Institut für Hydrologie

der Albert-Ludwigs-Universität Freiburg i. Br.

Steffen Holzkämper

Isotopenhydrologische Ansätze zur Ermittlung der Evaporation aus dem Bodenspeicher im Hartheimer Kiefernwald

Diplomarbeit unter der Leitung von Prof. Dr. Ch. Leibundgut Freiburg i. Br., April 2000

Institut für Hydrologie

der Albert-Ludwigs-Universität Freiburg i. Br.

Steffen Holzkämper

Isotopenhydrologische Ansätze zur Ermittlung der Evaporation aus dem Bodenspeicher im Hartheimer Kiefernwald

Referent: Prof. Dr. Ch. Leibundgut

Koreferent: PD Dr. L. Jaeger

Betreuung: Dipl.-Hydr. P. Königer

Inhaltsverzeichnis

INH	IALTS	VERZEICHNIS	I
VEF	RZEIC	HNIS DER ABBILDUNGEN	IV
VEF	RZEIC	HNIS DER TABELLEN	VII
ZUS	SAMM	IENFASSUNG	VIII
KEY	YWOR	DS	X
EXT	ΓENDI	ED ENGLISH SUMMARY	XI
DAI	NKSA	GUNG	XIII
1	EIN	LEITUNG UND PROBLEMSTELLUNG	1
2	ZIE	LSETZUNG	3
3	THI	EORETISCHE GRUNDLAGEN	5
	3.1	Verdunstung 3.1.1 Begriffsbestimmung 3.1.2 Verdunstung in Wasser- und Energiehaushalt 3.1.3 Quantifizierungsmöglichkeiten	5 5 7
	3.2	Bodenwasserbewegung 3.2.1 Wasserbewegungen in der flüssigen Phase 3.2.2 Wasserbewegungen in der Gasphase	9 9 12
	3.3	 Isotopenhydrologie 3.3.1 Physikalische Grundlagen 3.3.2 Umweltisotope im Niederschlag 3.3.3 Umweltisotope in der ungesättigten Bodenzone 3.3.3.1 Versickerungsprozesse 3.3.3.2 Evaporation und Kondensation 3.3.3.3 Wechselwirkungen mit Pflanzenwurzeln und Bodensubstrat 	12 13 15 16 17 18 20
4	UNTERSUCHUNGSGEBIET		21
	4.1	Geographische Lage	21

	4.2	Geolo	ogie	21
	4.3	Lands	schaftsentwicklung und Hydrologie	22
	4.4	Hydro	ogeologie	23
	4.5	Veget	ation	23
	4.6	Klima	atische Verhältnisse	24
	4.7	Bödeı	n	25
		4.7.1	Substrat	25
			Bodentypen	26
		4.7.3	Bodenwasserhaushalt	28
5	ME	THOD	IK	31
	5.1	Unter	rsuchung des Niederschlags	32
	5.2		rsuchung des Bodenwassers	33
			Probenahme	33
			Bestimmung der Bodenfeuchte	33
		5.2.3	Extraktion des Bodenwassers	34
	5.3		mmung der Verdunstung	36
		5.3.1	SVERDRUP-Verfahren	36
			5.3.1.1 SVERDRUP-Formel	36
			5.3.1.2 Datengrundlage	37
		5.3.2	5.3.1.3 Fehlerquellen und Korrekturverfahren Verdunstungsmodell "TRAIN"	38 40
		3.3.2	5.3.2.1 Datengrundlage	40
			5.3.2.2 Modellbeschreibung	41
6	ERO	GEBNI	SSE	43
	6.1	Verdı	unstungssummen	43
		6.1.1	SVERDRUP-Verfahren	43
		6.1.2	Verdunstungsmodell "TRAIN"	45
	6.2	Boder	nwassergehalt	48
	6.3	Isotop	penkonzentrationen	51
		6.3.1	Isotopengehalte im Niederschlag	51
		6.3.2	Isotopengehalte im Bodenwasser	53
	6.4	Fazit		59

