# Professur für Hydrologie Albert-Ludwigs-Universität Freiburg 

Claudius Fleischer

## Zeitstabilität der Parameter des HBV Modells in Bezug auf klimatische Veränderungen



Masterarbeit unter der Leitung von Dr. Kerstin Stahl und Prof. Dr. Jan Seibert

## Professur für Hydrologie

 Albert-Ludwigs-Universität FreiburgClaudius Fleischer

# Zeitstabilität der Parameter des HBV Modells in Bezug auf klimatische Veränderungen 

Referentin: Dr. Kerstin Stahl

Koreferent: Prof. Dr. Jan Seibert

Freiburg im Breisgau, 2015

## Inhaltsverzeichnis

Inhaltsverzeichnis ..... II
Abbildungsverzeichnis ..... V
Tabellenverzeichnis ..... XII
0.1. Danksagung ..... XIV
0.2. Zusammenfassung ..... XV
0.3. Extended summary ..... XVI

1. Einleitung ..... 1
1.1. zur Kalibrierung hydrologischer Modelle ..... 1
1.2. Zeitstabilität von Modellparametern. ..... 2
1.3. Hydrologische Prozesse unter dem Einfluss klimatischer Veränderungen ..... 6
2. Problemstellung und Zielsetzung der Arbeit ..... 7
3. Untersuchungsgebiete ..... 9
3.1. Landnutzung ..... 9
3.2. Geologie und Pedologie ..... 10
4. Daten ..... 13
4.1. Niederschlag und Temperatur ..... 13
4.2. Abfluss ..... 13
4.3. Weitere Daten der Einzugsgebiete ..... 14
5. Methoden ..... 15
5.1. Berechnung der potentiellen Evaporation ..... 15
5.2. Das HBV Modell ..... 16
5.3. Modellkalibrierung ..... 18
5.4. Grundlegendes Vorgehen ..... 19
5.4.1. Modellsetup ..... 21
5.5. Vergleich unterschiedlicher Kalibrierungsstrategien ..... 21
5.6. Berechnung der Klimaabweichungen ..... 21
5.7. Vergleich Referenz- und Validierungszeitraum ..... 22
5.8. Erstellung der Performance Plots ..... 22
5.9. Berechnung der Abflussfehler ..... 23
5.10. Erstellung der Regime Plots ..... 23
6. Ergebnisse ..... 25
6.1. Anhand des Gesamtzeitraumes kalibrierte Parameter ..... 25
6.2. Vergleich der Modellperformance unterschiedlicher Kalibrierungsstrategien ..... 25
6.3. Einzugsgebietsspezifische Betrachtung ..... 27
6.3.1. Allenbach ..... 27
Kalibrierung ..... 27
Validierung ..... 28
6.3.2. Dischma ..... 34
Kalibrierung ..... 34
Validierung ..... 35
6.3.3. Murg ..... 40
Kalibrierung ..... 40
Validierung ..... 41
6.3.4. Ova da Cluozza ..... 46
Kalibrierung ..... 46
Validierung ..... 47
6.3.5. Sitter ..... 51
Kalibrierung ..... 51
Validierung ..... 52
6.4. Auswirkung weiterer Ansätze zur Berechnung der potentiellen Evaporation ..... 57
6.4.1. Annahme einer konstanten potentiellen Evaporation ..... 57
6.4.2. Für jede Subperiode separat berechnete potentielle Evaporation ..... 58
7. Diskussion ..... 61
7.1. Methodik ..... 61
7.2. Ergebnisse ..... 62
7.2.1. Modellparameter ..... 62
7.2.2. Performance - Verlust ..... 63
7.2.3. Abflussfehler ..... 65
8. Schlussfolgerungen ..... 67
Literatur ..... 68
A. Anhang ..... 75
A.1. verwendete Abkürzungen ..... 75
A.2. Berechnete potentielle Evaporation ..... 75
A.3. Zeitlicher Verlauf der kalibrierten Modellparameter ..... 76
A.4. hydro - klimatische Verhältnisse der Subperioden ..... 79
A.5. Plots der P/Q Verhältnisse der Einzugsgebiete ..... 82
A.6. Durch HBV angepasste potentielle Evaporation ..... 83
A.7. Performance Verluste der abweichenden Evaporationsansätze im Ein- zugsgebiet Murg ..... 84
A.8. Sensitivität einzelner Parameter auf den Performance - Verlust ..... 86
A.9. Implementierung des GSST in R ..... 92

## Abbildungsverzeichnis

| 3.0.1.räumliche Einordnung der Untersuchungsgebiete |  |
| :---: | :---: |
| 3.1.1.Landnutzung der Untersuchungsgebiete (nach BA | 11 |
| 3.2.1.Geologie der Untersuchungsgebiete (nach BAFU (2014), verändert) |  |
| 5.2.1.Struktur des HBV Modells (aus Abebe u. a. (2010), ursprünglich Seibert\| |  |
| (2000) $)$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  |
| Konzept des generalisierten Split-Sample-Tests. Für einen Zeitraum von |  |
| 20 Jahren ergeben sich 16 Subperioden. Die $n+5$. Subperiode ist un- |  |
| abhängig von der n. Subperiode (rote Striche, links). Die erhaltenen Pa- |  |
| rametersätze dürfen in der Validierung nur auf unabhängige Subperioden |  |
| angewandt werden (beispielhaft dargestellt an den Parametersätzen P1 |  |
| und P8, rechts). RM bezeichnet die Referenzmodellierung. |  |
| 6.3.1.Kalibrierte Parameterwerte für das Einzugsgebiet Allenbach, sortiert |  |
| nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamt- |  |
| zeitraum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 |  |
| 6.3.2.Kalibrierte Parameterwerte für das Einzugsgebiet Allenbach, sortiert |  |
| nach der Temperaturabweichung $\Delta$ T der Subperioden vom Gesamt- |  |
| zeitraum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 |  |
| 6.3.3.Performance (PM) Verlust (Absolutwerte im Lindström Measure) der |  |
| Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugs- |  |
| gebiet Allenbach. Der PM Verlust ist dargestellt gegen Zeitversatz, Tem- |  |
| peratur und Niederschlagsabweichung sowie gegen die Abweichung wei- |  |
| terer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit |  |
| Häufigkeit der eingehenden Modellierungen |  |
| 6.3.4.Einfluss der Differenz innerhalb der Parameterwerte von $T T$ und SFCF |  |
| zwischen Validierungs- und Kalibrierungszeitraum auf den Performance |  |
| - Verlust im Einzugsgebiet Allenbach |  |


| 6.3.5.Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta \mathrm{Q})$ in |
| :---: |
| Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie |
| Abweichungen weiterer Modelloutputs zwischen Validierungs- und Re- |
| ferenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Ein- |
| zugsgebiet Allenbach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 |

6.3.6.Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungs-

| raum für den gemessenen und den durch unterschiedliche Kalibrierungs- |
| :--- | :--- |
| strategien modellierten Abfluss im Einzugsgebiet Allenbach . . . . . . . 33 |

6.3.7.Kalibrierte Parameterwerte für das Einzugsgebiet Dischma, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum 34
6.3.8.Kalibrierte Parameterwerte für das Einzugsgebiet Dischma, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Gesamtzeitraum 35
6.3.9.Performance (PM) Verlust (Absolutwerte im Lindström Measure) der Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugsgebiet Dischma. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen . . . . . . . . . . . . . . . . 36
6.3.1EFinfluss der Differenz innerhalb der Parameterwerte von CFMAX und
SFCF zwischen Validierungs- und Kalibrierungszeitraum auf den Per-
formance - Verlust im Einzugsgebiet Dischma . . . . . . . . . . . . . . 37

6.3.11Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta \mathrm{Q}$ ) in Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie Abweichungen weiterer Modelloutputs zwischen Validierungs- und | Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen |
| ---: | . . 38

6.3.12Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Dischma . . . . . . . 39
6.3.13Kalibrierte Parameterwerte für das Einzugsgebiet Murg, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum 40
6.3.14Kalibrierte Parameterwerte für das Einzugsgebiet Murg, sortiert nach der Temperaturabweichung $\Delta$ T der Subperioden vom Gesamtzeitraum 41
6.3.1Performance (PM) Verlust (Absolutwerte im Lindström Measure) der

| Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugs- |
| :---: |
| gebiet Murg. Der PM Verlust ist dargestellt gegen Zeitversatz, Tempe- |
| ratur und Niederschlagsabweichung sowie gegen die Abweichung wei- |
| terer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit |
| Häufigkeit der eingehenden Modellierungen . . . . . . . . . . . . . . . . . 42 |

6.3.1世influss der Differenz innerhalb der Parameterwerte von MAXBAS und
TT zwischen Validierungs- und Kalibrierungszeitraum auf den Perfor-
mance - Verlust im Einzugsgebiet Murg . . . . . . . . . . . . . . . . . . 43

| 6.3.17Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta$ Q) in |
| :--- |
| Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie |
| Abweichungen weiterer Modelloutputs zwischen Validierungs- und Re- |
| ferenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Ein- |
| zugsgebiet Murg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 |

6.3.1\&ntwicklung des hydrologischen Regimes über den Untersuchungszeit-

| raum für den gemessenen und den durch unterschiedliche Kalibrierungs- |
| :---: |
| strategien modellierten Abfluss im Einzugsgebiet Murg . . . . . . . . . 45 |

6.3.1\%Kalibrierte Parameterwerte für das Einzugsgebiet Ova da Cluozza, sor-

| tiert nach der Niederschlagsabweichung $\Delta$ N der Subperioden vom Ge- |
| :---: | :---: |
| samtzeitraum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 |

6.3.20Kalibrierte Parameterwerte für das Einzugsgebiet Ova da Cluozza, sor-

| tiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Ge- |
| :---: |
| samtzeitraum |

6.3.2 $\mathbb{P}$.erformance (PM) Verlust (Absolutwerte im Lindström Measure) der Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugsgebiet Ova da Cluozza. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum . 48
6.3.22A bweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta \mathrm{Q}$ ) in Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie Abweichungen weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Einzugsgebiet Ova da Cluozza49
6.3.2Жntwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Ova da Cluozza50

| 6.3.2世Kalibrierte Parameterwerte für das Einzugsgebiet Sitter, sortiert nach |
| :--- |
| der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum |
| 6.3.2FKalibrierte Parameterwerte für das Einzugsgebiet Sitter, sortiert nach |
| der Temperaturabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum |
| 6. 52 |
| 6.3.2@erformance (PM) Verlust (Absolutwerte im Lindström Measure) der |
| Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugs- |
| gebiet Sitter. Der PM Verlust ist dargestellt gegen Zeitversatz, Tem- |
| peratur und Niederschlagsabweichung sowie gegen die Abweichung wei- |
| terer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit |
| Häufigkeit der eingehenden Modellierungen . . . . . . . . . . . . . . |
| 53 |

6.3.2 Einfluss der Differenz innerhalb der Parameterwerte von SFCF und TT
zwischen Validierungs- und Kalibrierungszeitraum auf den Performance

| 6.3.28Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta \mathrm{Q}$ ) in |
| :---: |
| Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie |
| Abweichungen weiterer Modelloutputs zwischen Validierungs- und Re- |
| ferenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Ein- |
| zugsgebiet Sitter . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 |

6.3.2世Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Sitter . . . . . . . . . 56
6.4.1.Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit konstanter PET, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden
vom Gesamtzeitraum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

| 6.4.2.Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit konstanter |
| :---: |
| PET, sortiert nach der Temperaturabweichung $\Delta$ T der Subperioden |
| vom Gesamtzeitraum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 |

6.4.3.Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit separat berechneter PET, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.4.Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit separat berechneter PET, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Sub-
perioden vom Gesamtzeitraum . . . . . . . . . . . . . . . . . . . . . . . 59
A.3.1Kalibrierte Parameterwerte für das Einzugsgebiet Allenbach . . . . . . 76
A.3.2Kalibrierte Parameterwerte für das Einzugsgebiet Dischma . . . . . . . 77
A.3.3Kalibrierte Parameterwerte für das Einzugsgebiet Murg ..... 77
A.3.4Kalibrierte Parameterwerte für das Einzugsgebiet Ova da Cluozza ..... 78
A.3.5Kalibrierte Parameterwerte für das Einzugsgebiet Sitter ..... 78
A.4.1hydro - klimatische Verhältnisse im Einzugsgebiet Allenbach ..... 79
A.4.2hydro - klimatische Verhältnisse im Einzugsgebiet Dischma ..... 80
A.4.3hydro - klimatische Verhältnisse im Einzugsgebiet Murg ..... 80
A.4.4hydro - klimatische Verhältnisse im Einzugsgebiet Ova da Cluozza ..... 81
A.4.5hydro - klimatische Verhältnisse im Einzugsgebiet Sitter ..... 81
A.5.1P/Q Verhältnisse der Untersuchungsgebiete ..... 82

A.6.1Jahreswerte der durch HBV angepassten potentiellen Evaporation aller| Einzugsgebiet. Murg star : konstante potentielle Evaporation - Murg |
| :---: |
| var : für jeden Modellierungszeitraum neu berechnete potentielle Eva- |

poration ..... 83
A.7.1Performance (PM) Verlust der Validierungszeiträume in Bezug zu den Referenzzeiträumen bei konstanter potentieller Evaporation. Der PM

| Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlags- |
| :---: |
| abweichung sowie gegen die Abweichung weiterer Modelloutputs zwi- |
| schen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehen- |
| den Modellierungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 |

A.7.2Performance (PM) Verlust der Validierungszeiträume in Bezug zu den Referenzzeiträumen bei für alle Subperioden separat berechneter potentieller Evaporation. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen85
A.8.1Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Allen-
bach. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen
Validierungs- und Referenzzeitraum . . . . . . . . . . . . . . . . . . . . 87
A.8.2Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Dischma. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungs und Referenzzeitraum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.8.3Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Murg. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungsund Referenzzeitraum.89
A.8.4Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Ova da Cluozza. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungs- und Referenzzeitraum . . . . . . . . . . . . . . . . . . . . 90
A.8.5Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Sitter. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungsund Referenzzeitraum.

## Tabellenverzeichnis

3.0.1.Einzugsgebietscharakteristiken der Untersuchungsgebiete (nach BAFU
(2014), verändert)

9
3.2.1.Pedologische Größen der Untersuchungsgebiete (nach BAFU(2014), verändert) 12
5.2.1.Übersicht über die Modellparameter, die Parametergrenzen* und deren Beschreibung 18
6.1.1.Anhand des jeweiligen Gesamtzeitraumes kalibrierte Parameter der Ein-
zugsgebiete.
6.2.1.Darstellung der Modelleffizienz. (a) mittlere EZG Höhe als Pelev und Telev, (b) Kalibrierung von Pelev und Telev, (c) Modellierung mit an einem fünf Jahreszeitraum kalibrierten Parametersatz sowie mit (d) zeitvariierendem Parametersatz. Modellierungszeitraum Sitter*: 1914-2006,
Modellierungszeitraum Sitter: 1951-2006 26
A.1.1Überblick über die verwendeten Abkürzungen. . . . . . . . . . . . . . . 75
A.2.1Berechnete potentielle Evaporation der Einzugsgebiete. 76

### 0.1. Danksagung

Bedanken möchte ich mich an erster Stelle bei Frau Dr. Kerstin Stahl für die Bereitstellung dieses interessanten Themas und gute Betreuung.

Mein Dank gilt auch Herrn Prof. Dr. Jan Seibert für hilfreiche Tipps während der Arbeit.

Außerdem bedanke ich mich bei Daphné Freudiger für die Bereitstellung der GIS Dateien und für die Bereitstellung der aggregierten Messdaten.

Bei Maria Staudinger möchte ich mich für Beispielskripte zur Steuerung von HBV durch $R$ bedanken.

Besonders möchte ich mich bei meiner Familie für die Ermöglichung des Studiums und für die Unterstützung bedanken.

### 0.2. Zusammenfassung

Diese Arbeit untersucht die Zusammenhänge zwischen kalibrierten Modellparametern und Veränderungen von Temperatur und Niederschlag über lange Zeiträume durch Corons generalisierten split - sample - Test.
Eindeutige Beziehungen in diesem Verhältnis wurden nicht gefunden, für einige Parameter wurden jedoch Trends beobachtet. Diese Trends werden teilweise durch größere Unterschiede in den Modellparametern zwischen Zeiträumen mit sehr ähnlichen hydro - klimatischen Bedingungen überlagert. Die beobachteten Trends spiegeln sich auch im zeitlichen Verlauf der Modellparameter wieder.

Durch eine Untersuchung der Output - Größen des Modells konnten die durch die Parameterübertragung entstehenden Performance - Verluste erklärt werden. So kann eine falsche Einschätzung der Schneebedeckung oder der Grundwasserneubildung je nach Einzugsgebiet eng mit Performance - Verlusten verbunden sein. Die am Lindström Measure berechneten Performance - Verluste sind mit einem Mittelwert von -0.047 Punkten jedoch eher gering.

Die Übertragung von Modellparametern auf Zeiträume mit abweichenden klimatischen Bedingungen kann zu deutlichen Fehlern in den Abflussquantilen des modellierten Abflusses führen, was besonders für hohe und niedrige Abflüsse gilt. Des Weiteren können die modellierten monatlichen Abflusssummen durch ungeeignete Modellparameter beeinflusst werden.

Durch Zeit - variierende Modellparameter konnten in jedem Einzugsgebiet die höchsten Performance Werte erreicht werden.

## Stichworte:

Modellparameter, Zeitstabilität, hydrologische Modellierung, Modellrobustheit, HBV

### 0.3. Extended summary

This study examines the relationships between calibrated HBV model parameters and changes in hydro - climatic conditions over long time series using Corons generalized split sample test.

Clear relationships could not be found, some parameters showed some trends, however. These trends were overlayed by larger differences between model parameters calibrated in almost similar climate conditions. The observed trends are also visible in the temporal behavior of these parameters.

The resulting performance losses could be explained through an investigation of the modeloutputs. For instance, a wrong estimation of catchment snowcover or groundwater recharge can be strongly related to performance losses, depending on the cathment. These performance losses are rather small with a mean performance loss of - 0.047 points in lindström measure for all catchments.

Transfer of modelparameters to periods with different climatic conditions can result in distinct errors in discharge quantiles, particulary for high and low flows. Futhermore, monthly discharge sums can be affected by inadequate model parameters.

