochaufgelösten DOM abgeleiteten topographischen Parametern lieferten vergleichbare 

Ergebnisse. Auch hier konnte durch multiple logistische Regression die Schneebedeckung nicht 

detailliert modelliert werden. 

Schlüsselworte: Fernerkundung, Photogrammmetrie, Drohne, Satellitenbilder, 

Schneehöhenverteilung, Schneebedeckung, Multiple Regression, Schneedeckenmodellierung, 

Ablation, Schneehydrologie 
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1 Introduction  

1.1  Importance of snow: its distribution and relevance  

Seasonal snow provides a globally valuable water resource (Mankin et al., 2015; Sturm et 

al., 2017), which is highly variable in space and time (Clark et al., 2011). Being able to map 

snow depth (HS) over a landscape is desirable for many reasons. In the Northern Hemisphere 

alone, over 40 million km
2
ðalmost half the land surfaceðbecomes covered by snow each 

winter, making seasonal snow the largest annual topographic change on the planet (Déry and 

Brown, 2007; Lemke et al., 2007). 

Snow is an important resource in alpine regions not only for tourism (Elsasser and Bürki, 

2002; Nöthiger and Elsasser, 2004; Rixen et al., 2011) but also for hydropower generation, 

water supply (Farinotti et al., 2012; Marty, 2008), and ecological aspects of the local mountain 

flora and fauna (Wipf et al., 2009). Billions of people rely on snow in some capacity, whether 

for drinking water, crop irrigation, or electricity (Barnett et al., 2005). Snow also plays an 

essential role in the surface energy balance of the planet; it thermally insulates the soil while 

efficiently reflecting sunlight because of its high albedo (Goodrich, 1982). 

The spatio-temporal variability of mountain snow cover determines the snow water storage, 

permafrost distribution, and the local distribution of plants and animals (Grünewald et al., 

2010). Snow is also a hazard, producing avalanches or floods, and thus important for the 

prevention of avalanches (Castebrunet et al., 2014) and flood forecasting in spring and early 

summer for the valleys downstream. Information on snow extent, especially when combined 

with HS to estimate snow water equivalent (SWE), is important for water management purposes 

since it enables basin managers to assess the risk of snowmelt floods (Niedzielski et al., 2018). 

The amount and timing of the melt strongly depend on the thickness and the spatial distribution 

of the snow cover. Therefore, the spatiotemporal variability of the snow cover significantly 

impacts the alpine water balance and strongly affects nature and humankind (Elder et al., 1998). 

It has been shown that the snow distribution at the winter maximum before the beginning of the 

melting period strongly determines the temporal evolution of the remaining snow resources and, 

if converted to SWE (Jonas et al., 2009), the potential melt water runoff during the melting 

period (Egli, 2011). Several studies have reported a very high spatial variability of HS and other 

snowpack parameters at different spatial scales in mountainous regions (Egli, 2011; Elder et al., 

1991; Grünewald et al., 2010; Lehning et al., 2008; Schweizer et al., 2008). This high variation 

in snow cover distribution on very small scales requires a high spatial resolution of snow 

samples to measure different parameters of the snowpack such as the areal mean HS on 

complex alpine topography and the temporal evolution of snow-covered areas (SCA) during the 

melt period with high areal representativeness and absolute precision. Hence, snowpack 

monitoring in alpine terrain requires an area-wide observation with a large number of HS point 
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measurements distributed over the area of interest (Bühler et al., 2015). To make reliable 

assessments of current and future snow dynamics, it is essential to obtain a better understanding 

of the total amount of snow stored in a catchment and how snow cover changes in space and 

time, especially in the ablation period (Grünewald et al., 2010).  

Snow is generally quantified in terms of its SWE through measurements of its depth and 

density. Since density varies less than depth (López-Moreno et al., 2013; Shook and Gray, 

1996), much of the spatial variability of SWE can be described by the spatial variability of HS. 

Thus, the ability to measure HS and its spatial distribution is crucial to assess and predict how 

the snow water resource responds to meteorological variability and landscape heterogeneity 

(Harder et al., 2016).  