7	DIS	KUSSI	ON	61
	7.1	Bestin	nmung der Verdunstung	61
		7.1.1	Vergleich der mit dem SVERDRUP-Verfahren und TRAIN	
			ermittelten Verdunstung	61
		7.1.2	Beurteilung der ermittelten Verdunstung	63
	7.2	Interp	oretation der Bodenwasserprofile	65
		7.2.1	Reaktionen der Bodenwasserprofile auf Niederschläge und	
			Verdunstung	65
		7.2.2	Deuterium / Sauerstoff-18-Relationen in der Deckschicht	72
		7.2.3	Beurteilung von Grundwasserneubildung und Jahresverdunstung	74
	7.3	Fazit		77
8	SCF	HLUSS	FOLGERUNGEN	79
9	LIT	ERATI	URVERZEICHNIS	81

Verzeichnis der Abbildungen

Abb. 3.1:	Einteilung der Verfahren zur Verdunstungsbestimmung mit Beispielen	8
Abb. 3.2:	Ungesättigte Wasserdurchlässigkeit bei drei Bodenarten in Abhängigkeit von der Wasserspannung	10
Abb. 3.3:	Externe Einflussfaktoren auf die Isotopenkonzentration des Bodenwassers	16
Abb. 3.4:	Schematisches Profil eines Durchgangs von isotopisch markantem Bodenwasser bei Piston-flow-Verhältnissen	17
Abb. 3.5:	Schematische Verteilung von Sauerstoff-18 bzw. Deuterium im Bodenwasser bei Sättigung	18
Abb. 3.6:	Schematische Verteilung von Sauerstoff-18 bzw. Deuterium im Bodenwasser bei ungesättigtem Boden	19
Abb. 4.1:	Geographische Lage der FMIF	21
Abb. 4.2:	Schematisches Querprofil durch die Rheinaue in Höhe der FMIF	23
Abb. 4.3:	Vegetation im Bereich des Untersuchungsgebiets	24
Abb. 4.4:	Monatsmittelwerte der Lufttemperatur Ta an der Wetterstation Bremgarten (1931-1960) und mittlere Monatssummen des Niederschlags N an der FMIF (1974-1983)	25
Abb. 4.5:	Häufigkeiten der Bodendeckschicht-Mächtigkeiten im Untersuchungsgebiet aus 1489 Bodenstichproben	26
Abb. 4.6:	Bodenprofil an der FMIF: Zweischicht-Pararendzina nach Kalkpaternia	27
Abb. 5.1:	Lage der Probenahmestellen und Messinstrumente im Bereich der FMIF	31
Abb. 5.2:	Destillierapparatur zur azeotropen Bodenwasserextraktion	35
Abb. 5.3:	Schema zum Aufbau des Verdunstungsmodells TRAIN	41
Abb. 6.1:	Nach dem Sverdrup-Verfahren berechnete Monatssummen der Verdunstung	43
Abb. 6.2:	Nach dem SVERDRUP-Verfahren errechnete Tagessummen der Verdunstung von November 1997 bis Oktober 1999	44
Abb. 6.3:	Exemplarischer Tagesgang der Verdunstung am 20. Mai 1998	45
Abb. 6.4:	Tagessummen der Verdunstung, modelliert mit TRAIN, von November 1997 bis Oktober 1999	45