Time varying parametersets lead to the highest performance values in all catchments.

## Keywords:

Parameter timestability, hydrological modeling, hydrological modelrobustness, HBV

## 1. Einleitung

## 1.1. zur Kalibrierung hydrologischer Modelle

Einzugsgebiete sind komplexe Systeme mit spezifischen Charakteristiken wie Klima, Topologie, Boden, Vegetation, Neigung, Geologie und Drainage (Li u. a., 2011).

Da eine genaue Kenntnis des hydrologischen Systems oft nicht vorhanden ist, beziehungsweise konzeptuelle Niederschlags - Abfluss Modelle nur vereinfachte Abbilder dieser Systeme sind, müssen diese Modelle mit gemessenen (Abfluss-) Daten kalibriert werden (Coron u. a., 2012). Die Parameter in konzeptuellen Niederschlags - Abfluss Modellen geben die hydrologischen Prozesse auf der Einzugsgebietsskala (bzw. für verschiedene Landnutzungsklassen etc.) wieder, wodurch ebenfalls eine Kalibrierung dieser Modelle erforderlich wird (Seibert, 2000; Gan u. a., 2014).

Werden hydrologische Modelle unter anderen Bedingungen angewendet als unter denen sie kalibriert wurden, ergibt sich die Frage nach der Belastbarkeit der Modelle bzw. der Modellierungsergebnisse (Coron u. a., 2011; Merz u. a., 2011). Auch die Länge des Kalibrierungszeitraumes wirkt sich nach Vaze u. a. (2010) auf diese Belastbarkeit der Ergebnisse aus. Ein zu kurzer oder einseitiger Kalibrierungszeitraum kann zu einem einseitig kalibrierten Modell führen, welches Zeiträume, die dem Modell nicht 'antrainiert' wurden, nur schlecht modellieren kann (Bastola u. a., 2011). Bei der Wahl des Kalibrierungszeitraumes auf eine repräsentative Variabilität der Klimagrößen zu achten, ist eine Möglichkeit diesem Problem zu begegnen (Coron u. a., 2011). Die wenigen (und auch unterschiedlichen) Empfehlungen für die Wahl der Länge dieses Zeitraumes erachten eine minimale Länge von 3-20 Jahren für sinnvoll (Brigode u. a., 2013; Vaze u. a. 2010).

Kalibrierte Modellparameter fangen Fehler und Unsicherheiten in der Modellstruktur sowie in den gemessenen Daten auf (wodurch sich diese Fehler in den Modellparametern widerspiegeln) und können sich schon aus diesem Grund in verschiedenen

Kalibrierungszeiträumen unterscheiden (Beven und Binley, 1992; Merz u. a., 2011). Folglich kommt es zu Unsicherheiten im Modellergebnis, da der durch die Kalibrierung angepasste Modellparameter nicht dem physikalisch korrekten Parameterwert für den jeweiligen Prozess im Einzugsgebiet entspricht (Abebe u. a., 2010).

Des Weiteren führen unterschiedliche Zielfunktionen zur Messung der Modellperformance zu unterschiedlichen Parametersätzen (Seibert, 2003; Gan u. a., 2014; Abebe u. a. 2010). Interaktionen zwischen den Modellparametern stellen hier ein zusätzliches Problem dar (Seibert, 2003). Dies führt nach Seibert (2003) zu mehreren Parametersätzen, die den Kalibrierungszeitraum, gemessen an der Modellperformance, gleich gut modellieren können (vergleiche auch Seibert (1997); Li u. a. (2011); Gan u. a. (2014)). Der Begriff der Parameterequifinalität bezeichnet genau dieses Phänomen (Li) u. a. 2011); die Parameterwerte sind nicht mehr eindeutig identifizierbar (Gan u.a., 2014). Dies bedeutet jedoch nicht, dass die simulierten Abflüsse, die mit diesen Parametersätzen erzeugt wurden, als solches gleich sein müssen, da sich durch die unterschiedlichen Parametrisierungen die Prozesse innerhalb des Modells unterscheiden können. Werden diese, im Kalibrierungszeitraum gleich guten, Parametersätze nach klimatischen Veränderungen oder Landnutzungsänderungen angewandt, können unterschiedliche Abflussvorhersagen der Fall sein (Uhlenbrook u. a., 1999).

Derzeit besteht großes Interesse, Modellkalibrierungsverfahren robuster zu gestalten und Parameterunsicherheiten besser zu verstehen (vgl. Coron u. a. (2012); Gharari u. a. (2013); Westra u. a. (2014); Gan u.a. (2014)).

### 1.2. Zeitstabilität von Modellparametern

Merz u. a. (2011) untersuchten die Zeitstabilität von Modellparametern des HBV Modells in 273 Einzugsgebieten in Österreich über einen Zeitraum von 30 Jahren, den sie in fünf - Jahresabschnitte unterteilten. Die Parameter der Schnee- und BodenfeuchteRoutine zeigten dabei signifikante Zeit-Trends. Diese Trends wurden hydro - klimatischen Veränderungen in den Einzugsgebieten zugeordnet, da die Veränderungen in den Parametern mit Trends von Klima-variablen wie Lufttemperatur und potentieller Evaporation korreliert werden konnten. Auch sind diese Trends in verschiedenen Einzugsgebieten ähnlich, was Kalibrierungsartefakte nach Merz u. a. (2011) unwahrscheinlich werden lässt. Der Parameter für die Abfluss-Generierung, B, verdoppelte
sich im Untersuchungszeitraum, auch der Parameter für die maximale Bodenfeuchtespeicherkapazität, FC, stieg stark an (Merz u. a. 2011). Diese Trends sind nach Merz u. a. (2011) durch die wärmeren Temperaturen und dadurch höhere Evaporation in den jüngeren Jahren bedingt, die zu trockeneren Böden und einer vergrößerten Speicherkapazität für Wasser führen. Der Schneekorrekturfaktor SCF fiel im Laufe der Jahre ab, was Merz u. a. (2011) mit den höheren Temperaturen und dem damit verbundenem geringeren Schneeanteil am Gesamtniederschlag erklären. Veränderungen in den Parametern der Routing Routine konnten nicht eindeutig Veränderungen in den klimatischen Bedingungen zugeordnet werden, was Merz u. a. (2011) durch die größere Abhängigkeit dieser Parameter von der Topographie, dem Flussnetzwerk, der Geologie und dem Bodentyp begründen. Der Unterschied zwischen simuliertem und gemessenem Abfluss wird nach Merz u. a. (2011) mit zunehmendem zeitlichen Abstand zwischen Kalibrierungs- und Validierungszeitraum größer, was besonders für Hoch- und Niedrigabflüsse ( $Q_{5}$ und $Q_{95}$ ) gilt. Die Abflüsse wurden eher überschätzt (unterschätzt), wenn der Kalibrierungszeitraum kühler und trockener (wärmer und nasser) als der Validierungszeitraum war.

Nach Coron u. a. (2012) kann ein Parametersatz, der in unterschiedlichen klimatischen Bedingungen kalibriert und angewandt wird, zu Verlusten in der Modellperformance führen. Coron u. a. (2012) fanden eine Beziehung zwischen den Veränderungen im gemittelten Niederschlag und der Modellperformance, Zusammenhänge zwischen mittlerer potentieller Evaporation sowie der Temperatur und der Modellperformance wurden nicht beobachtet. Dies wird mit der Wasserlimitiertheit der untersuchten Einzugsgebiete in Südost-Australien begründet, die eine höhere Sensitivität der Zielfunktion auf den Niederschlagsinput als auf die Evaporation und die Temperatur bewirkt. Besonders die Fehler in den simulierten Abflussvolumen werden nach Coron u. a. (2012) stark von Veränderungen im Niederschlag beeinflusst. Außerdem überschätzten (unterschätzten) die verwendeten Modelle den Abfluss in der Validierungsperiode, wenn die Kalibrierungsperiode im Vergleich nasser (trockener) war.

Nach Vaze u. a. (2010) nimmt der Verlust in der Modellperformance mit größerer Differenz im Niederschlag zwischen Kalibrierungs- und Validierungszeitraum zu. In die Studie gingen 61 Einzugsgebiete in Südost-Australien ein. Der beobachtete PerformanceVerluste wurde größer, wenn kurze Zeiträume für Kalibrierung und Validierung genutzt wurden. Die Ergebnisse der Studie konnten nicht mit Gebietseigenschaften in Verbindung gebracht werden, auch waren keine räumlichen Muster zu erkennen. Modelle, die
über einen Zeitraum von mindestens 20 Jahren kalibriert werden, können nach Vaze u. a. (2010) auf andere Zeiträume übertragen werden, wenn sich der mittlere jährliche Niederschlag in Relation zum Kalibierungszeitraum nicht um mehr als $15 \%$ verringert oder 20 \% erhöht. Unter nassen Bedingungen kalibrierte Modelle sind nach Vaze u.a. (2010) nicht für die Anwendung in kurzen, trockenen Zeiträumen geeignet

Nikolova (2013) untersuchte die Robustheit von HBV Modellparametern im Thur Einzugsgebiet in der Schweiz über einen Zeitraum von 29 Jahren. Unter ähnlichen klimatischen Bedingungen kalibrierten Parameter lieferten in der Validierung bessere Performance - Werte als unter gegensätzlichen Bedingungen kalibrierte Parameter. Allerdings konnte durch Nikolova (2013) nur eine geringfügige Verschlechterung der Modellperformance (durchschnittlicher Verlust der Nash - Sutcliffe - Modellgüte von $3 \%$ ) beobachtet werden, wenn die kalibrierten Parameter auf Zeitabschnitte mit abweichenden klimatischen Bedingungen angewandt wurden. Für die unterschiedlichen Abflussanteile ( $Q_{95}, Q_{50}$ und $Q_{05}$ ) wurden deutlich größere Fehler in den Modellierungsergebnissen festgestellt, wenn das Modell in klimatisch abweichenden Validierungszeiträumen angewendet wurde (für $Q_{05}$ über $20 \%$ ).

Unterschiedliche klimatischen Bedingungen zwischen Kalibrierungs- und Validierungszeitraum führen auch nach Brigode u. a. (2013) zu einer Abnahme der Modellperformance. Brigode u.a. (2013) beobachteten keine eindeutigen Auswirkungen der klimatischen Bedingungen während des Kalibrierungszeitraumes auf die Chrakteristiken des modellierten Abflusses. Die Kalibrierung über den gesamten Zeitraum (durchschnittlich 20 Jahre) führte nach Brigode u. a. (2013) nicht zu robusteren Modellen als eine Kalibrierung über drei Jahre, was der üblichen Annahme 'je länger der Kalibrierungszeitraum, desto robuster der Parametersatz', wie auch den Ergebnissen von Vaze u.a., 2010), widerspricht (Brigode u. a., 2013).

Wagener u. a. (2003) zeigte, dass Stürme in trockenen Sommerperioden andere Parametrisierungen benötigen als Stürme in nassen Zeiträumen.

Nach Li u.a. (2011) können unterschiedliche Kalibrierungszeiträume zu signifikanten Verschiebungen in den Verteilungen der Modellparameter führen. Der Transfer von sensitiven Parametern kann zu großen Fehlern in der Modellierung führen, wenn das Modell unter veränderten klimatischen Bedingungen angewendet wird (Li u.a., 2011). Daher sollte ein hydrologisches Modell nach Li u. a. (2011) für die Bedingungen kali-
briert werden, unter denen es zum Einsatz kommt.

Westra u. a. (2014) legen ihre Ergebnisse als starken Beleg für die Nicht-Stationarität von hydrologischen Modellen aus, da sich die modellierten Abflüsse signifikant verbessert haben wenn die Modellparameter über die Zeit variieren konnten. Auch die Ergebnisse von Herman u. a. (2013) deuten auf Abhängigkeiten zwischen den Modellparametern und zeit - variierenden hydro - klimatischen Bedingungen hin.

Niel u. a. (2003) untersuchten 17 Einzugsgebiete in Afrika mit einem nicht flächenverteilten hydrologischen Modell, in denen sich Niederschlag und Abfluss deutlich verändert haben. Veränderungen in diesen Größen führten jedoch nicht zu einer Parameterinstabilität. Lay u. a. (2009), die ein nicht fächenverteiltes hydrologisches Modell in Afrika über einen Zeitraum von etwa 50 Jahren anwendeten, konnten zeigen, dass signifikante Veränderungen im Niederschlags-Abflussverhältnis hier nicht zu signifikanten Veränderungen in den Modellparametern führen. Chiew u. a. (2009) modellierten den Einfluss von Klimaänderungen auf den Abfluss im Südosten Australiens. Die Modellierungsergebnisse waren für einen unabhängigen Testzeitraum nur geringfügig schlechter als für den Kalibrierungszeitraum. Chiew u. a. (2009) schließen daraus, dass ein zufriedenstellend kalibriertes hydrologisches Modell auf Zeiträume mit anderen klimatischen Bedingungen angewendet werden kann. Nach Bastola u. a. (2011) bleiben die kalibrierten Parameterwerte auch für andere Zeiträume akzeptabel, wenn sich der Niederschlag nicht um mehr als $10 \%$ verändert.

Merz u. a. (2011) stellten eine Verbindung zwischen den Modellparametern und hydro

- klimatischen Veränderungen her, wohingegen Modellparameter nach Lay u. a. (2009) kein brauchbares Maß für Veränderungen im Einzugsgebiet darstellen.


# 1.3. Hydrologische Prozesse unter dem Einfluss klimatischer Veränderungen 

Nach Zierl und Bugmann (2005), die Modellierungen zum Verhalten hydrologischer Prozesse im Alpenraum im 21. Jahrhundert durchführten, führen besonders in höher gelegenen Einzugsgebieten die Auswirkungen der steigenden Temperaturen auf die Dynamik der Schneedecke zu einer Verschiebung der hydrologischen Regime.

Geringere Lufttemperaturen haben in humiden Klimaten eine geringere Evapotranspiration zur Folge (Tabari und Talaee, 2014). Jedoch hat die Sonnenscheindauer einen etwas größeren Einfluss auf die potentielle Evapotranspiration als die Temperatur, welche an zweiter Stelle steht.

Birsan u. a. (2005) untersuchten Trends im Abfluss in 48 in der Schweiz gelegenen Einzugsgebieten im 20. Jahrhundert. Dabei beobachteten sie fast ausschließlich ansteigende statistisch signifikante Abflusstrends, hauptsächlich verursacht durch einen Anstieg des Abflusses im Winter, jedoch auch aufgrund eines Anstieges der Abflüsse im Frühling und im Herbst. Diese Trends konnten durch Birsan u. a. (2005) mit Einzugsgebietseigenschaften wie mittlerer Einzugsgebietshöhe, Vergletscherung und anstehendes Gestein positiv korreliert und mit der mittleren Bodenmächtigkeit negativ korreliert werden.

## 2. Problemstellung und Zielsetzung der Arbeit

Die Zeitstabilität von Parametern hydrologischer Modelle ist derzeit nicht richtig verstanden.
Ziel dieser Arbeit ist das Identifizieren von Veränderungen in den Modellparametern in unter geringem anthropogenem Einfluss stehenden Einzugsgebieten über lange Zeiträume. Hierbei steht insbesondere die Frage, ob ein systematischer Zusammenhang zwischen den hydro - klimatischen Eingangsgrößen Temperatur und Niederschlag und den kalibrierten Modellparametern besteht, im Vordergrund.
Des Weiteren sollen die Performance - Verluste, die durch die Übertragung von Modellparametern auf unabhängige Modellierungszeiträume entstehen, quantifiziert werden. Gründe für diese Performance - Verluste sollen gefunden werden.
Die Ergebnisse der Arbeit sollen zusätzliche Informationen zur Bestimmung der Modellunsicherheit von Niederschlags- Abflussmodellierungen durch Annahme zeit - konstanter Parametersätze innerhalb des KHR Projektes (Internationale Kommission zur Hydrologie des Rheins) liefern.

## 3. Untersuchungsgebiete

Als Untersuchungsgebiete wurden fünf in der Schweiz gelegene Einzugsgebiete mit geringem anthropogenen Einfluss gewählt (keine Dämme, keine bedeutenden Wasserentnahmen oder -zuführungen (Staudinger u.a. 2014)). Vier der fünf Einzugsgebiete sind Kopfeinzugsgebiete des Rheins. Das Gebiet Ova da Cluozza wurde zusätzlich ausgewählt, da es hoch gelegen ist und über große Flächenanteile anstehendes Gestein aufweist und damit sensibler auf klimatische Veränderungen reagieren sollte (Birsan u. a. 2005). Die Einzugsgebiete sind, wenn überhaupt, nur minimal durch Gletscher beeinflusst (Abbildung 3.1.1). Für alle Einzugsgebiete liegen lange Zeitreihen der mittleren täglichen Abflüsse, sowie der Klimagrößen Temperatur und Niederschlag, vor. Sie unterscheiden sich in ihrer Höhenausdehnung, der Regimetypen, sowie in weiteren Einzugsgebietscharakteristiken wie Geologie und Landnutzung. Die Einzugsgebietsgrößen sind vergleichbar. Eine räumliche Übersicht über die Einzugsgebiete ist in Abbildung 3.0.1 aufgezeigt, Tabelle 3.0.1 gibt eine Charakterisierung der Einzugsgebiete.

Die Untersuchungsgebiete Dischma und Ova da Cluozza sind die am höchsten gelegenen Einzugsgebiete, Murg stellt das am tiefsten gelegene Einzugsgebiet dar.