1.1.1  Scientific findings  and state of the art  

So far, mainly snow deposition and snow transport due to wind have been investigated in 

great detail (Doorschot et al., 2001; Lehning et al., 2008), and it has been shown that snow 

distribution influences runoff dynamics in mountain catchments (Lehning et al., 2006). Many of 

these efforts, however, are based on model studies, and insufficient validation measurements 

exist. Very often, limited HS and SWE observations are extrapolated to large areas using 

statistical models (Bavera and Michele, 2009; Chang and Li, 2000; Erickson et al., 2005; 

López-Moreno and Nogués-Bravo, 2006; Luce et al., 1999; Marchand and Killingtveit, 2004). 

Currently in most regions (e.g., Swiss Alps), HS is measured at specific locations by automated 

weather stations or observers in the field, while both observations are restricted to flat sites 

exhibiting a rather homogeneous snow cover (Bründl et al., 2004; Egli, 2008). These flat field 

point measurements are assumed to represent snow cover characteristics for a larger area around 

the stations and are therefore interpolated over large distances and then combined with snow 

cover information from optical satellites (Foppa et al., 2007). Unfortunately, this method is 

unable to capture the small-scale variability of HS. Even a dense measurement network (e.g. the 

one in Switzerland with, on average, more than one measurement station per 10 km
2
), is not 

able to capture the large spatial variability of HS present in alpine terrain (Bühler et al., 2016). 

Investigations into the representability of point HS measurements on HS for entire catchments 

are sparse (Grünewald and Lehning, 2015). 

 

The latest scientific findings show that HS maps provide geostatistically robust insights into 

seasonal snow processes in unprecedented detail, resolving snowpack features associated with 

redistribution and preferential accumulation and ablation (Redpath et al., 2018). This 

emphasizes the need for accurate and widespread HS mapping. 
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Currently, many different techniques to monitor HS exist. These techniques will be 

explained in the following, including a discussion of the advantages and disadvantages, in order 

to give an understanding of why HS mapping with dronesðthe objective of this thesisðgained 

popularity during the last years. 

1.2  Theoretical background: methods to quantify snow height and 
distribution  

Nowadays, increasing interest is growing around distributed measurements of snow extent, 

HS, and SWE (Dietz et al., 2012) that can substitute or integrate point and sparse 

measurements. Existing techniques include terrestrial or airborne laser scanning (TLS/ALS) 

(Dadic et al., 2010; Deems et al., 2006, 2006; Grünewald et al., 2010; Grünewald et al., 2013; 

Grünewald and Lehning, 2015; Hedrick et al., 2015; Hopkinson et al., 2004; Lehning et al., 

2011a; Prokop et al., 2008, 2008; Prokop, 2008b), tachymetry (Prokop et al., 2008), ground 

penetration radar (GPR) (Machguth et al., 2006; Wainwright et al., 2017), synthetic aperture 

radar (SAR) (Luzi et al., 2009), aerial photography (Blöschl and Kirnbauer, 1992; König and 

Sturm, 1998; Worby et al., 2008) time-lapse photography (Farinotti et al., 2010; Parajka et al., 

2012), and optical and micro-wave data from satellite platforms (Dietz et al., 2012; Parajka and 

Blöschl, 2006). The effective performance of these methods has been widely discussed, but 

survey expenses are still a constraint (Hood and Hayashi, 2010). 

1.2.1  Snow monitoring stations and hand probe HS measurements  

For many years and even currently, traditional manual methods (snow pits and probing or 

profiling) (Luzi et al., 2009; MiziŒski and Niedzielski, 2017), conventional observation stations, 

and automatic snow and weather stations (Grünewald and Lehning, 2015), such as standalone 

snow monitoring stations (SnoMoS) (e.g., snow pillows and sonic rangers), have been 

employed successfully. However, like all point measurements (e.g., HS and SWE), they require 

statistical modeling to move from limited discrete point data to large areas by extrapolation 

(Liston et al., 2007; Liston and Sturm, 2002; Serreze et al., 1999; Slater and Clark, 2006). 