Abb. 6.5:	Mit TRAIN korrigierter Freilandniederschlag in 15 m Höhe von November 1997 bis Oktober 1999	46
Abb. 6.6:	Modellierte Bodenfeuchte im Untersuchungsgebiet von November 1997 bis Oktober 1999	47
Abb. 6.7:	Modellierte Sickerung in den Kieskörper im Untersuchungsgebiet von November 1997 bis Oktober 1999	47
Abb. 6.8:	Verlauf der Bodenfeuchte in verschiedenen Horizonten von Mai 1998 bis Februar 2000	48
Abb. 6.9:	Vergleich der von meteorologischer und hydrologischer Seite gemessenen Bodenwassergehalte der Deckschicht von Mai 1998 bis Februar 2000	49
Abb. 6.10:	Sauerstoff-18- und Deuteriumgehalte im Bestandsniederschlag sowie Monatssummen des Bestandsniederschlags von November 1997 bis Februar 2000	51
Abb. 6.11:	Tageswerte und akkumulierte Tageswerte des Bestandsniederschlags zu Probenahmeterminen, Sauerstoff-18- und Deuteriumgehalte im Bestandsniederschlag	52
Abb. 6.12	al.: Bodenwassergehalte, Deuterium- und Sauerstoff-18- Konzentrationen von Bodenprofilen zu verschiedenen Probenahmeterminen von August 1999 bis Januar 2000	54/55
Abb. 6.13	ac.: Bodenwassergehalte, Deuterium- und Sauerstoff-18- Konzentrationen von drei tiefen Bodenprofilen zu verschiedenen Probenahmeterminen	56
Abb. 7.1:	Tagessummen der Verdunstung von November 1997 bis Oktober 1999, ermittelt durch das SVERDRUP-Verfahren und mit TRAIN	61
Abb. 7.2:	Gegenüberstellung der mit dem SVERDRUP-Verfahren und mit TRAIN ermittelten Tagessummen der Verdunstung von November 1997 bis Oktober 1999	63
Abb. 7.3:	Akkumulierte Niederschlags-Verdunstungs-Bilanz für die mit TRAIN und mit dem SVERDRUP-Verfahren ermittelte Verdunstung sowie die um 120 mm reduzierte TRAIN-Bilanz	64
Abb. 7.4:	Wasserbilanz aus Freilandniederschlag und mit dem SVERDRUP-Verfahren bestimmter Verdunstung sowie gemessene Bodenwassergehalte von August 1998 bis November 1999	65
Abb. 7.5 a	l.: Deuterium-Exzesse und Bodenwassergehalte von Bodenprofilen zu verschiedenen Probenahmeterminen	68/69
Abb. 7.6:	Sauerstoff-18 / Deuterium-Beziehung im Bodenwasser in $0-2$ cm, $0-20$ cm und $20-40$ cm Tiefe im Vergleich zur Local Meteoric Water Line	73

Abb. 7.7:	Jahresgang der Steigungen der Sauerstoff-18 / Deuterium-Relationen im Bestandsniederschlag und im Bodenwasser unterschiedlicher Horizonte	74
Abb. 7.8:	Deuterium-Exzesse und Bodenwassergehalte von tiefen Bodenprofilen an drei Probenahmeterminen	75

Verzeichnis der Tabellen

Tab. 3.1:	Porenraumgliederung und Porenfunktionen	11
Tab. 4.1:	Profilbeschreibung der Pararendzina im Untersuchungsgebiet	27
Tab. 4.2:	Porenvolumina und Porengrößenverteilung der Zweischicht-Pararendzina	28
Tab. 5.1:	In TRAIN eingesetzte Angaben zum Standort "Hartheimer Kiefernwald"	40
Tab. 7.1:	Vergleich der Monats- und Jahressummen der mit Sverdrup-Verfahren und TRAIN ermittelten Verdunstung	62
Tab. 7.2	ak.: Verdunstung, Bestandsniederschlag und Isotopengehalt im Bestandsniederschlag zwischen jeweils zwei Probenahmeterminen	66ff
Tab. 7.3:	Regressionsgleichungen mit Bestimmtheitsmaß für die Sauerstoff-18 / Deuterium-Beziehung im Bodenwasser aus verschiedenen Horizonten und für die Local Meteoric Water Line des Bestandsniederschlags	73
Tab. 7.4:	Aus Isotopenprofilen errechnete Grundwasserneubildung für verschiedene Zeiträume	76
Tab. 7.5:	Durch das Sverdrup-Verfahren, das TRAIN-Modell und die Isotopenprofile ermittelten Grundwasserneubildungshöhen und Verdunstungssummen	77