Tabelle 3.0.1.: Einzugsgebietscharakteristiken der Untersuchungsgebiete (nach BAFU (2014), verändert)

| EZG | Fläche $\left[\mathrm{km}^{2}\right]$ | max. Höhe $[\mathrm{m}]$ | min. Höhe $[\mathrm{m}]$ | mittlere Höhe $[\mathrm{m}]$ | Regimetyp |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Allenbach | 28.8 | 2762 | 1297 | 1856 | nival |
| Dischma | 43.3 | 3146 | 1668 | 2327 | glazio-nival |
| Murg | 78 | 1035 | 465 | 650 | pluvial |
| Ova da Cluozza | 26.9 | 3165 | 1508 | 2368 | glazio-nival |
| Sitter | 74.2 | 2501 | 769 | 1252 | nival |

### 3.1. Landnutzung

Die Landnutzungen der Untersuchungsgebiete ist in Abbildung 3.1.1 dargestellt. Die Daten beruhen auf Informationen des Bundesamtes für Umwelt (BAFU, 2014). Der Waldanteil variiert zwischen 2.38 \% für das Dischma Einzugsgebiet und 33.45 \% für


Abbildung 3.0.1.: räumliche Einordnung der Untersuchungsgebiete
das Einzugsgebiet Murg, auch der Anteil der vegetationslosen Flächen variiert zwischen den Einzugsgebieten stark ( 0.24 \% für Murg und 66.91 \% für Ova Da Cluozza). Wasserkörper und Siedlungsflächen machen in allen Untersuchungsgebieten nur einen geringen Teil an der Gesamtfläche aus. Hierbei besitzt das Einzugsgebiet Murg den größten Anteil an Siedlungsfächen (9.68 \%). Die Gebiete Ova da Cluozza und Dischma sind die einzigen, die Gletscher beinhalten ( 2.23 \% und 2.06 \% Flächenanteil).

### 3.2. Geologie und Pedologie

Auch die Daten zu Geologie und Pedologie der Einzugsgebiete beruhen auf Informationen des Bundesamtes für Umwelt (BAFU, 2014). In den Einzugsgebieten Ova da Cluozza und Sitter treten Gesteine mit Tendenz zur Verkarstung auf. Zu einem geringen Teil ist dies auch im Einzugsgebiet Allenbach der Fall. Daher ist besonders für das Einzugsgebiet Ova da Cluozza von hohen Fließgeschwindigkeiten auszugehen. Die Gesteine im Allenbach Einzugsgebiet weisen hohe Tongehalte auf, was zu einer geringen Durchlässigkeit führt. Im Einzugsgebiet Dischma sind beide Talflanken von mächtigen Moränen bedeckt, die große Mengen Wasser speichern können. Auch das Einzugsge-


Abbildung 3.1.1.: Landnutzung der Untersuchungsgebiete (nach BAFU (2014),
verändert)
biet Murg ist im unteren Teil von Moränen und fluvioglazialen Schottern bedeckt. Die Geologie der Untersuchungsgebiete ist in Abbildung 3.2.1 dargestellt.


Abbildung 3.2.1.: Geologie der Untersuchungsgebiete (nach BAFU (2014), verändert)

Tabelle 3.2.1 gibt die pedologischen Eigenschaften der Einzugsgebiete wieder. Dabei ist zu beachten, dass zum Teil große Gebietsanteile nicht definiert sind.

Tabelle 3.2.1.: Pedologische Größen der Untersuchungsgebiete (nach BAFU (2014), verändert)

| $E Z G$ | mittleres Wasserspeichervermögen $[\mathrm{mm}$ ] | mittlere <br> Durchlässigkeit $[\mathrm{cm} / \mathrm{s}]$ | dominierende Bodentypen | nicht definiert [\%] |
| :---: | :---: | :---: | :---: | :---: |
| Allenbach | 35.1 | $2.0 \mathrm{E}-03$ | Regosol, Gleysol | 21.4 |
| Dischma | 17.8 | $4.3 \mathrm{E}-02$ | Lithosol, Ranker | 41.6 |
| Murg | 69.4 | $2.9 \mathrm{E}-03$ | Cambisol, Regosol | 0.7 |
| Ova da | 16.9 | $5.1 \mathrm{E}-03$ | Lithosol, Rendzina | 65.7 |
| Cluozza Sitter | 40.9 | $3.6 \mathrm{E}-03$ | Regosol, Lithosol | 6.9 |

## 4. Daten

### 4.1. Niederschlag und Temperatur

Die Niederschlags- und Temperaturdaten stammen aus dem DWD / BfG - HYRAS PRE - Datensatz (Rauthe u. a., 2013). Dabei handelt es sich um einen gridbasierten Rasterdatensatz mit einer räumlichen Auflösung von $1 \mathrm{~km}^{2}$ und einer zeitlichen Auflösung von einem Tag. Die Messdaten reichen von 1951 bis 2006 und wurden innerhalb des KHR Projektes (internationale Kommission für die Hydrologie des Rheingebietes) mittels Analogtagen bis ins Jahr 1901 rekonstruiert (Stahl u. a., 2013). Die Anzahl der Messstationen war über den Zeitraum jedoch nicht konstant, in der Schweiz verdreifachte sich deren Anzahl im Jahr 1961 (Rauthe u. a., 2013). Aufgrund dieser Verdreifachung der Messstationen kann eine höhere Qualität der Temperatur- und Niederschlagsdaten ab diesem Jahr angenommen werden.

An der Universität Freiburg wurden aus den gridbasierten Daten bereits pro Einzugsgebiet Tagesmittelwerte gebildet.

### 4.2. Abfluss

Durch das Bundesamt für Umwelt der Schweiz (BAFU, 2014) wurden die Abflussdaten in täglicher Auflösung bereitgestellt. Die Länge der Abflusszeitreihen ist nicht einheitlich, für die meisten Einzugsgebiete sind Daten über einen Zeitraum von etwa 50-60 Jahren vorhanden. Für die Modellierung mit HBV wurden die Abflussdaten jeweils von $\frac{m^{3}}{s e c}$ in $\frac{m m}{d}$ umgerechnet. Das Einzugsgebiet Sitter ist aufgrund der Länge der Abflusszeitreihe das einzige Untersuchungsgebiet, für das Analogtage vor 1951 verwendet wurden.

### 4.3. Weitere Daten der Einzugsgebiete

Ebenfalls durch das Bundesamt für Umwelt der Schweiz (BAFU, 2014) wurde die Landnutzung der Schweiz als Shapefile sowie Shapefiles mit den Einzugsgebietsflächen der Untersuchungsgebiete bereitgestellt. Als digitales Höhenmodell wurde das DHM25 des Bundesamtes für Landestopographie verwendet. Aus diesen Informationen wurden mit ArcGIS die Einzugsgebiete für das HBV Modell erstellt.

## 5. Methoden

### 5.1. Berechnung der potentiellen Evaporation

Die potentielle Evaporation wurde über das angepasste PE Modell nach Oudin u. a. (2005) berechnet (Gleichung 5.1.1). Dieses Verfahren ist ein einfacher, temperaturbasierter Ansatz, der nach Oudin u. a. (2005) jedoch genauso gute Werte für Niederschlags - Abfluss - Modellierungen wie ein detaillierterer Ansatz (beispielsweise nach Penman) liefert. Für die Modellierung mit HBV wurden jeweils Monatsmittelwerte gebildet. Die für die Berechnung benötigte extraterrestrische Strahlung wurde nach den Vorgaben der FAO berechnet (FAO, 2014). Die so errechneten Werte sind etwas höher als die reellen Verdunstunghöhen nach HAdeS (2014) (Hydrologischer Atlas der Schweiz) und stimmen gut mit Literaturwerten überein (vgl. Gurtz u. a. (2003); Seeger (2013); Menzel (1999)). Eine Übersicht über die potentiellen Verdunstungswerte ist im Anhang A.2.1) aufgelistet.

$$
\begin{equation*}
P E=\frac{R_{e}}{\lambda * \rho} * \frac{T_{a}+K 2}{K 1} \tag{5.1.1}
\end{equation*}
$$

mit :
$P E=$ potentielle Evaporation $\left[\frac{m m}{T a g}\right]$
$R_{e}=$ extraterrestrische Strahlung $\left[\frac{M J}{c m^{2} * T a g}\right]$
$\lambda=$ latenter Wärmefluss $\left[\frac{\mathrm{MJ}}{\mathrm{kg}}\right]$
$\rho=$ Dichte des Wassers [ $\frac{k g}{L}$ ]
$T_{a}=$ Tagesmitteltemperatur $\left[{ }^{\circ} \mathrm{C}\right]$
und :

$$
\begin{equation*}
R_{e}=\frac{24 * 60}{\pi} * G_{S C} * d_{r}\left[\omega_{s} * \sin (\varphi) * \sin (\delta)+\cos (\varphi) * \cos (\delta) * \sin \left(\omega_{s}\right)\right] \tag{5.1.2}
\end{equation*}
$$

mit :
$G_{S C}=$ Solarkonstante $\left[\frac{M J}{m^{2} * J a h r}\right]$
$d_{r}=$ inverser relativer Abstand Erde-Sonne [rad]
$\delta=$ Neigung der Sonne $[\mathrm{rad}]$
$\varphi=$ Breitengrad $[\mathrm{rad}]$
$J=$ Tag im Jahr [-]
$\omega_{s}=$ Sonnenwinkel $[\mathrm{rad}]$

Die Solarkonstante $G_{S C}$ beträgt $0.0820\left[\frac{M J}{m^{2} * J a h r}\right]$. Der inverse relative Abstand ErdeSonne $d_{r}$ wurde durch $1+0.033 * \cos \left(\frac{2 * \pi}{365} * J\right)$ berechnet, die Neigung der Sonne $\delta$ durch $0.409 * \sin \left(\frac{2 * \pi}{365} * J-1.39\right)$ und der Sonnenwinkel $\omega_{s}$ durch $\arccos (-\tan (\varphi) * \tan (\delta))$. Der latente Wärmefluss wurde auf $2.45 \frac{M J}{k g}$ festgesetzt (vgl. Oudin u. a. (2005)).

### 5.2. Das HBV Modell

Das HBV Modell (Bergström, 1976) ist ein halb - flächenverteiltes konzeptionelles Niederschlags - Abfluss Modell, das am Swedish Meteorological and Hydrological Institute (SMHI) entwickelt wurde. Mittlerweile existiert es in verschiedenen Versionen und wurde weit verbreitet angewandt (Seibert und Vis, 2012). Es wurde als fähig empfunden, den Abfluss in verschiedenen Klimazonen zu simulieren (Seibert, 2000). Die hier verwendete HBV-light Version wurde an der Universität Zürich entwickelt (Seibert und Vis, 2012). Die folgenden Äußerungen zum HBV Modell beruhen auf Informationen aus Seibert und Vis (2012) und Seibert (2005).

Das Modell kann in verschiedene Höhen- und Vegetationszonen sowie in verschiedene Untereinzugsgebiete unterteilt werden. Der Niederschlag findet als Schnee oder als Regen in das Modell Eingang, je nachdem ob die Tagesmitteltemperatur über oder unter dem Schwellenwert TT [ $\left.{ }^{\circ} \mathrm{C}\right]$ liegt. Schneefall wird mit dem Korrekturfaktor SFCF [-] multipliziert, um systematische Fehler in der Schneefallmessung zu kompensieren und um Evaporation von der Schneedecke zu simulieren. Schmelz- und Regenwasser wird in der Schneedecke gehalten, bis es einen bestimmten Anteil CWH [-] des Schnee-Wasser Äquivalents des Schnees überschreitet. Schneeschmelze findet in Abhängigkeit der Tagesmitteltemperatur und dem Parameter CFMAX $\left[\frac{\mathrm{mm}}{{ }^{\circ} \mathrm{C}}\right]$ statt. Fällt die Tagesmitteltemperatur unter $T T$, kann flüssiges Wasser in der Schneedecke in Abhängigkeit des Parameters $C F R$ [-] erneut gefrieren. Regen und Schneeschmelze werden in Abhängigkeit des Wassergehaltes der Bodenbox, deren maximaler Füllmenge FC [ mm ] und des Pa rameters Beta in ebendiese Bodenbox oder in die obere Grundwasserbox geführt. Die reelle Evaporation wird über eine lineare Gleichung, bestehend aus der potentiellen


Abbildung 5.2.1.: Struktur des HBV Modells (aus Abebe u. a. (2010), ursprünglich Seibert (2000))

Evaporation, dem verfügbaren Wasser in der Bodenbox SM [ mm ] und den Parametern $F C$ [ mm ] und $L P[-]$, berechnet. Sie gleicht der potentiellen Evaporation, wenn $\frac{S M}{F C}>L P$. Die potentielle Evaporation kann in Abhängigkeit der Tagesmitteltemperatur und dem Korrekturfaktor $\operatorname{Cet}\left[{ }^{\circ} \mathrm{C}^{-1}\right]$ variieren. PERC $[\mathrm{mm}]$ definiert die maximale Perkulation von der oberen in die untere Grundwasserbox. Der modellierte Abfluss $[\mathrm{mm} / \mathrm{d}]$ entstammt ausschließlich den Grundwasserboxen. Er wird in Abhängigkeit des Schwellenwertes UZL $[\mathrm{mm}]$ sowie der Parameter $K 0[-], K 1[-]$ und $K 2$ [-] berechnet. Anschließend wird der Abfluss $\left[\frac{\mathrm{mm}}{T \mathrm{Tag}}\right]$ über den Gewichtungsparameter MAXBAS [Tage] transformiert.

Veränderungen der Niederschlagsmenge und der Temperatur mit der Höhe werden durch die Parameter PCALT $\left[\frac{\%}{100 m}\right]$ und TCALT $\left[\frac{{ }^{\circ} \mathrm{C}}{100 \mathrm{~m}}\right]$ berechnet. Die Höhe, auf der Niederschlag und Temperatur gemessen werden, werden durch die Parameter Pelev [ m ] und Telev [m], angegeben.

Für eine genauere Modellbeschreibung sowie zur Ansicht der dem Modell zugrunde liegenden Gleichungen wird an Seibert und Vis (2012) verwiesen.

Tabelle 5.2.1.: Übersicht über die Modellparameter, die Parametergrenzen* und deren Beschreibung

| Parameter | Einheit | Parametergrenzen* | Beschreibung |
| :---: | :---: | :---: | :---: |
| TT | $\left[{ }^{\circ} \mathrm{C}\right]$ | -2-2.5 | Schwellenwerttemperatur |
| CFMAX | $\left[\frac{\mathrm{mm}}{{ }^{\circ} \mathrm{C}}\right]$ | 0.5-10 | Tag-Grad Faktor |
| SFCF | [-] | 0.5-1.7 | Schneefallkorrekturfaktor |
| CFR | [-] | 0.05-0.05 | Gefrierkoeffizient |
| CWH | [-] | 0.1-0.1 | Anteil des Wasseräquivalents der Schneedecke |
| FC | [ mm ] | 100-900 | Maximale Bodenfeuchte |
| LP | [-] | 0.3-1 | Schwellenwert für Reduktion der aktuellen Verdunstung |
| BETA | [-] | 1-8 | Aufteilung von Regen und Schneeschmelze in GWN oder Bodenfeuchte |
| PERC | [ mm ] | 0-16 | Perkulation |
| UZL | [ mm ] | 0-120 | Schwellenwert für K0 Abfluss |
| K0 | [-] | 0.1-0.6 | Rezessionskoeffizient für hohe Abflüsse |
| K1 | [-] | 0.01-0.5 | Rezessionskoeffizient für mittlere Abflüsse |
| K2 | [-] | 5E-05-0.15 | Rezessionskoeffizient für Basisabfluss |
| MAXBAS | [Tage] | 1-6 | Abflusstransformation |
| Cet | $\left[{ }^{\circ} C^{-1}\right]$ | 0-0.3 | Korrekturfaktor für pot. Evaporation |
| TCalt | $\left[\frac{{ }^{\circ} \mathrm{C}}{100 \mathrm{~m}}\right]$ | -2-12 | Temperaturzunahme mit Höhe |
| PCalt | $\left[\frac{\%}{100 \mathrm{~m}}\right]$ | 0.1-1.7 | Niederschlagszunahme mit Höhe |
| Telev | [m] | 800-2400 | Höhe der Temperaturmessung |
| Pelev | [m] | 800-2400 | Höhe der Niederschlagsmessung |

### 5.3. Modellkalibrierung

Das HBV Modell wurde durch den generischen Algorithmus GAP kalibriert. Für jede Kalibrierung wurden jeweils 2000 Modellläufe verwendet. Die in der Methode enthaltene Powell Optimierung zur Suche des lokalen Optimums wurde nicht verwendet, da diese besonders bei schlecht definierten Parametern und auf Plateaus ein Wegdriften der Parameterwerte begünstigt. GAP ist eine globale Methode zur Optimierung der Parameterwerte. Durch Auswahl und Rekombination werden, anhand einer Zielfunktion, bessere Parameterwerte gesucht (Seibert, 2000). Ein innerhalb festgesetzter Grenzen zufällig ausgewählter Parametersatz dient hierbei als Startpunkt (Seibert und Vis, 2012). Die Kalibrierung wurde jeweils 25 mal durchgeführt, um einen Wertebereich der kalibrierten Modellparameter zu erhalten. Als Zielfunktion für die GAP Kalibrierung wurde das Lindström Measure (Gleichung 5.3.1 (Lindström, 1997)) verwendet, welches eine Kombination aus der Nash-Sutcliffe Modellgüte (Nash und Sutcliffe, 1970) und
dem Abfluss-Volumen-Fehler darstellt. Dadurch wird der Empfehlung von Abebe u. a. (2010) gefolgt, wonach das HBV Modell durch eine Kombination mehrerer Zielfunktionen, die unterschiedliche Aspekte der Einzugsgebietsreaktion einbeziehen, kalibriert werden sollte.

$$
\begin{equation*}
L M=R_{e f f}-0.1 * V E \tag{5.3.1}
\end{equation*}
$$

wobei

$$
\begin{equation*}
R_{e f f}=1-\frac{\sum_{t=1}^{T}\left(Q_{o b s}^{t}-Q_{s i m}^{t}\right)^{2}}{\sum_{t=1}^{T}\left(Q_{o b s}^{t}-\overline{Q_{o b s}}\right)^{2}} \tag{5.3.2}
\end{equation*}
$$

und

$$
\begin{equation*}
V E=\frac{\left|\sum\left(Q_{\text {obs }}-Q_{\text {sim }}\right)\right|}{\sum\left(Q_{o b s}\right)} \tag{5.3.3}
\end{equation*}
$$

mit
$Q_{o b s}=$ beobachteter Abfluss
$Q_{\text {sim }}=$ modellierter Abfluss
$\overline{Q_{o b s}}=$ gemittelter gemessener Abfluss

### 5.4. Grundlegendes Vorgehen

Das grundlegende Vorgehen entspricht einer Kombination aus der beschriebenen GAPKalibrierung und dem generalisierten Split-Sample-Test (GSST) von Coron u. a. (2012). Durch die Verwendung des GSST können alle möglichen Kombinationen der Kalibrierungsund Validierungszeiträume getestet werden, was zu mehr Ergebnissen und somit zu einer größeren Robustheit dieser Ergebnisse führt. Der zur Verfügung stehende Gesamtzeitraum wurde in Subperioden mit einer Länge von jeweils fünf Jahren unterteilt, die jeweils zur Kalibrierung dienten. Nach jeder Kalibrierung wurden die Subperioden um ein Jahr verschoben (Abbildung 5.4.1). Validiert wurde das Modell, indem mit dem besten Parametersatz der 25 Kalibrierungen einer jeden Subperiode die übrigen, unabhängigen, Subperioden modelliert wurden. Zusätzlich wurde eine Referenzmodellierung (RM) durchgeführt. Der GSST wurde in der Programmiersprache R implementiert, das HBV - Modell wurde folglich über R gesteuert.