1.2.2  Optical and micro -wave data from satellite platforms  

Remote sensing, led by the help of satellites as an advanced technique, allows for the 

comprehensive, safe, and spatially continuous monitoring of dynamic and variable snow cover 

(Eker et al., 2019). SCA is a common parameter measured since it can be detected successfully 

within the spectral and thermal wavelengths by a range of satellite sensors, and the area and 

frequency of observation is a function of both spatial and temporal resolution. As described by 
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Eker et al. (2019) this technique is commonly used due to its global coverage, the regular 

repeatability of measurements, and the availability of a large number of sensors and platforms. 

 

In particular, the Advanced Very High Resolution Radiometer (AVHRR), Moderate 

Resolution Imaging Radiometer (MODIS), Landsat (MSS/TM/ETM+/OLI), SPOT, and SPOT-

XS platforms have been used at different pixel resolutions (Crawford et al., 2013; Haefner et al., 

1997; Hall et al., 1995). Snow observation is inhibited by sensor saturation problems in addition 

to cloud cover, which both obscure the snow surface and exhibit some spectral overlap with 

snow. Several developed techniques allow snow/cloud discrimination, with varying degrees of 

success. The close correspondence of the distribution of snow cover with terrain has also 

enabled the interpolation of snow cover into cloud obscured regions. Shadows from terrain 

generally confuse the location of snow-covered pixels, and procedures correcting for the 

variation in illumination have been generated. The detection of the snow/no snow boundary and 

subsequent estimation of snow area has been achieved by using a variety of approaches ranging 

from interactive delineation and planimetry or thresholding to multiȤtemporal analysis and more 

sophisticated gridding or digital techniques (Lucas and Harrison, 1990).  

Remote sensing of snow coverage using optical sensors is relatively routine. Still, remote 

sensing of HS or SWE based on the microwave emissivity or radar scattering properties of the 

snow requires complex and problematic inversions in order to infer the depth and has coarse 

spatial resolution (25 km) (Clifford, 2010; Rittger et al., 2013; Rott et al., 2008). The results do 

not display small-scale snow cover characteristics of alpine catchments. Microwave radiometry 

is very sensitive to the presence of snow on soil. It is used for estimating SWE and 

melting/refreezing cycles at both basin (Macelloni et al., 2005) and global scales combined with 

optical and active sensors (Tedesco and Miller, 2007). It does, however, have difficulty in 

distinguishing wet snow from wet soil and, at lower frequencies, usually suffers from a limited 

spatial resolution. 

Synthetic Aperture Radar (SAR) interferometry evaluates snow mass characteristics based 

on relating the measured interferometric phase shift to a change in the snow mass (Luzi et al., 

2009). Active microwave sensors (e.g., SAR) use much smaller wavelengths (millimeters to 

centimeters) and achieve finer spatial resolutions of up to 20 m (Dozier and Shi, 2000; Schanda 

et al., 1983). However, this method is limited to dry snowpacks and faces problems in steep 

high-alpine terrain (Buchroithner, 1995). The use of SAR images aimed at snow monitoring 

from satellites has been around since the 1990s (Bernier and Fortin, 1998; Kendra et al., 1998). 

In comparison, the use of differential SAR interferometry (DInSAR) to monitor dry snow is a 

rather new application (Guneriussen et al., 2001; Oveisgharan and Zebker, 2007). Lately, 

microwave interferometry has been applied through ground-based SAR interferometry (GB 

SAR) configuration to estimate HS from interferometric phase (Martinez-Vazquez et al., 2005) 

(C-band) along with the experimentation described in Luzi et al. (2009) (C- and S-bands). GB 
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SAR backscattering measurements have also been carried out at higher frequencies (X- and Ku-

bands) (Morrison et al., 2007).  

 

Until today, problems in quantifying HS remain primarily due to the heterogeneity of terrain 

complexity and vegetation cover (Harder et al., 2016). 