Jedes Einzugsgebiet wurde in einem ersten Schritt für den kompletten zur Verfügung stehenden Zeitraum per GAP-Optimierung kalibriert. Dadurch wurden zum einen die Parametergrenzen für jedes Einzugsgebiet individuell festgelegt, zum anderen lieferte


Abbildung 5.4.1.: Konzept des generalisierten Split-Sample-Tests. Für einen Zeitraum von 20 Jahren ergeben sich 16 Subperioden. Die n+5. Subperiode ist unabhängig von der n . Subperiode (rote Striche, links). Die erhaltenen Parametersätze dürfen in der Validierung nur auf unabhängige Subperioden angewandt werden (beispielhaft dargestellt an den Parametersätzen P1 und P8, rechts). RM bezeichnet die Referenzmodellierung.
dies Werte für die Parameter PCALT, TCALT, Pelev und Telev, die in den folgenden Modellierungen der einzelnen Subperioden als konstant angenommen wurden. Hierdurch wird verhindert, dass diese Parameter Reaktionen der übrigen Modellparameter auf hydro - klimatische Veränderungen abfangen bzw. verhindern.

Für die Parameter Pelev und Telev könnten auch jeweils die mittleren Einzugsgebietshöhen verwendet werden, da die Temperatur- und Niederschlagsdaten aus einem rasterbasierten Datensatz stammen. Jedoch kann durch die Kalibrierung dieser Parameter die Niederschlagsmenge angepasst werden. Dies ist durchaus sinnvoll, da die Niederschlagsmenge durch den HYRAS Datensatz für manche Einzugsgebiete unterschätzt wird.

Da in den Alpen die Dynamik der Schneedecke und die hydrologischen Regime am stärksten durch klimatische Veränderungen betroffen sind, wird insbesondere die modellierte Schneebedeckung untersucht.

### 5.4.1. Modellsetup

Für jedes Einzugsgebiet wurde eine Landnutzungsklasse verwendet um die Modellierungen in Abhängigkeit möglichst weniger Parameter durchführen zu können, was die Equifinalität im Modell verringert. Des Weiteren wurden alle Einzugsgebiete in Höhenstufen von jeweils 100 m unterteilt. Eine Aufwärmphase von drei Jahren geht jeder Modellierung voraus. Außerdem wurden die Modellierungen nach dem hydrologischen Jahr der Schweiz durchgeführt, was eine bessere Schließung der Wasserbilanz ermöglicht. Die potentielle Evaporation kann sich in Abhängigkeit der Tagesmitteltemperatur anpassen, da in wärmeren Zeiträumen mit einer größeren Verdunstung zu rechnen ist. 'Distributed SUZ Box Caluculations' wurde als Modellstruktur verwendet, außerdem wurde das Basis - Modell verwendet (keine Gletscher, keine Expositionen).

### 5.5. Vergleich unterschiedlicher Kalibrierungsstrategien

Die Modellperformance unterschiedlicher Kalibrierungsstrategien wurde verglichen.
Für Kalibrierungsstrategie I diente der Gesamtzeitraum als Kalibrierungszeitraum.
Der Parametersatz für Kalibrierungsstrategie II wurde anhand des rezentesten fünf Jahreszeitraumes kalibriert.
Für Kalibrierungsstrategie III wurde der Parametersatz jeweils an den fünf Jahren kalibriert, die gerade modelliert werden. Nach fünf Jahren Modelllaufzeit wird der Parametersatz folglich ausgetauscht und ist somit zeit - variierend.

### 5.6. Berechnung der Klimaabweichungen

Für die Auswertung der Entwicklung der kalibrierten Modellparameter wurden die Abweichungen von Temperatur und Niederschlag der Subperioden vom jeweiligen Gesamtzeitraum durch Gleichungen 5.6.1 und 5.6.2 berechnet.

$$
\begin{align*}
& \Delta T_{\text {Subperiode }}=\bar{T}_{\text {Subperiode }}\left[{ }^{\circ} \mathrm{C}\right]-\bar{T}_{\text {Gesamtzeitraum }}\left[{ }^{\circ} \mathrm{C}\right]  \tag{5.6.1}\\
& \Delta P_{\text {Subperiode }}=\left(\frac{\bar{P}_{\text {Subperiode }}[\mathrm{mm}]}{\bar{P}_{\text {Gesamtzeitraum }}[\mathrm{mm}]}-1\right) * 100[\%] \tag{5.6.2}
\end{align*}
$$

Die Klimaabweichungen für die Auswertung der Validierungsergebnisse wurden dem entsprechend berechnet (Gleichung 5.6.3 und 5.6.4).

$$
\begin{gather*}
\Delta T_{\text {Validierungszeitraum }}=\bar{T}_{\text {Validierungszeitraum }}\left[{ }^{\circ} \mathrm{C}\right]-\bar{T}_{\text {Referenzzeitraum }}\left[{ }^{\circ} \mathrm{C}\right]  \tag{5.6.3}\\
\Delta P_{\text {Validierungszeitraum }}=\left(\frac{\bar{P}_{\text {Validierungszeitraum }}[\mathrm{mm}]}{\bar{P}_{\text {Referenzzeitraum }}[\mathrm{mm}]}-1\right) * 100[\%] \tag{5.6.4}
\end{gather*}
$$

### 5.7. Vergleich Referenz- und Validierungszeitraum

Der Verlust der Modellperformance ( $\Delta P M$ ) zwischen Referenz- und Validierungszeitraum wurde wie folgt berechnet (Gleichung 5.7.1).

$$
\begin{equation*}
\Delta P M=P M_{\text {Validierung }}-P M_{\text {Referenz }}[-] \tag{5.7.1}
\end{equation*}
$$

wobei sich $P M_{\text {Validierung }}$ und $P M_{\text {Referenz }}$ jeweils auf den gleichen Modellierungszeitraum beziehen, der eben mit unterschiedlichen Parametersätzen modelliert wurde. Beispielsweise wurde der Zeitraum 1960-1965 mit den für diesen Zeitraum kalibrierten Parametern modelliert (Referenz) sowie mit den für die übrigen Zeiträume kalibrierten Parametern modelliert (jeweils Validierung).

Die Unterschiede weiterer Modelloutputs ( $\triangle M O$ ) wurden nach Gleichung 5.7 .2 berechnet, die somit jeweils in Bezug zur Referenzmodellierung stehen. Ein solcher Unterschied im Modelloutput kann beispielsweise die modellierten Schneebedeckung im Einzugsgebiet sein.

$$
\begin{equation*}
\Delta M O=\left(\frac{M O_{\text {Validierung }}}{M O_{\text {Referenz }}}-1\right) * 100[\%] \tag{5.7.2}
\end{equation*}
$$

Die Differenz innerhalb der Parameterwerte $(\Delta P)$ zwischen Validierungszeitraum und Kalibrierungszeitraung wurde durch Gleichung 5.7 .3 berechnet.

$$
\begin{equation*}
\Delta P=P_{\text {Validierung }}-P_{\text {Referenz }} \tag{5.7.3}
\end{equation*}
$$

### 5.8. Erstellung der Performance Plots

Der Performance Verlust ( $\Delta P M$ ) zwischen Validierungs- und Kalibrierungszeitraum wurde gegen
(i) den Zeitversatz zwischen Validierungs- und Kalibreierungszeitraum,
(ii) die Abweichungen in den klimatischen Bedingungen und
(iii) die Unterschiede im Modelloutput ( $\Delta M O$ )
zwischen Validierung und Kalibrierung aufgetragen.
Die Datenpunkte wurden farblich nach dem Zeitversatz zwischen Validierungs- und Kalibrierungszeitraum codiert, sodass sie in den einzelnen Grafiken besser nachzuverfolgen sind.

Mit der loess() Funktion wurde eine geglättete Kurve durch die erhaltenen Datenpunkte gelegt. Die Histogramme geben die Häufigkeit der Modellierungen im jeweiligen Abschnitt wieder. Die Referenzmodellierungen (RM) sind in Schwarz dargestellt. In die Berechnung der loess() Kurve, sowie in die Berechnung der Histogramme gehen die Referenzmodellierungen nicht ein.

### 5.9. Berechnung der Abflussfehler

Für die Berechnung der Abflussfehler wurden die folgenden Abflussquantile des modellierten und beobachteten Abflusses berechnet:
$Q_{95}$, d.h. der Abfluss, der zu $95 \%$ der Zeit überschritten wird
$Q_{50}$, d.h. der Abfluss, der zu $50 \%$ der Zeit überschritten wird
$Q_{05}$, d.h. der Abfluss, der zu $05 \%$ der Zeit überschritten wird

Die Abweichungen der jeweiligen Abflussquantile wurden durch Gleichung 5.9.1 berechnet.

$$
\begin{equation*}
\Delta Q_{\text {quantil }}=\frac{Q_{\text {quantil,modelliert }}-Q_{\text {quantil,gemessen }}}{Q_{\text {quantil,gemessen }}} * 100[\%] \tag{5.9.1}
\end{equation*}
$$

Durch die loess() Funktion in R wurde eine geglättete Kurve der erhaltenen Datenpunkte erstellt. Auch für die Abbildungen zum Abflussfehler wurden Histogramme erstellt. Diese können zur Beurteilung der Robustheit der loess() Kurve verwendet werden.

### 5.10. Erstellung der Regime Plots

Um die Entwicklung der hydrologischen Regime der Untersuchungsgebiete darzustellen, wurden die Abflussdaten des zur Verfügung stehenden Gesamtzeitraumes jedes Untersuchungsgebietes in drei gleich lange Abschnitte aufgeteilt und die Monatsmittelwerte jedes Abschnittes gebildet. Dies wurde mit den gemessenen Abflussdaten und
mit den modellierten Abflussdaten der Kalibrierungsstrategien I - III durchgeführt. Dadurch kann beurteilt werden, ob das Modell die Entwicklung der hydrologischen Regime durch die jeweilige Kalibrierungsstrategie wiedergeben kann.

## 6. Ergebnisse

### 6.1. Anhand des Gesamtzeitraumes kalibrierte Parameter

Eine Übersicht über die anhand des Gesamtzeitraumes kalibrierten Parameter Pelev, Telev, Pcalt, Tcalt ist in Tabelle A.1.1 gegeben. Auffallend ist der sehr niedrige Wert für Pelev im Dischma Einzugsgebiet (338 m Differenz zur mittleren Einzugsgebietshöhe). Dies ist durch die starke Unterschätzung der Niederschlagsmenge in diesem Einzugsgebiet verursacht. Das Modell erhöht die Wassermenge, da der Niederschlag mit der Höhe zunimmt.

Tabelle 6.1.1.: Anhand des jeweiligen Gesamtzeitraumes kalibrierte Parameter der Einzugsgebiete.

| EZG | mittlere EZG Höhe $[m]$ | Pelev $[m]$ | Telev $[m]$ | Pcalt $\left[\frac{\%}{100 m}\right]$ | Tcalt $\left[\frac{{ }^{\circ} \mathrm{C}}{100 \mathrm{~m}}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Allenbach | 1856 | 1948.845 | 1763.676 | 3.954374 | 0.5103604 |
| Dischma | 2372 | 2033.516 | 2376.815 | 7.27329 | 1.034362 |
| Murg | 650 | 705.5896 | 653.4923 | 13.58557 | 1.356602 |
| Ova da Cluozza | 2368 | 2173.513 | 2439.723 | 9.136 | 0.9070678 |
| Sitter | 1252 | 1162.464 | 1286.577 | 8.432222 | 0.5017749 |

### 6.2. Vergleich der Modellperformance unterschiedlicher Kalibrierungsstrategien

Kalibriert wurden die Modelle in Tabelle 6.2.1 für die Fälle (a) und (b) am Gesamtzeitraum (Kalibrierungsstrategie I), für den Fall (c) anhand der jeweils rezentesten Subperiode (Kalibrierungsstrategie II) und für den Fall (d) anhand eines variierenden Parametersatzes innerhalb der GSST Struktur (Kalibrierungsstrategie III). Für die Fälle (c) und (d) wurden jeweils die kalibrierten Werte für Pelev und Telev als konstant angenommen. Die angegebene Modellperformance bezieht sich auf den Ge-
samtzeitraum.

Durch zeit - variierende Parametersätze konnten die besten Performance - Werte erreicht werden. Die Verbesserung gegenüber der Modellierung mit über den Gesamtzeitraum kalibrierten Parametern ist jedoch gering; sie beträgt im Mittel 0.02 Punkte im Lindström Measure, was 2.3 \% entspricht. Die Modellierung mit dem an einem fünf Jahreszeitraum kalibrierten Parametersatz führte zu den jeweils schlechtesten Ergebnissen. Durch die Kalibrierung von Pelev und Telev konnte die Modellperformance im Vergleich zur Modellierung mit der Annahme, dass Pelev und Telev der mittleren Einzugsgebietshöhe entsprechen, für drei der fünf Untersuchungsgebiete verbessert werden.

Die beiden nivalen Einzugsgebiete Dischma und Ova da Cluozza erreichten aufgrund der mit ihrer Höhe verbundenen ausgeprägten Saisonalität die höchsten Performance - Werte (vgl. auch Seeger (2013)). Im Jahr 2000 führte im Dischma Einzugsgebiet sehr viel Niederschlag zu relativ wenig Abfluss (vgl. A.5.1), was sich in der Modellierung durch schlechte Zielfunktionswerte der dieses Jahr beinhaltenden Subperioden bemerkbar machte. Daher wurden die betroffenen Subperioden (1996-2001) nicht zur Auswertung verwendet. Das Einzugsgebiet Sitter, für das Analogtage vor 1951 verwendet wurden, erreichte eine schlechte Modellperformance. Der Grund hierfür sind sehr schlechte Performance - Werte im Zeitraum 1914-1951. Für die Auswertung der Ergebnisse im Sitter Einzugsgebiet wurden daher nur Modellierungen ab 1951 verwendet.

Tabelle 6.2.1.: Darstellung der Modelleffizienz. (a) mittlere EZG Höhe als Pelev und Telev, (b) Kalibrierung von Pelev und Telev, (c) Modellierung mit an einem fünf Jahreszeitraum kalibrierten Parametersatz sowie mit (d) zeitvariierendem Parametersatz. Modellierungszeitraum Sitter*: 1914-2006, Modellierungszeitraum Sitter: 1951-2006

|  | Kalibrierung am Gesamtzeitraum |  | Kalibrierung an Subperioden |  |
| :---: | :---: | :---: | :---: | :---: |
| $E Z G$ | $(a)$ | $(b)$ | $(c)$ | $(d)$ |
| Allenbach | 0.808 | 0.806 | 0.778 | 0.834 |
| Dischma | 0.866 | 0.888 | 0.876 | 0.908 |
| Murg | 0.836 | 0.846 | 0.811 | 0.867 |
| Ova da Cluozza | 0.864 | 0.873 | 0.868 | 0.891 |
| Sitter* | 0.640 | 0.638 | 0.621 | 0.675 |
| Sitter | 0.777 | 0.778 | 0.750 | 0.789 |

### 6.3. Einzugsgebietsspezifische Betrachtung

In diesem Kapitel wird für alle Einzugsgebiete getrennt auf die kalibrierten Modellparameter, die Performance - Verluste, die Abflussfehler sowie auf die Entwicklung der hydrologischen Regime eingegangen.

Die Abbildungen zu den kalibrierten Modellparameterwerten zeigen dabei die jeweils 25 kalibrierten Parameter einer jeden Subperiode als Boxplots. Der dunkelrote Punkt zeigt den Parametersatz mit der höchsten Modellperformance, der später für die Validierung genutzt wurde.
Der zeitliche Verlauf der kalibrierten Modellparameter ist im Anhang (Abbildungen A.3.1 bis A.3.5 aufgeführt.

Die Zusammenhänge der Modellparameter mit den Mittelwerten der Sommer- und Winterniederschläge und -temperaturen, sowie mit der Varianz der fünf- Jahresmittel der Subperioden wurden überprüft, dabei konnten jedoch keine deutlicheren Abhängigkeiten als mit dem Mittelwert der Subperioden festgestellt werden.

Auffallend ist in jedem Einzugsgebiet ein Abfallen der Modellperformance beim Verlassen des Kalibrierungszeitraumes.

Der Performance - Verlust der Validierungszeiträume beträgt über alle Einzugsgebiete gemittelt -0.043 Punkte im Lindström Measure, beziehungsweise -5.8 \%.

Die Performance - Werte und die Performance - Verluste sind jeweils als Absolutwerten im Lindström Measure angegeben.

### 6.3.1. Allenbach

## Kalibrierung

Modelleffizienz Die jeweils besten Performance - Werte der 25 Kalibrierungen bewegen sich zwischen 0.728 und 0.901 . Tiefere Temperaturen führen, wie auch höhere Niederschlagsmengen, im Mittel zu einer besseren Modellperformance.

Schneeroutine Der Parameter $T T$ nimmt im Mittel mit zunehmenden Temperaturen etwas höhere Werte ein. Die höchsten TT Werte wurden jedoch für relativ kühle Zeiträume kalibriert. Daher kann die Temperatur die kalibrierten $T T$ Werte nicht eindeutig erklären. Höhere Temperaturen führen im Mittel auch zu etwas höheren SFCF Werten.


Abbildung 6.3.1.: Kalibrierte Parameterwerte für das Einzugsgebiet Allenbach, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum

Bodenroutine Für $F C$ wurden in warmen Zeiträumen eher niedrigere Werte kalibriert. In warmen Subperioden werden zudem die Beta - Werte im Mittel etwas höher.

Routing Routine und responce function Der Parameter K0 nimmt in wärmeren Subperioden tendenziell höhere Werte an als in kalten Zeiträumen, der Niederschlag hat auf K0 wenig Einfluss. Höhere Temperaturen führen auch zu etwas höheren K1 Werten

## Validierung

Performance Verlust Mit zunehmendem zeitlichen Abstand zwischen Referenzmodellierung und Validierung ist ein größer werdender Performance Verlust zu beobachten. Im Mittel beträgt dieser Performance - Verlust -0.069 und kann in Einzelfällen -0.352 Punkte betragen. Sehr große Verluste in der Modellperformance sind jedoch auch mit geringem zeitlichem Abstand möglich.


Abbildung 6.3.2.: Kalibrierte Parameterwerte für das Einzugsgebiet Allenbach, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Gesamtzeitraum

Die Niederschlagsanomalie zwischen Validierungs- und Referenzzeitraum hat auf den Performance Verlust keinerlei Einfluss. Validierungszeiträume mit einem positiven Zeitversatz zum Referenzzeitraum (d.h. der Validierungszeitraum liegt näher an der Gegenwart als der Referenzzeitraum, rote Punkte) weisen eine positive Temperaturabweichung auf. Ein klarer Zusammenhang zwischen Temperaturabweichung und Modellperformance ist jedoch nicht zu erkennen. Sehr große Performance - Verluste sind vor allem bei geringer Temperaturabweichung modelliert worden.

Eine deutlicher Zusammenhang zwischen dem Verlust an Modellperformance und dem Unterschied in der modellierten Schneebedeckung, beziehungsweise im Anteil des Schnees am Gesamtabfluss, zwischen Referenzmodellierung und Validierung ist zu beobachten. Über- oder unterschätzt das Modell die Schneebedeckung im Einzugsgebiet in Bezug zum Referenzzeitraum, ist ein deutlicher Performance - Verlust die Folge. Dabei ist der Performance - Verlust größer, wenn das Modell die Schneebedeckung im Validierungszeitraum überschätzt. Dies hängt vermutlich mit der verwendeten Zielfunktion zusammen, die sensibler auf hohe Abflüsse reagiert. Hervorgerufen wird diese


Abbildung 6.3.3.: Performance (PM) Verlust (Absolutwerte im Lindström Measure) der Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugsgebiet Allenbach. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen

Überschätzung der Schneebedeckung durch Modelle, die hohe TT Werte verbunden mit hohen $S F C F$ Werten (d.h. in diesen Modellen fällt viel Schnee, und die Schneemenge wird stark nach oben korrigiert) auf Zeiträume anwenden, für die niedrige $T T$ und niedrige $S F C F$ Werte (d.h. es fällt wenig Schnee und die Schneemenge wird nur gering nach oben korrigiert) kalibriert wurden.

Die Modellstabilität im Allenbach Einzugsgebiet wird daher vor allem dem Zusammenspiel der Parameter TT und SFCF zugeschrieben (vgl. Abbildung 6.3.4). Ist die Abweichung im Parameterwert in Abbildung 6.3.4 positiv, so ist der Parameterwert, der für die Modellierung genutzt wurde, höher als der für diesen Zeitraum eigentlich kalibrierte Parameterwert. Ein interessantes Ergebnis ist, dass ein zu hoher TT Wert verbunden mit einem zu niedrigen SFCF Wert nicht zu großen Performance - Verlusten


Abbildung 6.3.4.: Einfluss der Differenz innerhalb der Parameterwerte von $T T$ und SFCF zwischen Validierungs- und Kalibrierungszeitraum auf den Performance - Verlust im Einzugsgebiet Allenbach
führt, sofern einer der beiden Werte nicht extrem abweicht.

Abflussfehler $Q_{50}$ wird durch das Modell generell zu hoch eingeschätzt (Abbildung 6.3.6). Mit zunehmend positiver Temperaturabweichung zwischen Referenz- und Validierungszeitraum (kalt nach warm Parametertransfer) werden hohe Abflüsse ( $Q_{05}$ ) durch das Modell unterschätzt, bei negativer Temperaturabweichung (warm zu kalt Transfer) werden diese überschätzt. Niedrige Abflüsse $\left(Q_{95}\right)$ verhalten sich genau umgekehrt. Das bedeutet ein für kältere (wärmere) Zeiträume kalibriertes Modell führt eher zu einer Unterschätzung (Überschätzung) von $Q_{05}$ und zu einer Überschätzung (Unterschätzung) von $Q_{95}, Q_{50}$ und $Q_{\text {Gesamt }}$. Die Niederschlagsmenge hat nur sehr geringen Einfluss auf die Abflussanteile.
Modelle, die zu einer Überschätzung der Schneebedeckung im Einzugsgebiet führen, führen auch zu einer Überschätzung des $Q_{05}$ Quantils und gleichzeitig zu einer Unterschätzung der übrigen Abflussanteile sowie des Gesamtabflusses. Diese Modelle sind meist in kälteren Zeiträumen kalibriert worden (vgl. Abbildung 6.3.4). Überschätzt das Modell die Grundwasserneubildung, überschätzt es $Q_{05}, Q_{50}$ und $Q_{\text {Gesamt }}$.

Entwicklung des hydrologischen Regimes Die Entwicklung der hydrologischen Regime ist in Abbildung 6.3.6 dargestellt. In den Messdaten ist eine Erhöhung des Peaks im Mai und eine Absenkung des Abflusses in den übrigen Sommermonaten mit zuneh-


Abbildung 6.3.5.: Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta$ Q) in Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie Abweichungen weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Einzugsgebiet Allenbach
mend rezenten Jahren zu erkennen. Diese Entwicklung wird am besten durch die zeit - variierenden Parameter (Q GSST) wiedergegeben. Das schlechteste Ergebnis wird erreicht, wenn das Modell an der rezentesten fünf Jahresperiode kalibriert wird (Q $\mathrm{SP})$. Das Modell führt, je weiter es in die Vergangenheit angewendet wird, zu einer zunehmenden Überschätzung des Ablusspeaks im Mai und Juni. Dieses Ergebnis steht gut mit den übrigen Ergebnissen in Einklang (Schneebedeckung wird überschätzt, hohe Abflüsse werden überschätzt), da in diesen Monaten vor allem Schneeschmelzereignisse zu großen Abflüssen führen. In den rezentesten 18 Jahren unterschätzt dieses Modell den Abfluss im Frühjahr.


Abbildung 6.3.6.: Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Allenbach

### 6.3.2. Dischma

## Kalibrierung



Abbildung 6.3.7.: Kalibrierte Parameterwerte für das Einzugsgebiet Dischma, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum

Modelleffizienz Im Dischma Einzugsgebiet werden generell sehr hohe Zielfunktionswerte erreicht. Die Modellperformance schwankt zwischen 0.914 und 0.949. Der Einfluss des Niederschlages, wie auch der der Temperatur, ist nicht eindeutig. Bei sehr geringen Temperaturen wurden jedoch etwas schlechtere Performance - Werte erreicht.

Schneeroutine Generell versucht das Modell durch sehr hohe SFCF Werte die zu geringen Niederschlagsmengen auszugleichen. Mit zunehmenden Temperaturen und mit zunehmenden Niederschlägen werden die Parameterwerte für SFCF geringer. Auch im zeitlichen Verlauf ist eine abfallende Tendenz dieses Parameters zu beobachten (Abbildung A.3.2. In den jüngeren Jahren werden die Niederschlagsmengen im Dischma Einzugsgebiet größer, die Abflussmengen dagegen geringer (siehe Abbildung A.4.2.


Abbildung 6.3.8.: Kalibrierte Parameterwerte für das Einzugsgebiet Dischma, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Gesamtzeitraum

Dies bedeutet, dass die Niederschlagsmenge, die ohnehin unterschätzt wird, immer weniger nach oben korrigiert werden muss.
Für den Parameter CFMAX wurden für höhere Temperaturen höhere Werte kalibriert, wodurch die Schneeschmelze erhöht wird.

Weder die Parameter die Bodenroutine, noch die Parameter der Routing Routine und responce function zeigen Sensitivitäten auf Niederschlagsänderungen oder Temperaturänderungen.

## Validierung

Performance Verlust Der Performance Verlust im Dischma Einzugsgebiet beträgt im Mittel -0.026 bei einem Maximalwert von -0.094.

Am stärksten ist der Verlust der Modellperformance mit der Abweichung der Grundwasserneubildung zwischen Referenz- und Validierungszeitraum verbunden (Abbildung 6.3.4). Modelle, bei denen der Kalibrierungszeitraum kälter als der Validierungszeit-


Abbildung 6.3.9.: Performance (PM) Verlust (Absolutwerte im Lindström Measure) der Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugsgebiet Dischma. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen
raum ist, haben in der Regel höhere SFCF Werte. Dadurch wird die Niederschlagsmenge nach oben korrigiert, was in diesen Modellen zu einer Überschätzung der Grundwasserneubildung in Relation zur Referenzmodellierung führt. Des Weiteren hat eine Überschätzung der Grundwasserneubildung einen größeren Performance - Verlust zur Folge als eine Unterschätzung der Grundwasserneubildung. Grund hierfür ist vermutlich die gewählte Zielfunktion, die sensitiver auf hohe Abflüsse reagiert. Die Abweichung der Grundwasserneubildung kann den Performance - Verlust jedoch nicht eindeutig erklären. Der Parameter CFMAX hat ebenfalls Einfluss auf den Performance Verlust, wodurch der Verlust an Modellperformance im Dischma Einzugsgebiet dem Zusammenspiel der Parameter CFMAX und SFCF zugeschrieben werden kann (vgl. Abbildung 6.3.10).


Abbildung 6.3.10.: Einfluss der Differenz innerhalb der Parameterwerte von CFMAX und SFCF zwischen Validierungs- und Kalibrierungszeitraum auf den Performance - Verlust im Einzugsgebiet Dischma


#### Abstract

Abflussfehler Die Entwicklung der Abflussfehler ist konsistent mit den übrigen Ergebnissen im Dischma Einzugsgebiet. Ist der Anwendungszeitraum der Modelle zeitlich gesehen nach dem Kalibrierungszeitraum, überschätzt das Modell alle Abflussanteile, da durch die höheren $S F C F$ Werte mehr Wasser erzeugt wird (Abbildung 6.3.11). Gegen die Abweichung in der Grundwasserneubildung aufgetragen ist diese Entwicklung noch deutlicher.


Entwicklung des hydrologischen Regimes Weder der am Gesamtzeitraum kalibrierten Parametersatz, noch der an der rezentesten Subperiode kalibrierte Parametersatz kann den Rückgang des Abflusses in den Monaten Juli und August in den rezentesten 12 Jahren simulieren. Der zeit-variierende Ansatz nähert sich den beobachteten Daten in diesen Monaten wesentlich besser an. Eventuell ist dies die Auswirkung der früheren Schneeschmelze in den wärmeren Jahren, die aufgrund der höheren CFMAX Werte nur durch den zeit - variierenden Parametersatz wiedergegeben werden kann (für die rezenteste Subperiode wurde ein moderater CFMAX Wert kalibriert). Der dem Abfluss QSP zugrundeliegende Parametersatz weist zudem einen hohen $T T$ Wert auf, was zu mehr Schneefall und zu einer späteren Schneeschmelze führt.


Abbildung 6.3.11.: Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta$ Q) in Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie Abweichungen weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen


Abbildung 6.3.12.: Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Dischma

### 6.3.3. Murg

## Kalibrierung



Abbildung 6.3.13.: Kalibrierte Parameterwerte für das Einzugsgebiet Murg, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum

Modellperformance Die Spannbreite der Performance - Werte der Subperioden liegt zwischen 0.818 und 0.894 , wobei die höchsten Performance - Werte bei tiefen Temperaturen erreicht wurden. In nassen Subperioden wurden keine schlechten Performance - Werte kalibriert.

Schneeroutine Der Parameter TT unterliegt weder einem Trend mit dem Niederschlag noch mit der Temperatur. Die TT - Werte für die Subperioden mit dem Beginn 01.10. 1997-01.10.2001 (insbesondere die rezenteste Subperiode dem Beginn 01.10.2001, vgl. Abbildung A.3.3 im Anhang), die das heiße und trockene Jahr 2003 enthalten, sind vergleichsweise hoch. In diesen Zeiträumen ist zudem der Parameter SFCF relativ gering. Die Werte für den Parameter SFCF werden mit zunehmender Temperatur im Mittel etwas geringer.


Abbildung 6.3.14.: Kalibrierte Parameterwerte für das Einzugsgebiet Murg, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Gesamtzeitraum

Bodenroutine Höhere Temperaturen führen zu leicht tieferen Beta Werten. In den Subperioden, die das Jahr 2003 enthalten, ist auch der Parameter FC niedrig.

Routing Routine und responce function Die Parameterwerte für K2 steigen mit zunehmenden Niederschlagswerten an, ebenso wurden für hohe Temperaturen etwas höhere K2 Werte kalibriert. Für den Parameter MAXBAS wurden bei höheren Temperaturen etwas niedrigere Werte kalibriert.

## Validierung

Performance Verlust Der Performance Verlust im Einzugsgebiet Murg ist am engsten mit der Abweichung der aktuellen Evaporation zwischen Referenz- und Validierungszeitraum verbunden. Weder mit der Temperaturabweichung noch mit der Niederschlagsabweichung kann eine systematischer Performance - Verlust festgestellt werden. Die größten Performance - Verluste sind jedoch bei positiven Temperaturabweichung modelliert worden. Einige (vor allem unter wärmeren Bedingungen angewendete) Mo-


Abbildung 6.3.15.: Performance (PM) Verlust (Absolutwerte im Lindström Measure) der Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugsgebiet Murg. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen
delle überschätzen die aktuelle Evaporation in Bezug zur Referenzmodellierung, einige (unter kälteren Bedingungen angewendete) Modelle unterschätzen die Evaporation in Bezug zur Referenzmodellierung. Eine starke Unter- oder Überschätzung der aktuellen Evaporation führt zu verminderter Modellperformance. Allerdings unterliegen nur sehr wenige Validierungen einem Performance - Verlust von unter -0.1 Punkten. Im Mittel beträgt dieser -0.037 bei einem Maximum von -0.184.
Tiefe SFCF Werte sind im Einzugsgebiet Murg negativ und führen, vor allem im Zusammenspiel mit hohen $T T$ Werten, zu einer Verringerung der Wassermenge. Werden Parametersätze mit niedrigerem $T T$ Wert (d.h. Niederschlag fällt eher als Regen) und höherem $S F C F$ sowie hohem $M A X B A S$ Wert auf eine Subperiode, für die hohe $T T$, niedrige $S F C F$ - und MAXBAS Werte kalibriert wurden, angewendet, unterschätzt das

Modell die Schneebedeckung und es überschätzt die Evaporation. Außerdem wird die Grundwasserneubildung unterschätzt. In diesen Modellen ist mehr Wasser vorhanden, was möglicherweise der Grund für die Überschätzung der Evaporation ist. Insgesamt ist der Verlust an Modellperformance jedoch am besten durch das Zusammenspiel der Parameter MAXBAS und TT zu erklären (Abbildung 6.3.16). MAXBAS dominiert den Performance Verlust.


Abbildung 6.3.16.: Einfluss der Differenz innerhalb der Parameterwerte von MAXBAS und $T T$ zwischen Validierungs- und Kalibrierungszeitraum auf den Performance - Verlust im Einzugsgebiet Murg

Abflussfehler Werden Modelle in die Vergangenheit (Zukunft) angewandt, wird der Gesamtabfluss und $Q_{50}$ zunehmend überschätzt (unterschätzt). Auch $Q_{05}$ zeigt, in schwächerem Maße, diese Tendenz. Überschätzt das Modell die aktuelle Evaporation im Vergleich zur Referenzmodellierung, unterschätzt das Modell zunehmend den Gesamtabfluss, $Q_{50}$ und $Q_{05}$. Außerdem wird bei starker Überschätzung der Evaporation (die Modellierungen, die zu den größten Performance - Verlusten führen) zusätzlich das $Q_{05}$ Quantil stark unterschätzt. Eine Überschätzung (Unterschätzung) der Schneebedeckung des Einzugsgebietes führt zu einer Überschätzung (Unterschätzung) des $Q_{05}$ Quantils. Mit zunehmender Überschätzung der Grundwasserneubildung überschätzt das Modell die den Gesamtabfluss, $Q_{05}$ und $Q_{50}$. Auf die Niederschlags- und Temperaturdaten zeigen die Abflussanteile, mit Ausnahme von $Q_{95}$ für $\Delta \mathrm{N}$, keine eindeutigen Abhängigkeiten.


Abbildung 6.3.17.: Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta$ Q) in Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie Abweichungen weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Einzugsgebiet Murg

Entwicklung des hydrologischen Regimes Der zeit-variierende Parametersatz bildet die frühen Abflüsse im Jahr, bei der die Schneeschmelze eine Rolle spielt, am Besten ab 6.3.18. Das an dem rezentesten fünf - Jahreszeitraum kalibrierte Modell (für das ein sehr hoher $T T$ Wert, ein niedriger $S F C F$ Wert sowie ein niedriger MAXBAS Wert kalibriert wurden) unterschätzt die Variabilität innerhalb der Abflussregime stark. Das Modell erzeugt bis in relativ hohe Temperaturbereiche Schnee und korrigiert die Schneemenge stark nach unten. Dadurch ist im Winter weniger Wasser vorhanden, was vermutlich zu dem flachen Abflusspeak im Februar und März führt. Der tiefe MAXBAS Wert führt zudem zu einem schnellen routing des die Grundwasserboxen verlassenden Wassers.


Abbildung 6.3.18.: Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Murg

### 6.3.4. Ova da Cluozza

## Kalibrierung



Abbildung 6.3.19.: Kalibrierte Parameterwerte für das Einzugsgebiet Ova da Cluozza, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum

Modelleffizienz Die Performance - Werte der fünf - Jahreszeiträume bewegen sich zwischen 0.837 und 0.926. Nassere Subperioden erreichen etwas bessere Performance Werte als trockene.