1.2.3  LiDAR altimetry ð Airborne & Terrestrial laser scanning  

A technique that has received considerable attention in recent years and is often applied as 

the preferred method to obtain HS data is to measure the elevation of the snow surface by 

airborne or ground-based Light Detection and Ranging (LiDAR) and subtract from this the 

snow-free surface elevation with the difference interpreted as HS (Deems et al., 2013; Egli et 

al., 2012; Grünewald et al., 2010; Grünewald et al., 2014; Hopkinson et al., 2004; Prokop, 

2008a, 2008b). 

LiDAR altimetry is a promising method to obtain areawide high-resolution HS data 

(Grünewald et al., 2010). To date, LiDAR techniques have provided the highest-resolution 

estimates of HS spatial distribution from both terrestrial (Grünewald et al., 2010) and airborne 

(Hopkinson et al., 2012) platforms. 

TLS was previously used to derive spatially continuous HS (Grünewald et al., 2010; Prokop, 

2008b)). Even though the accuracy of such measurements is very high (usually better than 0.1 

m, depending on laser footprint and distance from sensor), largescale catchments cannot be 

covered completely. Data acquisition with TLS is time and manpower consuming and only 

applicable to easily accessible areas (sensor viewshed) under fair conditions (depending on the 

avalanche situation, weather) and for areas within the line of sight of the measurement location. 

This results in limited coverage and many data gaps, e.g., behind bumps. ALS from helicopters 

or airplanes can cover larger areas in a shorter time also under difficult avalanche danger 

situations. Recent studies demonstrate that the accurate mapping of HS is possible (Deems et 

al., 2013; Melvold and Skaugen, 2013). Typically, airborne LiDAR provides data with a ground 

sampling distance (GSD) of nearly 1 m and a vertical accuracy of 15 cm (Deems et al., 2013; 

Deems and Painter, 2006). While detailed, this resolution still does not provide observations of 

the spatial variability of snow distributions that can address microscale processes such as snowï

vegetation interactions or wind redistribution in areas of shallow snow cover. Additionally, the 

frequency of airborne LiDAR observations is typically low, except for NASAôs Airborne Snow 

Observatory applications (Mattmann et al., 2014). Nonetheless, the main limitation encountered 

is the high costs and long lead time needed for planning repeat flights for the aerial scanner to 

cover large areas (Bühler et al., 2012; Deems et al., 2013), and overflights are, as with digital 

photogrammetry, restricted to fair weather conditions (Bühler et al., 2015). 
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1.2.4  Digital photogrammetry  

In addition to satellite remote sensing, aerial imagery has been frequently used for mapping 

HS. Digital surface models (DSMs)  can be calculated from optical imagery acquired from two 

different viewing angles using photogrammetric image correlation techniques (Bühler et al., 

2012). Operating on the similar principles of repeat or overlapping coverage, but pre-dating 

LiDAR studies by 30 years, airborne and terrestrial photogrammetry for determining HS were 

seriously investigated starting in the 1960s, though little published information is currently 

available (McKay, 1968). At that time, lacking any other method of mapping HS at the 

landscape scale using scanned aerial imagery from manned aircrafts (Smith et al., 1967), it was 

an obvious technique to consider as it was already being used for the study of glaciers 

(Brandenberger, 1959; Hamilton, 1965; Post, 1969, 1995). 

The topic was investigated in detail by Cline (1993, 1994). However, his results suffer from 

image saturation and insufficient reference data which led him to the conclusion that 

photogrammetry has much potential but is not yet accurate enough for large-scale HS mapping. 

Ledwith and Lundén (2001) used scanned aerial imagery to derive digital elevation models over 

glaciated and snow-covered areas in Norway. They report a mean accuracy of 2.8 m in 

comparison to differential Global Navigation Satellite System (dGNSS) transects, which is 

clearly too low for meaningful HS mapping in alpine regions. Lee et al. (2008) used a digital 

mapping camera to cover an area of approximately 2.3 km
2
 with a very high mean ground 

sampling distance of 0.08 m. The reported mean differences compared to dGNSS measurements 

are approximately 0.15 m, stressing the great potential of digital photogrammetry for accurate 

HS mapping. However, no HS mapping has been performed and compared to different 

reference data sets, covering larger areas (Bühler et al., 2015). Beside satellite products, digital 

photography has also been used to assess the occurrence of avalanches (Edwards et al., 2007; 

Farinotti et al., 2010) or to statistically analyze the development of the snow cover during the 

snowmelt season on a mountain crest (Edwards et al., 2007). 

Presently, modern digital sensors have been able to overcome the limitations of analog 

imagery through the acquisition of very high mean ground-sampling data (Lee et al., 2008) with 

12-bit radiometric resolution (Bühler et al., 2015; Nolan et al., 2015). A more comprehensive 

investigation of the use of digital photogrammetry for catchment-wide mapping of HS was 

presented in Bühler et al. (2015). 

Studies using stereo-imagery from optoelectronic linescanners incorporating near-IR 

wavelengths in addition to RGB to map HS are rather novel (Bühler et al., 2014; Bühler et al., 

2015). Recently, digital photogrammetry has emerged as a cheaper tool to perform these 

surveys. Nolan et al. (2015) have evaluated this methodology in three case studies in Alaska and 

have compared airborne measurements of HS with about 6000 manual measurements. They 

have found a standard deviation between these two data sets around ±0.1 m. Bühler et al. (2016) 

have applied a similar method in the Swiss Alps and estimated HS distribution with a root mean 
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square error (RMSE) of 0.30 m. This technique is, therefore, an accurate solution useful for 

obtaining distributed information about HS dynamics at meter (or centimeter) resolution 

(Michele et al., 2016). 

Recent advances in digital photogrammetric technology have now made it possible to not 

only produce accurate HS maps through airborne photogrammetry, but to also do so at larger 

spatial scales, at a lower cost than LiDAR technology, and without loss of accuracy compared 

to most other techniques. These advances include improvements in consumer camera sensors, 

GPS processing techniques (using digital imagery in combination with dGNSS), desktop 

computational power, and especially, photogrammetric software. This software largely 

eliminates the need for purpose-built photogrammetric cameras and inertial motion units 

(IMUs), saving a significant amount of money (Nolan et al., 2015). Recent developments in 

remote sensing offer opportunities to clearly improve the representation of spatial snow cover 

variability in hydrological modeling (Freudiger et al., 2017). 

 

Table 1.1 gives an overview of the most important strengths and weaknesses of the applied 

methods for large-scale HS mapping in high-alpine areas based on the experiences gained 

through the investigation of Bühler et al. (2015). 

 

Table 1.1: Overview of the most important strengths and weaknesses of the applied methods 
for large-scale snow depth mapping in high-alpine terrain 

Method Strengths Weaknesses 

ALS - Large coverage 

- Fast measurements 

- Spatially continuous 

- High precision 

- Nadir view 

- Expensive 

- Costly data processing 

- Need for an airplane 

- Expensive device 

Airborne  

photogrammetry 

- Very large coverage 

- Fast measurements 

- Spatially continuous 

- Many devices in use 

- Nadir view 

- Limited precision 

- Costly data processing 

- Need for an airplane 

- Expensive device 

TLS - Intermediate coverage 

- Spatially continuous 

- High precision 

- Suitable for steep slopes 

(>50°) 

- Oblique view 

- Need for being in the field 

- Costly data processing 

- Expensive device 

GPR - High precision 

- Direct HS measurement 

- Limited coverage 

- Transect measurements 

- Extreme terrain inaccessible 

- Need for being in the field 

- Expensive device 

Hand plots - Most economical method 

- Direct HS measurement 

- No special devices 

necessary 

- Possible in forested areas 

- Very limited coverage 

- Point measurements 

- Extreme terrain inaccessible 

- Need for being in the field 

dGNSS - High precision - Very limited coverage 

- Point measurements 

- Extreme terrain inaccessible 

- Need for being in the field 

- expensive device 
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1.3  Motivation and objective  

1.3.1  Motivation  

During the last few years, the use of unmanned aerial system (UAS) technology in the 

context of snow and avalanche studies has often been reported in literature (Adams et al., 2018; 

Avanzi et al., 2018; Bühler et al., 2016; Bühler et al., 2017; Eckerstorfer et al., 2016; Eker et al., 