Schneeroutine Die Parameter $T T$ und SFCF weisen keine eindeutigen Trends auf. CFMAX steigt mit zunehmenden Niederschlägen etwas an. Auch werden für höhere Temperaturen im Mittel leicht höhere CFMAX Werte kalibriert.

Bodenroutine Auffallend sind die sehr niedrigen kalibrierten Beta Werte. Ein großer Teil des Wassers wird dadurch zu Grundwasserneubildung, ein relativ geringer Teil geht in die Bodenbox. Dies lässt sich mit den hohen Fließgeschwindigkeiten und dem geringen mittleren Wasserspeichervermögen im Einzugsgebiet Ova da Cluozza erklären.


Abbildung 6.3.20.: Kalibrierte Parameterwerte für das Einzugsgebiet Ova da Cluozza, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Gesamtzeitraum

Routing Routine und responce function Perc nimmt mit zunehmenden Niederschlägen und für tiefe Temperaturen leicht höhere Werte ein. In den übrigen Parametern sind keine Trends erkennbar.

## Validierung

Performance Verlust Im Einzugsgebiet Ova da Cluozza ist der Performance Verlust, der durch die Übertragung von Modellparametern entsteht, sehr gering (Abbildung 6.3.21). Im Mittel beträgt dieser -0.039, bei einem Maximalwert von -0.126. Die Performance - Verluste können weder durch die Abweichung in der Schneebedeckung zwischen Referenzmodellierung und Validierung, noch durch die Abweichung in der Grundwasserneubildung eindeutig erklärt werden.

Der Parameter CFMAX reagiert am sensitivsten auf den Performance Verlust und wird für die größten Performance Verluste im Einzugsgebiet Ova da Cluozza verantwortlich gemacht. Weitere Parameter, die Sensitivitäten auf Performance - Verluste zeigen, sind SFCF, FC und Beta (vgl. Abbildung A.8.4). Die gering mächtigen Böden


Abbildung 6.3.21.: Performance (PM) Verlust (Absolutwerte im Lindström Measure) der Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugsgebiet Ova da Cluozza. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum
sowie das anstehende Gestein führen folglich nicht zu einer Verstärkung der Parameterinstabilität (beziehungsweise des Performance Verlustes) in diesem Einzugsgebiet.

Abflussfehler Die hohen Abflüsse werden durch das Modell sehr gut abgebildet, dagegen wird das $Q_{95}$ Quantil stark unterschätzt (Abbildung 6.3.22). Eine Überschätzung (Unterschätzung) der Grundwasserneubildung führt zu einer zunehmenden Überschätzung (Unterschätzung) von $Q_{05}, Q_{50}$ und $Q_{\text {Gesamt }}$. Außerdem führt eine Überschätzung (Unterschätzung) der Schneebedeckung zu einer leichten Überschätzung (Unterschätzung) von $Q_{05}$.


Abbildung 6.3.22.: Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta$ Q) in Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie Abweichungen weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Einzugsgebiet Ova da Cluozza

Entwicklung des hydrologischen Regimes Alle Kalibrierungsansätze können die Entwicklung des hydrologische Regimes zufriedenstellend wiedergeben. Der am Gesamtzeitraum kalibrierte Parametersatz bildet den Rückgang der Sommerabflüsse in den rezentesten 15 Jahren jedoch am schlechtesten ab. Ein möglicher Grund hierfür ist ein für diesen Zeitraum zu niedriger CFMAX Wert.


Abbildung 6.3.23.: Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Ova da Cluozza

### 6.3.5. Sitter

## Kalibrierung



Abbildung 6.3.24.: Kalibrierte Parameterwerte für das Einzugsgebiet Sitter, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum

Modelleffizienz Die Performance Werte der einzelnen Subperioden reichen von 0.683 bis 0.855 . Warme Subperioden erreichten im Schnitt höhere Performance Werte. Ein Zusammenhang zwischen der Modellperformance und der Niederschlagsabweichung ist nicht zu erkennen.

Schneeroutine Die Spannbreite der kalibrierten SFCF Werte ist in Anbetracht der hohen Sensitivität dieses Parameters (beziehungsweise der Enge der Boxplots) sehr groß. Mit zunehmenden Niederschlägen werden die Werte tendenziell etwas geringer. Ein Zusammenhang von SFCF mit dem Mittelwert der Temperatur ist nicht eindeutig. Für höhere Temperaturen wurden im Mittel leicht höhere TT Werte kalibriert.


Abbildung 6.3.25.: Kalibrierte Parameterwerte für das Einzugsgebiet Sitter, sortiert nach der Temperaturabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum

Bodenroutine Zusammenhänge zwischen Parametern der Bodenroutine und Abweichungen in Niederschlag oder Temperatur sind nicht zu erkennen.

Routing Routine und responce function Die Werte des Parameters MAXBAS werden mit ansteigenden Temperaturen kleiner. Auch der Parameter K0 nimmt mit wärmeren Temperaturen etwas höhere Werte ein. Perc nimmt dagegen mit zunehmenden Temperaturen im Mittel leicht ab.

## Validierung

Performance Verlust Der mittlere Performance Verlust beträgt -0.044, bei einem maximalen Performance - Verlust von -0.204. Die höchsten Performance - Verluste entstehen bei der Übertragung von Parametersätzen mit hohen $S F C F$ Werte auf Zeiträume, für die tiefe $S F C F$ Werte kalibriert wurden und umgekehrt. Werden Parametersätze mit hohen (tiefen) SFCF Werte auf Zeiträume, für die niedrige SFCF Werte kalibriert wurden angewendet, überschätzt (unterschätzt) das Modell die Grundwasserneubil-


Abbildung 6.3.26.: Performance (PM) Verlust (Absolutwerte im Lindström Measure) der Validierungszeiträume in Bezug zu den Referenzzeiträumen im Einzugsgebiet Sitter. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen
dung. Die Schneebedeckung im Einzugsgebiet hat keinen Einfluss auf den Performance - Verlust. Für den Parameter TT wurden jedoch auch keine extremen Werte kalibriert. Abbildung 6.3.27 zeigt den dominierenden Einfluss von SFCF auf den Performance Verlust.

Abflussfehler Modelle mit zu hohen SFCF Werten korrigieren die Niederschlagsmenge nach oben. Diese zu hohen Niederschlagsmengen führen in Validierungszeiträumen zu einer Überschätzung des Gesamtabflusses, sowie von $Q_{50}$ und $Q_{05}$; Modelle mit zu geringen $S F C F$ Werten führen dagegen zu einer Unterschätzung des Gesamtabflusses, sowie von $Q_{50}$ und $Q_{05}$ (Abbildung 6.3.29).


Abbildung 6.3.27.: Einfluss der Differenz innerhalb der Parameterwerte von SFCF und $T T$ zwischen Validierungs- und Kalibrierungszeitraum auf den Performance - Verlust im Einzugsgebiet Sitter

Entwicklung des hydrologischen Regimes Das hydrologische Regime ist durch zunehmend höhere Winterabflüsse in den jüngeren Jahren sowie durch einen Rückgang des Abflusses in den Sommermonaten gekennzeichnet. Diese Entwicklung wird durch alle Modelle wiedergegeben, wobei QSP das schlechteste Ergebnis erreicht. Der dem modellierten Abfluss QSP zugrunde liegende Parametersatz zeichnet sich durch einen tiefen MAXBAS und einen moderaten SFCF Wert aus (rezentester Parametersatz in Abbildung A.3.5.


Abbildung 6.3.28.: Abweichungen zwischen modelliertem und gemessenem Abfluss ( $\Delta$ Q) in Bezug zu Zeitversatz, Temperatur- und Niederschlagsabweichung sowie Abweichungen weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen im Einzugsgebiet Sitter


Abbildung 6.3.29.: Entwicklung des hydrologischen Regimes über den Untersuchungszeitraum für den gemessenen und den durch unterschiedliche Kalibrierungsstrategien modellierten Abfluss im Einzugsgebiet Sitter

### 6.4. Auswirkung weiterer Ansätze zur Berechnung der potentiellen Evaporation

Für das am tiefsten gelegene Einzugsgebiet Murg wurden die Auswirkung einer konstanten potentiellen Evaporation sowie einer für jeden Modellierungszeitraum separat berechneten potentiellen Evaporation auf die kalibrierten Modellparameter getestet.

### 6.4.1. Annahme einer konstanten potentiellen Evaporation



Abbildung 6.4.1.: Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit konstanter PET, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum

Die Kalibrierung mit einer konstanten potentiellen Evaporation führte nicht zu veränderten Trends der kalibrierten Modellparameter (Abbildungen 6.4.1 und 6.4.2).

Weder ein deutlicherer Anstieg der Parameter FC und Beta noch ein stärkerer Rückgang des Parameters SFCF mit ansteigenden Temperaturen ist zu beobachten. Die kalibrierten $T T$ Werte sind generell höher als bei der Kalibrierung mit anpassbarer potentieller Evaporation (vgl. Abbildung 6.3.14). Dieser Ansatz führt zu einer leicht schlechteren Modellperformance, die Modellperformance der Subperioden erreicht im Mittel 0.861 Punkte (im Vergleich zu 0.868 für die Modellierung mit anpassbarer po-


Abbildung 6.4.2.: Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit konstanter PET, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Gesamtzeitraum
tentieller Evaporation).

### 6.4.2. Für jede Subperiode separat berechnete potentielle Evaporation

Auch durch eine für jede Subperiode neu berechnete potentielle Evaporation ändert sich an den Trends der Modellparameter wenig.

Der Parameter SFCF ist weniger sensitiv auf das Modellierungsergebnis (weitere Boxplots in den Abbildungen 6.4.3 und 6.4.4), zudem sind die kalibrierten Werte generell höher. Die kalibrierten TT Werte sind etwas tiefer als die bei der Annahme einer konstanten potentiellen Evaporation. Außerdem sind die FC Werte höher, weisen jedoch keinen Aufwärts- oder Abwärtstrend auf. Die Werte des Parameters Beta sind generell tiefer und besser definiert, ein deutlicherer Trend ist jedoch auch in diesem Parameter nicht vorhanden. Auffallend sind die deutlich tieferen LP Werte. Zudem erreicht die Zielfunktion im Mittel nur 0.777 Punkte.


Abbildung 6.4.3.: Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit separat berechneter PET, sortiert nach der Niederschlagsabweichung $\Delta \mathrm{N}$ der Subperioden vom Gesamtzeitraum


Abbildung 6.4.4.: Kalibrierte Parameterwerte für das Einzugsgebiet Murg mit separat berechneter PET, sortiert nach der Temperaturabweichung $\Delta \mathrm{T}$ der Subperioden vom Gesamtzeitraum

## 7. Diskussion

### 7.1. Methodik

Aufgrund der Abhängigkeiten der überlappenden Subperioden konnten keine statistischen Tests auf die Ergebnisse angewendet werden (Coron u. a., 2012). Durch die Vielzahl von Modellierungen wurde jedoch die maximale Anzahl an unterschiedlichen klimatischen Bedingungen erreicht, was zu robusteren Ergebnissen führte.

Die Länge der Kalibrierungszeiträume von fünf Jahren ist sehr kurz (Vaze u. a., 2010) und wird in der Praxis kaum angewendet werden. Die Unterschiede in den klimatischen Bedingungen der Modellierungszeiträume konnten so jedoch vergrößert werden.

Das Lindström Measure zur Messung der Modelleffizienz reagiert auf hohe Abflüsse sensitiver als auf niedrige Abflüsse. Eine Auswirkung davon ist die starke Unterschätzung von $Q_{95}$. Außerdem führt es zu einem größeren Performance - Verlust, wenn Abflüsse durch das Modell überschätzt werden. Diese Zielfunktion wurde dennoch verwendet, da sie auch die Abflussvolumen berücksichtigt, was zu einer verbesserten Wasserbilanz führt (Lindström, 1997). Sie berücksichtigt somit zwei unterschiedliche Aspekte des Abflusses, was nach Abebe u. a. (2010) wichtig für eine Zielfunktion ist. Dennoch wäre ein Vergleich der in dieser Arbeit beobachteten Ergebnisse mit durch weitere Zielfunktionen gemessenen Performance - Verluste interessant.

Jede Subperiode wurde durch 25 Kalibrierungen mit je 2000 Modelldurchläufen kalibriert. Dies stellt einen Kompromiss aus Rechenaufwand und Berücksichtigung der Equifinalität dar.

Herman u. a. (2013) beobachteten signifikante Unterschiede in den sensitiven Parametern zwischen unterschiedlichen Niederschlags - Abfluss - Modellen, auch wenn diese Modelle gleiche Prozessgleichungen verwendeten. Da in dieser Arbeit nur ein Niederschlags - Abfluss - Modell verwendet wurde, konnte ein Vergleich zwischen Modellen
nicht angestellt werden.

Poulin u. a. (2011) ordneten die Unsicherheiten, die sich durch die verwendete Modellstruktur ergeben größer ein als Untersicherheiten, die sich aus der Equifinalität der Modellparameter ergeben. Diese Parameterunsicherheit verhielt sich unter verschiedenen klimatischen Bedingungen ähnlich. Daraus schlossen Poulin u. a. (2011), dass Modellparameter den Abfluss auch unter veränderten klimatischen Bedingungen simulieren können. Die Ergebnisse dieser Arbeit zeigen jedoch, dass sich die Bereiche, in denen sich equifinale Modellparametersätze bewegen, in unterschiedlichen Kalibrierungszeiträumen durchaus verschieben können. Diese Verschiebung geht jedoch nicht klar mit Veränderungen in Temperatur oder Niederschlag einher. Der Einfluss verschiedener Modellstrukturen konnte in dieser Arbeit nicht untersucht werden, da nur eine Modellstruktur verwendet wurde.

### 7.2. Ergebnisse

### 7.2.1. Modellparameter

Je enger die Boxplots der 25 kalibrierten Parameterwerte sind, desto besser definiert ist dieser Parameter. Die Boxplots sind für die meisten Parameter relativ weit, auch die Unterschiede der Boxplots zwischen ähnlichen hydro - klimatischen Bedingungen sind oft größer als ein durch hydro - klimatische Unterschiede hervorgerufener Trend.

Es lassen sich Zusammenhänge zwischen der mittleren Einzugsgebietshöhe und den kritischen (d.h. für den Performance - Verlust hauptsächlich verantwortlichen) Modellparametern finden. Für die nivalen Einzugsgebiete (Allenbach und Sitter) sind TT und SFCF, für die glazio-nivalen Einzugsgebiete (Dischma und Ova da Cluozza) CFMAX und SFCF diese kritischen Parameter. Im Einzugsgebiet Ova da Cluozza spielen neben dem dominanten Parameter CFMAX jedoch auch die Parameter FC und Beta eine Rolle für den Performance - Verlust. Für das pluviale Einzugsgebiet Murg spielt der Parameter MAXBAS die dominierende Rolle für den Performance - Verlust. Diese Zusammenhänge sollten jedoch an weiteren Einzugsgebieten überprüft werden. Vaze u.a. (2010) und Coron u. a. (2012) beobachteten keine räumlichen Muster.

Die Entwicklung der Modellparameter ist nicht mit den Ergebnissen von Merz u. a. 2011) zu vergleichen. In einigen Einzugsgebieten zeigten beispielsweise auch Parameter
der Routing Routine und der 'responce function' leichte Sensitivitäten auf klimatische Veränderungen. Ein Anstieg des Parameters FC, beziehungsweise ein Abfall des Parameters SFCF (abgesehen vom Einzugsgebiet Dischma) konnte nicht beobachtet werden. Die niedrigeren SFCF Werte im Dischma Einzugsgebiet mit zunehmend jüngeren Jahren sind vor allem dem Anstieg des P/Q Verhältnisses zuzuschreiben. Für sehr warme Subperioden wurden teilweise überdurchschnittlich tiefe FC Werte kalibriert. Auch der Parameter Beta zeigt keine verallgemeinerbar steigende Tendenz.

Im Einzugsgebiet Murg steigt der Parameter K2 mit zunehmenden Niederschlägen an, was auch durch Nikolova (2013) im Einzugsgebiet Thur beobachtet wurde. In den weiteren in dieser Arbeit untersuchten Einzugsgebieten konnte jedoch kein Anstieg von K2 mit steigenden Niederschlägen festgestellt werden. In den Einzugsgebieten Sitter und Allenbach führen höhere Temperaturen zu etwas höheren K0 Werten. Höhere K0 Werte wurden in wärmeren und trockeren Zeiträumen auch durch Nikolova (2013) beobachtet. In wärmeren Subperioden trägt in diesen Einzugsgebieten schneller 'Ober-flächen-' Abfluss vermehrt zum Gesamtabfluss bei. In den beiden tiefsten Einzugsgebieten Murg und Sitter wurden mit zunehmenden Temperaturen niedrigere MAXBAS Werte kalibriert. Kleinere MAXBAS Werte führen zu einem schnelleren Routing des die Grundwasserboxen verlassenden Wassers.

Die Ergebnisse deuten auf einen Zusammenhang zwischen den Subperioden und den Modellparametern hin, der nicht durch den Mittelwert von Temperatur- und Niederschlagswerten abgebildet werden kann.

### 7.2.2. Performance - Verlust

Die Mittelwerte aus den klimatischen Rahmenbedingungen der einzelnen Subperioden können auch den Performance - Verlust der Modelle nicht erklären. Dies stimmt mit den Ergebnissen von Brigode u. a. (2013) überein. Eventuell besteht ein nicht-linearer Zusammenhang zwischen der Auswirkung extremer Ereignisse oder Jahre (beziehungsweise Sommer oder Winter) auf den Mittelwert der klimatischen Bedingungen und die Modellparameter. Auch Coron u. a. (2012) bemerkten eine gewisse "Unabhängigkeit" des Performance - Verlustes, und damit auch der kalibrierten Modellparameter von den mittleren klimatischen Bedingungen der modellierten Zeiträume, da auch zwischen ähnlichen klimatischen Rahmenbedingungen (gemessen an den Mittelwerten) Performance - Verluste von 18\%-20\% beobachtet wurden.

Daten zu Windgeschwindigkeit, Sonneneinstrahlung oder relativer Luftfeuchte, die Einfluss auf die Evaporation (Tabari und Talaee, 2014) und damit auch auf die Modellparameter haben, wurden innerhalb dieser Arbeit nicht berücksichtigt. Diese weiteren Einflussfaktoren stumpfen möglicherweise den Einfluss der Temperatur auf die Modellparameter ab. Eventuell kann der Zusammenhang zwischen Modellparametern und Kalibrierungszeitraum besser erklärt werden, wenn zusätzliche Daten wie eben Windgeschwindigkeit oder Sonneneinstrahlung berücksichtigt werden.