2019; Harder et al., 2016; Lemke et al., 2007; Lendzioch et al., 2016; Michele et al., 2016; 

MiziŒski and Niedzielski, 2017; Redpath et al., 2018; Vander Jagt et al., 2015; Wainwright et 

al., 2017). Initially, studies in HS mapping investigated the potential and limitations of UAS by 

using manual HS probing for accuracy assessment. More recently, time series of a UAS are 

used and compared with other techniques, e.g., airborne sensors such as the ADS100 (Boesch et 

al., 2016), TLS (Adams et al., 2018; Bühler et al., 2017; Eker et al., 2019), and very high-

resolution (VHR) tri-stereoscopic Pléiades satellite images (Marti et al., 2016). Different 

camera sensors recording data in various parts of the electromagnetic spectrum, e.g., visible 

(350ï680 nm) and near-infrared (NIR) (>700 and >830 nm), have also been applied (Adams et 

al., 2018; B¿hler et al., 2017; MiziŒski and Niedzielski, 2017). This study is unique as rather 

few have used the potential of UAS technology methods to monitor ablation or the melting 

process (few especially over glaciers) (Bash et al., 2018; Rossini et al., 2018). 

Multiple studies show that HS can be accurately mapped by differentiating two surface 

models (snow-free and snow-covered, respectively). In addition to accurate HS determination, 

Vander Jagt et al. (2015) show that high-resolution (50 cm) spatially continuous HS maps can 

be created using a low-cost photogrammetric approach with a UAS. Results indicate the UAS is 

capable of providing high-accuracy (<10 cm) estimates of HS over a small alpine area (0.7 ha) 

with snow depths greater than one meter being a fraction of the cost of full-size aerial survey 

approaches (Vander Jagt et al., 2015). Performing photogrammetric surveys using UASs may, 

therefore, represent a definitive solution to the problem of mapping HS with fine spatial and 

temporal resolutions (Michele et al., 2016). 

Increasing the spatial resolution of a UAS survey captures additional variability in HS and 

thus makes it possible to add significant information. It has been observed that HS variability 

increases with higher sampling resolutions (López-Moreno et al., 2015), but according to 

Michele et al. (2016), not many data sets are available with a horizontal sampling resolution <1 

m (Nolan et al., 2015; Vander Jagt et al., 2015). Consequently, it is not easy to compare this 

behavior with other analyzes. These dynamics will be the object of future investigations, since, 

if confirmed, they may define a threshold for sampling resolution when measuring HS during 

the accumulation season (say 1m resolution) (Michele et al., 2016). 

The major disadvantage that accompanies UAS photogrammetry is its limitation in spatial 

scale compared to airborne LiDAR. However, resolving HS in this way across an entire 

catchment facilitates robust integration into hydrological models enhanced by validation against 
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catchment discharge (e.g., from streamflow data) (Redpath et al., 2018). Furthermore, the 

mapping of HS enables the estimation of snowpack volume across the catchment. Based on in 

situ measurements of snow density the snowpack mass balance in terms of SWE can also be 

calculated (Redpath et al., 2018). This enables the quantification of the ablation. 

Snow redistribution by wind and avalanches plays a vital role in alpine catchments. A good 

understanding of snow processes in such catchments is important for both current and future 

water management, and there is a real need for robust modeling of snowpack in hydrological 

models (Freudiger et al., 2017). In many hydrological studies, modeling snow redistribution is 

not considered in the detail it should be, especially because snow redistribution approaches still 

have limitations. Furthermore, a large gap exists between the know-how and processes 

implemented in highly detailed physically-based snow models and the widely used bucket-type 

hydrological models used for water resources and climate change studies (Freudiger et al., 

2017). Information earned by snow redistribution modeling with established physically-based 

models could be used to develop more conceptual approaches for the application in bucket-type 

models and hence bridge the described gap (Freudiger et al., 2017). According to Freudiger et 

al. (2017), disregarding snow redistribution in models can lead to the formation of so called 

snow towers (in other words: multi-year accumulation of snow at high altitudes), and an 

incorrect water balance. Photogrammetric UAS surveys represent an opportunity to capture 

effective concentration of snow in preferred areas and the complex spatial distribution that 

results. Although those data sets are temporally limited, the ability to detect such details 

highlights the potential of this method for improving resolution and the understanding of snow 

hydrology (Redpath et al., 2018). In particular, such data sets may even offer the opportunity to 

assess the performance of models forced by remotely sensed data of coarser resolution in 

estimating SWE from estimates of subpixel fractional SCA (Bair et al., 2016). 

Hydrological models are so far not able to describe the distribution of HS in detail, even 

though information about HS distribution is essential for accurate discharge modeling. Models 

manage to describe the mean of snow height for a whole catchment but are not able to describe 

the full distribution with its extreme values in detail. That is where this thesis comes into play. 

1.3.2  Objectives: methodology and thesis overlook  

Achieved accuracies with UASs are expected to be slightly lower than those using LiDAR 

technology, but there is an absence of investigations quantifying the achieved accuracy and 

quality of such DSMs, especially in high-alpine terrain (Bühler et al., 2012). The first objective 

of this study is to quantify the HS and its spatial distribution at a high alpine site remotely by 

using a fixed-wing drone. Achieved accuracy and quality of the derived DSMs will be 

quantified purposefully to improve the aforementioned actual state of knowledge. For 

validation, numerous manual HS measurements were taken. Another objective is to 

automatically define SCA from orthophotos and compare the results to satellite products. A 
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further objective is to retrace the ablation process during summer by determining areas within 

the catchment that show earliest/latest complete snowmelt to ground. This volume loss will also 

be quantified. 

 

What makes this study unique and novel in its scientific context is the following: 

Based on the generated high-resolution DSMs and proceeding geospatial analysis, such areas of 

a catchment will be defined and quantified, where abundant snow, and such areas, where there 

is little snow, i.e. the extreme value ranges, is expected throughout the season. The necessary 

information represents the own collected HS and derived SCA data. Hence, the assumption is 

taken that such snowfields in the last UAS survey represent areas where potentially most snow 

accumulates during the season. 

An ever-present question in snow scienceðwhether snow distribution can be linked to 

topographyðwill  also be addressed. Therefore, the found snow areas and depths are compared 

to the parameters elevation, slope, aspect, solar radiation, a wind sheltering parameter Sx, and 

curvature, to test whether a clear linkage can be obtained. A further goal of the study is to use 

the aforementioned parameters to model both the HS distribution and SCA of the study site 

based on a snow-free DSM by applying multiple linear regression (MLR) models and multiple 

logistic regression models. Finally, the estimated snow depth distribution for the study site will  

be presented and compared with the retrieved UASs data.  

 

In other words, this study aims to test the following hypotheses:  

 

1. UAS serve to deliver valuable spatiotemporal HS data on a catchment scale for 

snow-hydrological modeling. 

2. Late seasonal HS distribution can be linked to topography. 

3. Based on a high-resolution snow-free DSM and retrieved explanatory parameters, 

both the HS distribution  and snow-free/snow-covered areas can be predicted in 

detail. 

4. Satellite data can provide equal information about SCA as recorded high-

resolution UAS data in order to model SCA. 

5. Based on information about incoming solar radiation, the ablation amount during 

two consecutive flights can be predicted in detail. 

 

The overcharging intention of this study is to test if HS distributions modeled based on 

snow-free DSMs with high-resolution can be used as valuable information in hydrological 

modeling (especially snowmelt modeling), thus improving the often-neglected redistribution of 

HS.  
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By performing multiple drone flights and applying digital photogrammetry, temporally 

different orthophotos and DSMs are retrieved that allow for determining the SCA and 

characterizing (visually) and quantifying its temporal evolution: i.e., the characteristic snowmelt 

and snow cover depletion pattern of the study site. As additional data source for the period 

before the first drone flight, satellite images are also analyzed. Once such areas with earlier/later 

total snowmelt are characterized they will be compared with results from the conducted 

geospatial analysis applied to the high-resolution DSMs. 