Die durch Coron u. a. (2012) beobachteten Performance - Verluste wurden größer, je deutlicher die klimatischen Bedingungen zwischen Kalibrierungs- und Validierungszeitraum abwichen. Ein solcher Zusammenhang ist in den Ergebnissen dieser Arbeit nicht vorhanden.

Ein direkterer Einfluss des Niederschlages (in wasserlimitierten Einzugsgebieten) als der Temperatur (in energielimitierten Einzugsgebieten) auf die Modellparameter ist denkbar. Coron u.a. (2012) beobachteten in wasserlimierten Einzugsgebieten größere Performance - Verluste als jene in dieser Arbeit. Er zog die Parallele zu Oudin u. a. (2006), der zeigte, dass fehlerhafte Niederschlagsdaten größere Auswirkungen auf die Modelleffizienz haben als fehlerhafte Evaporationsdaten. Die Ergebnisse dieser Arbeit widersprechen dem nicht, da die Performance - Verluste eher gering sind. Womöglich sind wasserlimitierte Einzugsgebiete stärker durch Parameterinstabilität betroffen als energielimitierte Einzugsgebiete.

Ein langer Kalibrierungszeitraum führt zu mehr Variabilität innerhalb dieses Zeitraumes und relativiert den Einfluss einzelner extremer Jahre oder Ereignisse. Die Ergebnisse zeigen, dass ein Kalibrierungszeitraum von fünf Jahren zu kurz ist, wenn er nicht innerhalb eines zeit - variierenden Ansatzes verwendet wird. Dies widerspricht der Empfehlung für die Länge des Kalibrierungszeitraumes von Brigode u. a. (2013) und unterstützt die entsprechende Empfehlung von Vaze u. a. (2010).

Der mittlere Performance - Verlust der Validierungszeiträume von -0.043 Punkten ist quantitativ vergleichbar mit den beobachteten Performance - Verlusten von Nikolova (2013).

Die Parameter SFCF und TT sind für die größten Performance - Verluste verantwortlich. Allerdings ist die Abhängigkeit der Parameter von Niederschlag und Temperatur eines Zeitraumes nicht eindeutig. Große Performance Verluste traten im Verhältnis
zur Gesamtzahl an Validierungen in einer sehr geringen Anzahl auf.
Eventuell lässt sich der Performance - Verlust am besten mit der Abweichung in der Grundwasserneubildung erklären, wenn der Parameter SFCF für den Performance Verlust hauptsächlich verantwortlich ist, beziehungsweise mit der Abweichung in der Schneebedeckung, wenn der Parameter TT hauptsächlich für den Performance - Verlust verantwortlich ist (vgl. die Ergebnisse von Allenbach, Dischma und Sitter). Diese Behauptung sollte jedoch an weiteren Einzugsgebieten geprüft werden.

Im Einzugsgebiet Murg ist der Performance - Verlust eng mit einer abweichenden Einschätzung der aktuellen Verdunstung verbunden, zeigt jedoch keine Abhängigkeit von der Abweichung in der Temperatur zwischen Validierungs- und Referenzzeitraum. Eine Erklärung hierfür ist, dass in die Berechnung der aktuellen Verdunstung neben der Tagesmitteltemperatur drei Modellparameter (Cet, LP, FC) sowie der Wassergehalt der HBV Bodenbox ( $S M$ ) eingehen und den Einfluss der Temperatur auf die aktuelle Verdunstung abstumpfen können. Hinzu kommt, dass diese Parameter keine eindeutigen Abhängigkeiten vom Temperaturmittelwert des Modellierungszeitraumes zu haben scheinen.

Coron u. a. (2012) konnten (wie auch Vaze u. a. (2010) und Li u. a. (2011); alle Studien wurden in Australien durchgeführt) einen größeren Performance - Verlust beobachten, wenn der Kalibrierungszeitraum nasser als der Validierungszeitraum ist. Dies konnte in den hier untersuchten energielimitierten Einzugsgebieten nicht festgestellt werden.

### 7.2.3. Abflussfehler

Die zu keinem Zeitpunkt korrekte Zusammensetzung des Gesamtabflusses aus $Q_{95}, Q_{50}$ und $Q_{05}$ durch das Modell zeigt die Schwierigkeit des Modells, den Abfluss richtig wiedergeben zu können.

Durch die Darstellung der Abflussfehler anhand einer geglätteten Kurve konnte ein tendenzielles Über - oder Unterschätzen des gemessenen Abflusses durch das Modell aufgezeigt werden. Einzelne Modellierungen können zu größeren Abflussfehlern führen. Um die Lesbarkeit der Abbildungen zu gewährleisten, wurden die einzelnen Datenpunkte jedoch nicht geplottet. Die Robustheit dieser Kurve kann an den Histogrammen (den eingehenden Modellierungen pro Abschnitt) abgelesen werden.

Die Entwicklung der Abflussfehler ist zwischen den Einzugsgebieten verschieden stark ausgeprägt. In jedem Einzugsgebiet führt eine Überschätzung der Schneebedeckung zu einer Überschätzung des $Q_{05}$ Quantils. Eine Überschätzung der Grundwasserneubildung führte in jedem Einzugsgebiet zu einer Überschätzung von $Q_{05} Q_{50}$ und $Q_{\text {Gesamt }}$.

In den Einzugsgebieten Allenbach und Sitter wird das $Q_{50}$ Abflussquantil generell um $20 \%$ überschätzt. Das $Q_{95}$ Abflussquantil unterliegt im Einzugsgebiet Ova da Cluozza einer Unterschätzung von bis zu $60 \%$. Aufgrund der verwendeten Zielfunktion wird das $Q_{05}$ Quantil am genauesten durch durch das Modell wiedergegeben.

Durch die Übertragung von Modellparametern auf unabhängige Zeiträume findet eine deutliche Veränderung (in manchen Fällen auch eine gegenläufige Entwicklung) der Größe der Abflussquantile statt.
(Nikolova, 2013) beobachtete ähnlich große Fehler in den Abflussquantilen im Thur Einzugsgebiet. Die durch Coron u. a. (2012) gemessenen Fehler im Median des Gesamtabflusses sind größer (bis $>30 \%$ Abweichung) als der Mittelwert der in dieser Arbeit beobachteten Fehler (bis 20\% Abweichung).

Nicht repräsentative Modellparameter können zu deutlichen Abflussfehlern führen, was besonders für hohe und niedrige Abflüsse gilt.

## 8. Schlussfolgerungen

Der Einfluss des Mittelwertes von Temperatur und Niederschlag auf die Modellparameter ist nicht eindeutig. Für einige Parameter gibt es zwar Tendenzen, diese werden jedoch durch die große Variabilität der kalibrierten Modellparameter zwischen Subperioden mit ähnlichen klimatischen Rahmenbedingungen überlagert.

Der mittlere Performance - Verlust der untersuchten (energielimitierten) Einzugsgebiete ist gering (-5.8 \%). Das Verlassen des Kalibrierungszeitraumes führte jedoch in jedem Untersuchungsgebiet zu einem Abfall der Modellperformance.

Der Performance - Verlust ist mit Prozessen innerhalb des Modells erklärbar, jedoch nicht mit den Temperatur- und Niederschlagsabweichungen der einzelnen Subperioden. Die modell - internen Prozesse, die zu dem Performance - Verlust führen, sind je Einzugsgebiet verschieden.

Die glazio-nivalen Einzugsgebiete wiesen andere für den Performance - Verlust hauptsächlich verantwortliche Parameter auf als die nivalen Einzugsgebiete und das pluviale Einzugsgebiet.

Die Parameter $T T$ und $S F C F$ sind für die quantitativ größten Performance - Verluste verantwortlich.

Durch einen nicht repräsentativen Parametersatz kann es zu großen Fehlern in den Monatssummen des modellierten Abflusses, wie auch in den Abflussquantilen, kommen.

Ein Kalibrierungszeitraum von fünf Jahren ist zu kurz und führte zu deutlich schlechteren Performance Werten im Validierungszeitraum. Wird das Modell am Gesamtzeitraum kalibriert, ist der Performance - Verlust gegenüber dem zeit-variierenden Kalibrierungsansatz vertretbar. Dennoch konnten mit zeit-variierenden Parametersätzen bei jedem Einzugsgebiet die besten Performance Werte erreicht werden.

## Literaturverzeichnis

[Abebe u. a. 2010] Abebe, N. A. ; Ogden, F. L. ; Pradhan, A. R.: Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation. In: Journal of Hydrology 389 (2010), S. 301-310
[BAFU 2014] BAFU: Bundesamt für Umwelt, Thema Hydrologische Grundlagen und Daten. URL; http://www.hydrodaten.admin.ch/de/, abgerufen am 26.08.2014. 2014
[Bastola u.a. 2011] Bastola, S. ; Murphy, C. ; Sweeney, J.: Evaluation of the transferability of hydrological model parameters for simulations under changed climatic conditions. In: Hydrol. Earth Syst. Sci. Discuss. 8 (2011), S. 5891-5915
[Bergström 1976] Bergström, S.: Development and application of a conceptual runoff model for Scandinavian catchments. In: Bulletin Series A 52 (1976), S. 134 pp.. - Department of Water Resources Engineering, Lund Institute of Technology, University of Lund
[Beven und Binley 1992] Beven, K. ; Binley, A.: The future of distributed models: model calibration and uncertainty prediction. In: HYDROLOGICAL PROCESSES 6 (1992), S. 279-298
[Birsan u. a. 2005] Birsan, M.-V. ; Molnar, P. ; Burlandoa, P. ; Pfaundler, M.: Streamflow trends in Switzerland. In: Journal of Hydrology 314 (2005), S. 312-329. - doi:10.1016/j.jhydrol.2005.06.008
[Brigode u. a. 2013] Brigode, P. ; Oudin, L. ; Perrin, C.: Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? In: Journal of Hydrology 476 (2013), S. 410-425
[Chiew u. a. 2009] Chiew, F. H. S. ; Teng, J. ; Vaze, J. ; Post, D. A. ; Perraud, J. M. ; Kirono, D. G. C. ; Viney, N. R.: Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. In: Water Resour. Res. 45 (2009). - W10414, doi:10.1029/2008WR007338
[Coron u.a. 2011] Coron, L. ; Andrèassian, V. ; Bourqui, M. ; Perrin, C.: Pathologies of hydrological models used in changing climatic conditions: a review. In: IAHS Publ. 344 (2011). - Hydro-climatology: Variability and change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011)
[Coron u. a. 2012] Coron, L. ; Andréassian, V. ; Perrin, C. ; Lerat, J. ; Vaze, J. ; Bourqui, M. ; ; Hendrickx, F.: Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. In: WATER RESOURCES RESEARCH 48 (2012). - W05552, doi:10.1029/2011WR011721
[FAO 2014] FAO: Food and Agriculture Orginazation of the United Nations. Natural Resources and Envirenment Department. URL; http://http://www.fao.org/docrep/x0490e/x0490e07.htm, abgerufen am 04.09.2014. 2014
[Gan u. a. 2014] Gan, Y. ; Duan, Q. ; Gong, W. ; Tong, C. ; Sun, Y. ; Chu, W. ; Ye, A. ; Miao, C. ; Di, Z.: A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. In: Environmental Modelling Software 51 (2014), S. 269-285
[Gharari u. a. 2013] Gharari, S. ; Hrachowitz, M. ; Fenicia, F. ; Savenije, H. H. G.: An approach to identify time consistent model parameters: sub-period calibration. In: Hydrol. Earth Syst. Sci 17 (2013), S. 149-161. - doi:10.5194/hess-17-149-2013
[Gurtz u. a. 2003] Gurtz, J. ; Zappa, M. ; Jasper, K. ; Lang, H. ; Verbunt, M. ; Badoux, A. ; Vitvar, T.: A comparative study in modelling runoff and its components in two mountainous catchments. In: Hydrol. Process. 17 (2003), S. 297-311. - DOI: 10.1002/hyp. 1125
[HAdeS 2014] HAdeS: Hydrologischer Atlas der Schweiz. URL; http://www.hades.unibe.ch/de/products/datenportal/downloads/geodaten, abgerufen am 10.09.2014. 2014
[Herman u. a. 2013] Herman, J. D. ; Reed, P. M. ; Wagener, T.: Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. In: Water Resour. Res. 49 (2013), S. 1400-1414. - doi:10.1002/wrcr. 20124
[Lay u. a. 2009] Lay, M. L. ; Galle, S. ; SAulnier, G. M. ; Braud, I.: Exploring the relationship between hydroclimatic stationarity and rainfall-runoff model parameter
stability: A case study in West Africa. In: Water Resour. Res. 43 (2009). - W07420, doi:10.1029/2006WR005257
[Li u.a. 2011] Li, C. Z. ; Zhang, L. ; Wang, H. ; Zhang, Y. Q. ; Yu, F. L. ; Yan, D. H.: The transferability of hydrological models under nonstationary climatic conditions. In: Hydrol. Earth Syst. Sci. Discuss. 8 (2011), S. 8701-8736. -doi:10.5194/hessd-8-8701-2011
[Lindström 1997] Lindström, G.: A Simple Automatic Calibration Routine for the HBV Model. In: Nord. Hydrol. 28 (1997), S. 153-168
[Menzel 1999] Menzel, L.: Flächenhafte Modellierung der Evapotranspiration mit TRAIN. (1999). - https://www.pikpotsdam.de/research/publications/pikreports/.files/pr54.pdf
[Merz u.a. 2011] Merz, R. ; Parajka, J. ; Blöschl, G.: Time stability of catchment model parameters: Implications for climate impact analyses. In: WATER RESOURCES RESEARCH 47 (2011)
[Nash und Sutcliffe 1970] Nash, J. E. ; Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A Discussion of Principles. In: Journal of Hydrology (1970)
[Niel u. a. 2003] Niel, H. ; Paturel, J.-E. ; Servat, E.: Study of parameter stability of a lumped hydrologic model in a context of climatic variability. In: Journal of Hydrology 278 (2003), S. 213-230
[Nikolova 2013] Nikolova, S.: On the robustness of HBV hydrological model calibration under contrasted climate conditions, Brandenburg University of Technology University of Zurich, Diplomarbeit, 2013
[Oudin u.a. 2005] Oudin, L. ; Hervieu, Frédéric ; Michel, Claude ; Perrin, Charles ; Andréassian, Vazken ; Anctil, Francois ; Loumagne, Cécile: Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. In: Journal of Hydrology 303 (2005), S. 290-306. doi:10.1016/j.jhydrol.2004.08.026
[Oudin u. a. 2006] Oudin, Ludovic ; Perrin, Charles ; Mathevet, Thibault ; Andréassian, Vazken ; Michel, Claude: Impact of biased and randomly corrupted
inputs on the efficiency and the parameters of watershed models. In: Journal of Hydrology 320 (2006), Nr. 1-2, S. 62-83. - ISSN 00221694
[Poulin u. a. 2011] Poulin, Annie ; Brissette, Francois ; Leconte, Robert ; Arsenault, Richard ; Malo, Jean-Stephane: Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin. In: Journal of Hydrology 409 (2011), Nr. 3-4, S. 626-636. - ISSN 00221694
[Rauthe u. a. 2013] Rauthe, M. ; Steiner, H. ; Riediger, U. ; Mazurkiewicz, A. ; Gratzki, A.: A Central European precipitation climatology - Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). In: Meteorologische Zeitschrift 22 (2013), Nr. 3, S. 235-256
[Seeger 2013] Seeger, S.: Transit times and storage properties of mesoscale catchments in Switzerland, Universität Freiburg, Institute for Hydrology, Diplomarbeit, 2013
[Seibert 1997] Seibert, J.: Estimation of Parameter Uncertainty in the HBV Model. In: Nordic Hydrology 28 (4/5) (1997), S. 247-262
[Seibert 2000] Seibert, J.: Multi-criteria calibration of a conceptual runoff model using a generic algorithm. In: Hydrology and Earth System Sciences 4(2) (2000), S. 215-224
[Seibert 2003] Seibert, J.: Reliability of Model Predictions Outside Calibration Conditions. In: Nordic Hydrology 34 (5) (2003), S. 477-492
[Seibert 2005] Seibert, J.: HBV-light version 2 User's Manual. (2005). - Stockholm University, Department of physical geography and quaternary geology
[Seibert und Vis 2012] Seibert, J. ; Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. In: Hydrol. Earth Syst. Sci. 16 (2012), S. 3315-3325. - doi:10.5194/hess-16-3315-2012
[Stahl u.a. 2013] Stahl, K. ; Weiler, M. ; Seibert, J. ; Gerlinger, K. ; Steinbrich, A. ; Freudiger, D. ; Finger, D. ; Hohmann, C. ; Böhm, M.: Abflussanteile aus Schnee- und Gletscherschmelze im Rhein und seinen Zuflüssen vor dem Hintergrund des Klimawandels. In: ASG Rhein Zwischenbericht Dez 2012-Dez 2013 (2013)
[Staudinger u. a. 2014] Staudinger, M. ; Weiler, M. ; Seibert, J.: Quantifying sensitivity to droughts - an experimental modeling approach. In: Hydrol. Earth Syst. Sci. Discuss. 11 (2014), S. 7659-7688
[Tabari und Talaee 2014] Tabari, H. ; Talaee, P. H.: Sensitivity of evapotranspiration to climatic change in different climates. In: Global and Planetary Change 115 (2014), S. 16-23. - http://dx.doi.org/10.1016/j.gloplacha.2014.01.006
[Uhlenbrook u. a. 1999] Uhlenbrook, S. ; Seibert, J. ; Leibundgut, C. ; Rodhe, A.: Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure. In: Hydrological Sciences Journal 44:5 (1999), S. 779-797. - DOI: 10.1080/02626669909492273
[Vaze u. a. 2010] Vaze, J. ; Post, D. A. ; Chiew, F.H.S. ; Perraud, J.-M. ; Viney, N.R. ; Teng, J.: Climate non-stationarity - Validity of calibrated rainfall-runoff models for use in climate change studies. In: Journal of Hydrology 394 (2010), S. 447-457
[Wagener u. a. 2003] Wagener, T. ; McIntyre, N. ; Lees, M. J. ; Wheater, H. S. ; Gupta, H. V.: Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis. In: Hydrol. Process. 17 (2003), S. 455-476
[Westra u. a. 2014] Westra, S. ; Thyer, M. ; Leonard, M ; Kavetski, D. ; LamBERT, M.: A strategy for diagnosing and interpreting hydrological model nonstationarity. In: Water Resour. Res 50 (2014), S. 5090-5113. - doi:10.1002/2013WR014719
[Zierl und Bugmann 2005] Zierl, B. ; Bugmann, H.: Global change impacts on hydrological processes in Alpine catchments. In: WATER RESOURCES RESEARCH 41 (2005), S. W02028. - doi:10.1029/2004WR003447