Correlations between remaining HS and elevation, slope, aspect, solar radiation, wind 

exposition, and curvature are investigated, which finally lead to valuable information about 

which parameters mainly drive the characteristic distribution of HS at the study site. For 

specific areas within the study site, those parameters explain the corresponding HS. 
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2 Methods and data  

2.1  Study area  

This study aims at improving the snow routine of hydrological models of alpine catchments. 

Although many suitable alpine areas above 2000 m a.s.l. can be found in the Alps, it was mainly 

due to logistical reasons that the choice fell on the Klausen Pass, located around 45 km 

southwest of Luzern and connecting the Swiss cantons Uri and Glarus (Map 2.1).  

 

 

Map 2.1: Location map of the study site within Switzerland 

 

As the hillshade in Map 2.2 illustrates, the mountain pass is surrounded by steep terrain to both 

north and south and the study site shows a high altitudinal difference with 1784 m at its lowest 

and 2258 m at its highest location. 
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Map 2.2: Elevation (m) and hillshade map of the study site within Switzerland. 
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Figure 2.1 illustrates the hypsometric curve of the study site (derived from the generated 

snow-free DSM with 10 cm resolution) and its statistics. The elevation range is 474 m.  

 

 

 

Figure 2.1: Hypsometry and statistics of the study site. 

 

 

The complete site is located above the tree line and there are no settlements in the area. The 

major vegetation can be described by small alpine bushes (mainly alpine rose, juniper and erica) 

and short alpine grass. Steep rocky outcrops can be found in most parts of the study site. The 

geology is dominated by limestone with high karstification which makes the hydrology really 

interesting and rather challenging to describe. While the mean exposition is SW (220°) the 

study site mainly faces towards north (Map 2.3). With slopes exceeding 30 degrees in many 

areas and a mean of 25 degrees within the test site (Map 2.3), high avalanche activity can be 

expected, which might be a large factor in local snow redistribution. Because of its location on 

top of the mountain pass (Figure 2.2) the study site is exposed to strong winds for which reason 

a high HS variability ca be expected especially in this area. In order to realistically capture HS 

distribution, further factors (e.g., elevation or a wind shelter parameter) should be considered as 

well. A more detailed analysis can be found in chapter 3.6. 
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Map 2.3: Aspect and slope within the study site (15 cm resolution) and its surrounding (20 m 
resolution). 

 

 

 

Figure 2.2: View on the study site as seen from Märcher Stöckli (line of sight: South). Besides, 
the Figure shows the highest mountain around, Clariden (3267 m a.s.l.) and the highest point of 
the Klausen Pass (1948 m a.s.l.). 

 

At the beginning of the study (June 28
th
, 2019), below 2000 m elevation it was mainly snow-

free and only in depressions snow was remaining. The southerly exposed areas were already 

totally snow-free. Up to the highest elevation of the study site, the snow cover was not closed 

anymore and thus can be described as rather patchy with locally big snowfields. 
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2.2  Data acquisition  

2.2.1  UAS surveys 

2.2.1.1  Unmanned aerial vehicle  

a. Components 

For this study, the eBee Classic (herafter eBee) was used, an autonomous flying drone 

system of senseFly®, comprised of the following components (Figure 2.3): 

The central body is the core of the eBee and includes all the electronics, actuators and 

communications hardware on-board the drone. The eBee has two detachable wings, each with 

two wing struts and two clips to hold it in place within the central body. Winglets add 

aerodynamic stability to the drone while it is in flight and ailerons are used to control the eBee 

while in flight. The ailerons are connected to the servomotors within the central body of the 

drone (servo connection mechanism). The eBee features a built-in camera for taking aerial 

images stored within the camera compartment. A Data Link Antenna is used by the drone to 

communicate with the eMotion software through the USB ground modem. The Pitot probe is 

the sensor used by the eBee to calculate airspeed, wind and altitude. The ground sensor, 

composed of a high-speed optical sensor and lens assembly, is used to detect the proximity of 

the ground (senseFly Ltd, 2016).  

 

 

Figure 2.3: Components of the eBee Classic (senseFly Ltd, 2016). 

  

 


































































































































































