## A. Anhang

## A.1. verwendete Abkürzungen

Tabelle A.1.1.: Überblick über die verwendeten Abkürzungen.

| 50\% Quantil des Abflusses | [mm] | $Q_{50}$ |
| :---: | :---: | :---: |
| 95\% Quantil des Abflusses | [mm] | $Q_{95}$ |
| 05\% Quantil des Abflusses | [mm] | $Q_{05}$ |
| aktuelle Verdunstung | [mm] | AET |
| beobachteter Abfluss | [mm] | Q beob |
| Breitengrad | [ rad ] | $\varphi$ |
| Dichte des Wassers | $\left[\frac{k g}{L}\right]$ | $\rho$ |
| extraterrestrische Strahlung | $\left[\frac{M J}{c m^{2} * T a g}\right]$ | $R_{e}$ |
| Grundwasserneubildung | [mm] | GWN |
| generalisierter Split Sample Test |  | GSST |
| inverser relativer Abstand Sonne Erde | [ rad ] | $d_{r}$ |
| latenter Wärmefluss | $\left[\frac{M J}{k g}\right]$ | $\lambda$ |
| modellierter Abfluss, Parametersatz wurde am Gesamtzeitraum kalibriert | [mm] | Q GSZ |
| modellierter Abfluss, Parametersatz wurde an der rezentesten Subperiode kalibriert | [mm] | Q SP |
| modellierter Abfluss, Parametersatz ist zeit-variierend | [mm] | Q GSST |
| potentielle Evaporation | $\frac{m m}{T a g}$ | PE |
| Solarkonstante | $\left[\frac{M J}{m^{2} * J a h r}\right]$ | $G_{S C}$ |
| Sonnenwinkel | [rad] ${ }^{\text {a }}$ | $\omega_{s}$ |
| Tag im Jahr | [-] | $J$ |
| Tagesmitteltemperatur | $\left[{ }^{\circ} \mathrm{C}\right]$ | $T_{a}$ |
| Unterschiede im Modelloutput | [-] | $\triangle M O$ |
| Unterschiede in der Modellperformance | [-] | $\triangle P M$ |
| Wassergehalt in der HBV Bodenbox | [mm] | SM |

## A.2. Berechnete potentielle Evaporation

Für das Einzugsgebiet Murg wurden die höchsten potentielle Evaporation berechnet, das Einzugsgebiet Dischma weist die niedrigste berechnete potentielle Evaporation auf A.2.1. Allgemein sind die errechneten Jahressummen der potentiellen Evapotranspiration realistisch (vgl. Gurtz u. a. (2003); Seeger (2013); Menzel (1999)).

Tabelle A.2.1.: Berechnete potentielle Evaporation der Einzugsgebiete.

| EZG | potentielle Evaporation [mm/Jahr] |
| :---: | :---: |
| Allenbach | 345 |
| Dischma | 250 |
| Murg | 583 |
| Ova da Cluozza | 268 |
| Sitter | 463 |

## A.3. Zeitlicher Verlauf der kalibrierten <br> Modellparameter



Abbildung A.3.1.: Kalibrierte Parameterwerte für das Einzugsgebiet Allenbach


Abbildung A.3.2.: Kalibrierte Parameterwerte für das Einzugsgebiet Dischma


Abbildung A.3.3.: Kalibrierte Parameterwerte für das Einzugsgebiet Murg


Abbildung A.3.4.: Kalibrierte Parameterwerte für das Einzugsgebiet Ova da Cluozza


Abbildung A.3.5.: Kalibrierte Parameterwerte für das Einzugsgebiet Sitter

## A.4. HYDRO - KLIMATISCHE VERHÄLTNISSE DER SUBPERIODEN

## A.4. hydro - klimatische Verhältnisse der Subperioden

Dargestellt sind jeweils links die fünf- Jahresmittelwerte der Temperatur-, Niederschlagsund Abflussdaten mit linearem Trend (grau), sowie die Werte der Winter- und Sommermonate der fünf- Jahreszeiträume (mitte und rechts) mit linearem Trend (grau).


Abbildung A.4.1.: hydro - klimatische Verhältnisse im Einzugsgebiet Allenbach


Abbildung A.4.2.: hydro - klimatische Verhältnisse im Einzugsgebiet Dischma


Abbildung A.4.3.: hydro - klimatische Verhältnisse im Einzugsgebiet Murg


Abbildung A.4.4.: hydro - klimatische Verhältnisse im Einzugsgebiet Ova da Cluozza


Abbildung A.4.5.: hydro - klimatische Verhältnisse im Einzugsgebiet Sitter

## A.5. Plots der P/Q Verhältnisse der Einzugsgebiete



Abbildung A.5.1.: P/Q Verhältnisse der Untersuchungsgebiete

## A.6. Durch HBV angepasste potentielle Evaporation



Abbildung A.6.1.: Jahreswerte der durch HBV angepassten potentiellen Evaporation aller Einzugsgebiet. Murg star : konstante potentielle Evaporation - Murg var : für jeden Modellierungszeitraum neu berechnete potentielle Evaporation

## A.7. Performance Verluste der abweichenden Evaporationsansätze im Einzugsgebiet Murg



Abbildung A.7.1.: Performance (PM) Verlust der Validierungszeiträume in Bezug zu den Referenzzeiträumen bei konstanter potentieller Evaporation. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen


Abbildung A.7.2.: Performance (PM) Verlust der Validierungszeiträume in Bezug zu den Referenzzeiträumen bei für alle Subperioden separat berechneter potentieller Evaporation. Der PM Verlust ist dargestellt gegen Zeitversatz, Temperatur und Niederschlagsabweichung sowie gegen die Abweichung weiterer Modelloutputs zwischen Validierungs- und Referenzzeitraum mit Häufigkeit der eingehenden Modellierungen

# A.8. Sensitivität einzelner Parameter auf den <br> Performance - Verlust 



Abbildung A．8．1．：Performance－Verlust und Abweichungen in den Modellparametern zwischen Validierungs－und Referenzzeitraum für das Einzugsgebiet Allenbach．Die Färbung der Punkte basiert auf dem Zeitversatz zwi－ schen Validierungs－und Referenzzeitraum


Abbildung A.8.2.: Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Dischma. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungs- und Referenzzeitraum


Abbildung A.8.3.: Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Murg. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungs- und Referenzzeitraum


Abbildung A.8.4.: Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Ova da Cluozza. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungs- und Referenzzeitraum



 FC

Abbildung A.8.5.: Performance - Verlust und Abweichungen in den Modellparametern zwischen Validierungs- und Referenzzeitraum für das Einzugsgebiet Sitter. Die Färbung der Punkte basiert auf dem Zeitversatz zwischen Validierungs- und Referenzzeitraum

## A.9. Implementierung des GSST in R

```
# Steuerung von HBV durch R
#
# -Implementierung des GSST
# Claudius Fleischer, 2014
require (XML)
```



```
cliApp <- "C:/.../HBV-light-CLI.exe" # Pfad zur HBV-light-CLI.exe
EZG<- "D:/../" # Pfad zum Einzugsgebiet
run_number <- 2 # GAP-Run (Eingabe nur fuer benchmarking benoetigt)
warming <- 3 # Laenge der WarminUp Zeit [Jahre]
shift <- 1 # Zeitshift zwischen den Subperioden [Jahre]
window <- 5 # Groesse des Zeitfensters [Jahre]
pm_val.gap <- 6 # Zielfunktion. 6: Lindstroem Measure
gapsFile <- "/gaps:GAP_file.xml" # GAP-Parametergrenzen
```



```
PTQ <- read.table(paste(EZG, "data/PTQ.txt", sep = ""), sep = "\t", dec = ".")
warmingUp <- if(as.numeric(substr(PTQ[2,1], 5,6))< < 10) {as.numeric(paste(substr(PTQ[2,1], 1,4), "10
    ", "01", sep = ""))} else
    if(as.numeric(substr(PTQ[2,1], 5,6)) >= 10) {as.numeric(paste(substr(PTQ[2,1], 1,4), "10", "01",
        sep = ""))+10000}
setwd(paste(EZG, "Results/", sep = ""))
shift <- shift*10000
window <- window*10000
warming <- warming*10000
starts <- warmingUp+30000
ends <- starts +50000-1001+930
# GAP Run (GSST)
# Zwischenvariablen initialisieren
warmingUpsave <- NULL
startssave <- NULL
endssave <- NULL
modelruns <- (20070930-(ends))/10000
warmingUp <- warmingUp-shift;
starts <- starts-shift;
ends <- ends-shift;
t1 <- Sys.time()
for (i in 1:modelruns)
{
warmingUp <- warmingUp+shift
starts <- starts+shift
ends <- ends+shift
cat(i,"/", modelruns, ":", starts, "\n \n")
#Change model settings
warmingUpCommand <- paste("/WarmingUp:", warmingUp, sep="")
startCommand <- paste("/Start:", starts, sep="")
endCommand <- paste("/End:", ends, sep="")
catchment <- EZG #path to catchment
```

```
# evapFile <- paste("/evap:evap_2126_", substr(warmingUp,1,4), "_month_oudin.txt", sep = "")
    tmeanFile <- paste("/tmean:t_mean2126_", substr(warmingUp,1,4), ".txt", sep = "")
    ptqFile<-"/ptq:PTQ.txt"
    gapsFile <- gapsFile
    command <- paste(shQuote(cliApp), "Settings", catchment, warmingUpCommand ,startCommand,
        endCommand, ptqFile, gapsFile, sep=" ")
    system(command, intern=T)
    # GAP-Run durchfuehren
    resultFolder <- paste(catchment,"results", sep = "")#path to result folder
    command <- paste(shQuote(cliApp), "Run", catchment, "GAPRun", resultFolder, ptqFile, gapsFile,
        sep="")
    system(command)
    file.rename(from = paste(resultFolder, "/GA_best1.txt", sep = ""),
        to = paste(resultFolder, "/GA_best1_", starts, ".txt", sep = ""))
    file.rename(from = paste(resultFolder, "/GAP_Parameter_", seq(1, 25), ".xml", sep = ""), #seq
        (1,100)
            to = paste(resultFolder, "/GAP_Parameter_", seq(1, 25), "_",starts, ".xml", sep = ""))
    # Zwischenvariabeln definieren
    warmingUpsave <- rbind(warmingUpsave, warmingUp)
    startssave <- rbind(startssave, starts)
    endssave <- rbind(endssave, ends)
    if(i== modelruns) {cat("Finished with a "); Sys.time()-t1}
}
# Zwischenvariablen in .txt file schreiben
vars <- cbind(warmingUpsave, startssave, endssave)
write.table(vars, file = paste(EZG, "ablage/StartVars_GAP.txt", sep = ""),
    row.names = FALSE, col.names = c("WarmingUps", "Starts", "Ends"))
```



```
# GSST benchmarking
##N|N
vars <- read.table(paste(EZG, "ablage/GAP/GAP_", run_number, "/StartVars_GAP.txt", sep = ""), header
    = TRUE)
vars[1,2]
vars[length(vars[, 1]), 3]
startssave <- vars[, 2]
outersect <- function(x, y) # Gegenteil von intersect()
{
    sort(c(setdiff(x, y),
        setdiff(y, x)))
}
# Namen der GAP files
files_mc<- paste(EZG, "ablage/GAP/GAP_", run_number, "/results/GA_best1_", startssave, ".txt", sep
    ="")
t2<- Sys.time()
for (j in 1:length(files_mc))
    {
        # Bestes Parameterset aus GAP Simulationen raussuchen
        # Inputfile
        file_mc<- files_mc[j]
        data <- read.csv(file_mc, sep = "\t", dec = ".")
        data <- cbind(data, Fit = data$Reff*data$VolumeError)
        namen <- names(data)
        pm <- pm_val.gap # fuer GAP
        namen [pm]
```

```
maxNSE <- max(data[, namen[pm]])
bestRun <- which(data[, namen[pm]] == maxNSE)
bestSet <- data[bestRun,]
# XML Parameter-File mit Parametern des besten GAP austauschen
#
bestSet
    names(bestSet) <- c("No","PERC","UZL", "K0","K1","K2","MAXBAS", "PCALT", "TCALT", "Pelev",
                    "Telev" "TT","CFMAX","SFCF","CFR", "CWH", "FC","LP","BETA")
names(bestSet) <- c("Runs.done","Reff","LogReff", "FlowWeightedReff","VolumeError","
        LindstromMeasure", "PeakReff",
                    "MAREMeasure", "SpearmanRank", "ReffQObsSample", "SnowCoverRMSE"
                    "Weighted_Obj_Function", "PERC","UZL", "K0","K1", "K2", "MAXBAS", " Cet",
                            "PCALT", "TCALT",
                            "Pelev", "Telev", "TT", "CFMAX", "SFCF", "CFR", "CWH", "FC", "LP", "BETA", "
                Fit")
set_1<- c("PERC","UZL", "K0","K1","K2","MAXBAS", "Cet", "PCALT", "TCALT", "Pelev","Telev")
set_2<- c ("TT","CFMAX","SFCF","CFR", "CWH", "FC", "LP","BETA")
value_set1 <- bestSet[, set_1]
value_set2 <- bestSet[,set_2]
old<- xmlTreeParse(paste(EZG, "data/Parameter.xml", sep = ""))
root <- xmlRoot(old)
for(p in 1:length(set_1)){xmlValue(root[[1]][[set_1[p]]])<-bestSet[set_1[p]]}
for(p in 1:length(set_2)){xmlValue(root[[2]][[1]][[set_2[p]]])<-bestSet[set_2[p]]}
for(p in 1:length(set_1)){xmlValue(root [[3]][[1]][[set_1[p]]])<-bestSet[set_1[p]]}
for(p in 1:length(set_2)){xmlValue(root[[3]][[2]][[1]][[set_2[p]]])<-bestSet[set_2[p]]}
neu <- root
rm(old)
rm(root)
saveXML(neu, paste(EZG, "data/Parameter_neu", startssave[j], ".xml", sep = "")) # Parameter.xml
    fuer SingleRun speichern
# Single Run (GSST)
[1,2
vars[length(vars [, 1]), 3]
sequenz <- seq(vars[1, 2], vars[length(vars[,1]),2], by = shift)
cutter<- seq(startssave[j] - (window - 10000), startssave[j]+(window-10000), by = shift) #
    abhaengige SP ausschneiden
cutter <- cutter [!cutter<vars [1,2] & !cutter>vars[length(vars [, 1]), 2]]
sequenz <- outersect(sequenz, cutter)
sequenz <- sort(c(sequenz, startssave[j])) # Referenzmodellierung einfuegen
filenames <- NULL
# Single Run fuer unabhaengige Validierungszeitraeume und Refenrenzzeitraum (GSST benchmarking)
for (k in sequenz)
    {
        warmingUpsingle <- k - warming;
        startssingle <- k
        endssingle <- k + window - 1001+930
        cat("\n", rep("*", 20), "\n", "warming up:", "\t \t \t \t", warmingUpsingle,"\n",
            "start Simlulation:", "\t", startssingle, "\n", "end simulation:", "\t \t ",
                endssingle, "\n", rep("*", 20), "\n")
        #Change model settings
        warmingUpCommand <- paste("/WarmingUp:", warmingUpsingle, sep="")
        startCommand <- paste("/Start:", startssingle, sep="")
        endCommand <- paste("/End:", endssingle, sep="")
        catchment <- EZG #path to catchment
            evapFile <- paste("/evap:evap_2126_", substr(warmingUpsingle, 1,4), "_month_oudin.txt",
sep = "")
            tmeanFile <- paste("/tmean:t_mean2126_", substr(warmingUpsingle, 1, 4), "_month_oudin.txt
", sep = "")
        ptqFile<-"/ptq:PTQ.txt"
```

```
    pFile <- paste("/p:Parameter_neu", startssave[j] ,".xml", sep = "")
    command <- paste(shQuote(cliApp), "Settings", catchment, warmingUpCommand, startCommand,
        endCommand, ptqFile, pFile, sep=" ");
        system(command, intern=T)
        # Single Run
        resultFolder <- paste(catchment,"results", sep = "")#path to result folder
        command <- paste(shQuote(cliApp), "Run", catchment, "SingleRun", resultFolder, ptqFile,
        pFile, sep=" ")
        system(command)
        #resultFile nach Run umbenennen
        file.rename(from = paste(resultFolder, "/Results.txt", sep = ""), to = paste(resultFolder
        "/Results_", startssave[j], "-", startssingle, ".txt", sep = ""))
        file.rename(from = paste(resultFolder, "/Summary.txt", sep = ""), to = paste(resultFolder,
        "/Summary_", startssave[j], "_", startssingle, ".txt", sep = ""))
        filenames <- cbind( filenames, startssingle)
    }
}
files <- dir(pattern = "*.txt")
result_files <- files [substr(files, 1, 7) == "Results"]
summary_files <- files[substr(files, 1, 7) == "Summary"]
dir.create(paste(EZG, "ablage/GAP/GAP_",run_number,"/benchmark", sep = ""))
file.copy(from = c(result_files, summary_files), to = c(paste(EZG, "ablage/GAP/GAP_",run_number,"/
    benchmark/", result_files, sep = ""),
        paste(EZG, "ablage/GAP/GAP_",run_number,"/benchmark/", summary_files , sep = "")),
            overwrite = FALSE)
file.remove(result_files, summary_files)
cat("Finished with a "); Sys.time()-t2
```


## Ehrenwörtliche Erklärung

> Hiermit erkläre ich, dass die Arbeit selbstständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt wurde.

